2012年江苏省连云港市中考数学试题(含答案)
2013-2019年江苏省连云港市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013-2019年江苏省连云港市中考数学试题汇编(含参考答案与解析)1、2013年江苏省连云港市中考数学试题及参考答案与解析 (2)2、2014年江苏省连云港市中考数学试题及参考答案与解析 (27)3、2015年江苏省连云港市中考数学试题及参考答案与解析 (52)4、2016年江苏省连云港市中考数学试题及参考答案与解析 (75)5、2017年江苏省连云港市中考数学试题及参考答案与解析 (101)6、2018年江苏省连云港市中考数学试题及参考答案与解析 (123)7、2019年江苏省连云港市中考数学试题及参考答案与解析 (147)2013年江苏省连云港市中考数学试题及参考答案与解析一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中是正数的为( )A .3B .12- C . D .0 2.计算a 2•a 4的结果是( )A .a 8B .a 6C .2a 6D .2a 83.将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是( )A .B .C .D .4.为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为( )A .0.6×108B .6×108C .6×107D .60×1065.在Rt △ABC 中,∠C=90°,若sinA=513,则cosA 的值为( ) A .512 B .813 C .23 D .1213 6.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论中正确的是( )A .a >bB .|a|>|b|C .﹣a <bD .a+b <07.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A .①②③B .①②C .①③D .②③8.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A.1 B C.4-D.4二、填空题(本大题共有8小题,每小题3分,共24分)9.计算:2=.10x取值范围是.11.分解因式:4﹣x2=.12.若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是.(写出一个即可)13则该周普通住宅成交量的中位数为套.14.如图,一束平行太阳光线照射到正五边形上,则∠1=.15.如图,△ABC内接于⊙O,∠ACB=35°,则∠OAB=.16.点O在直线AB上,点A1、A2、A3,…在射线OA上,点B1、B2、B3,…在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为秒.三、解答题(本大题共11小题,共102分。
2012年连云港市中考试卷

2012年连云港市中考试卷(模拟四)一、选择题(每小题2分,共24分)1.下列物质能在空气中燃烧,且产生大量白烟的是A.氢气B.硫粉C.红磷D.铁丝2.下列物质中属于氧化物的是A.O2B.Ba(OH)2C.ZnSO4D.CuO3.施用钾肥能增强农作物的抗倒伏能力。
下列物质可用作钾肥的是A.NH4Cl B.K2CO3C.CO(NH2)2 D.Ca(H2PO4)24.下列洗涤方法中利用了乳化原理的是A.用汽油洗去手上的油污B.用洗洁精洗去餐具上的油污C.用酒精洗去试管中的碘D.用稀盐酸洗去铁制品表面的铁锈5.化学与环境、生产和生活密切相关。
下列说法错误..的是A.用肥皂水可以区分硬水和软水B.推广使用可降解塑料,有助于减少“白色污染”C.将熟石灰和硝酸铵混合施用,肥效更高D.环境保护应从源头消除污染6.科学家证实金星的大气层组成中含有硫化氢(H2S),H2S中硫元素的化合价为A.—1 B.—2 C.+1 D.+27.下列粒子结构示意图中表示阳离子的是...的是9.地沟油中含有一种强烈致癌物黄曲霉素B2【C17H14O6】,长期食用会引起消化道癌变。
下列关于黄曲霉素B2的说法正确的是A .黄曲霉素B 2不是有机化合物B .黄曲霉素B 2由17个碳原子、14个氢原子和6个氧原子构成C .黄曲霉素B 2中碳元素、氢元素和氧元素的质量比是17:14:6D .黄曲霉素B 2中碳元素的质量分数约为65.0%10.如图表示治理汽车尾气所涉及反应的微观过程。
下列说法不正确...的是 A .图中单质的化学式为N 2 B .该反应使有毒气体转化为无毒气体C .反应物都属于氧化物D .反应中原子、分子个数都不变11.A 和B 可发生反应:3A +2B ==A 3B 2,某学生做了3次该实验(每次均充分反应),反应前A 和B 的质量之和都是12g 。
有关实验数据见下表,x ︰y 的值可能为12.你玩过“盖房子”的游戏吗?如右图所示,游戏规则是根据“上下相邻的物质间均可发生化学反应,且左边上下相邻物质间反应均有气体产生”来堆物质。
2001-2012年连云港市中考数学试题分类解析汇编三角形

一、选择题1. (2001年江苏连云港2分)等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于【】(A)90° (B)60° (C)120° (D)150°2. (2002年江苏连云港3分)如图,等边△ABC中,D为AB边中点,DE⊥AC于E,EF∥AB 交BC于F点,则△EFC与△ABC的面积之比为【】A.3:4 B.9:16 C.4:5 D. 16:253. (2004年江苏连云港3分)在△ABC 中,∠C=90°,AB=13,BC=12,则cosA的值为【 】A .1213 B .513 C .125 D .5124. (2005年江苏连云港3分)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角【 】(A )都扩大为原来的5倍 (B )都扩大为原来的10倍 (C )都扩大为原来的25倍 (D )都与原来相等5. (2006年江苏连云港3分)如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为【 】A 、53 B 、54 C 、34 D 、436. (2007年江苏连云港3分)如图,坡角为300的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为【】A.4m D.7. (2009年江苏省3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.△≌△的条件共有【】其中,能使ABC DEFA.1组B.2组C.3组D.4组8. (2011年江苏连云港3分)如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误..的是【】A.四边形EDCN是菱形 B.四边形MNCD是等腰梯形C.△AEM与△CBN相似 D.△AEN与△EDM全等二、填空题1. (2003年江苏连云港3分)如果一个角的补角是这个角余角的4倍,则这个角的正弦值为▲ .2. (2007年江苏连云港4分)如图是一山谷的横断面示意图,宽AA′为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(点A,O,O′A′在同一条水平线上),则该山谷的深h为▲m.3. (2008年江苏连云港4分)在Rt△ABC中,∠C=90°,AC=5,BC=4,则tanA= ▲ .4. (2008年江苏连云港4分)如图,一落地晾衣架两撑杆的公共点为O,OA=75cm,OD=50cm.若撑杆下端点A,B所在直线平行于上端点C,D所在直线,且AB=90cm,则CD= ▲ cm.5. (2011年江苏连云港3分)△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .。
江苏省连云港市届九年级中考摹拟数学试题

2012 年中考模拟试卷
数学试题
1.本试卷共 6 页.全卷满分 150 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答
在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将
自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上.
x
10.函数 y =- 中自变量 x 的取值范围_______▲________.
x 1
11.分解因式: 4a2 4a 1= _______▲______.
C.8
12.已知等腰梯形的面积为 24cm2,中位线长为 6cm,则等腰梯形的高为____▲_____cm.
13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2
17.(本题满分 6 分)
计算: (2)2
18.(本题满分 6 分)
4
1 3
1
-
(2
3)0
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
连云港市中考数学试题及答案解析

江苏省连云港市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(•衢州)﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•连云港)下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6D.(a+b)2=a2+b2考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2a与3b不能合并,错误;B.5a﹣2a=3a,正确;C.a2•a3=a5,错误;D.(a+b)2=a2+2ab+b2,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.3.(3分)(•连云港)连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18000元,其中“18000”用科学记数法表示为()A.0.18×105B.1.8×103C.1.8×104D.18×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将18000用科学记数法表示为1.8×104.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•连云港)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8 9 9 8s2 1 1 1.2 1.3A.甲B.乙C.丙D.丁考点:方差;算术平均数.分析:从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.解答:解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B.点评:此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(3分)(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.6.(3分)(•连云港)已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0考点:根的判别式.专题:计算题.分析:根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围.解答:解:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴△=4﹣12k>0,解得:k<.故选A.点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(3分)(•连云港)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36考点:菱形的性质;反比例函数图象上点的坐标特征.分析:根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.解答:解:∵C(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.点评:本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.8.(3分)(•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元考点:一次函数的应用.分析:根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t (单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.解答:解:A、根据图①可得第24天的销售量为200件,故正确;B.设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C.当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D.第30天的日销售利润为;150×5=750(元),故正确.点评:本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题(每小题3分,共24分)9.(3分)(•连云港)在数轴上,表示﹣2的点与原点的距离是2.考点:数轴.分析:在数轴上,表示﹣2的点与原点的距离即是﹣2的绝对值,是2.解答:解:﹣2与原点的距离为:|﹣2|=2.点评:注意:距离是一个非负数,求一个数对应的点到原点的距离就是求这个数的绝对值.10.(3分)(•连云港)代数式在实数范围内有意义,则x的取值范围是x≠3.考点:分式有意义的条件.分析:根据分母不等于0进行解答即可.解答:解:要使代数式在实数范围内有意义,可得:x﹣3≠0,解得:x≠3,故答案为:x≠3点评:此题考查分式有意义,关键是分母不等于0.11.(3分)(•连云港)已知m+n=mn,则(m﹣1)(n﹣1)=1.考点:整式的混合运算—化简求值.分析:先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.解答:解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.点评:本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.12.(3分)(•连云港)如图,一个零件的横截面是六边形,这个六边形的内角和为720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).13.(3分)(•连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式y=﹣x+2(写出一个即可).考点:一次函数的性质;反比例函数的性质;二次函数的性质.专题:开放型.分析:写出符合条件的函数关系式即可.解答:解:函数关系式为:y=﹣x+2,y=,y=﹣x2+1等;故答案为:y=﹣x+2点评:本题考查的是函数的性质,此题属开放性题目,答案不唯一.14.(3分)(•连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8π.考点:由三视图判断几何体;几何体的展开图.分析:根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=×4π×4=8π.故答案为:8π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.15.(3分)(•连云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.考点:角平分线的性质.分析:估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.解答:解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.点评:本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.16.(3分)(•连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.考点:相似三角形的判定与性质;平行线之间的距离;勾股定理.分析:过点B作EF⊥l2,交l1于E,交l3于F,在Rt△ABC中运用三角函数可得=,易证△AEB∽△BFC,运用相似三角形的性质可求出FC,然后在Rt△BFC中运用勾股定理可求出BC,再在Rt△ABC中运用三角函数就可求出AC的值.解答:解:如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC,∴△BFC∽△AEB,∴==.∵EB=1,∴FC=.在Rt△BFC中,BC===.在Rt△ABC中,sin∠BAC==,AC===.故答案为.点评:本题主要考查了相似三角形的判定与性质、三角函数、特殊角的三角函数值、勾股定理、平行线的判定与性质、同角的余角相等等知识,构造K型相似是解决本题的关键.三、解答题17.(6分)(•连云港)计算:+()﹣1﹣0.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用二次根式的性质计算,第二项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=3+2﹣1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•连云港)化简:(1+).考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)(•连云港)解不等式组:.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:解不等式①得:x>2,解不等式②得:x<3,所以不等式组的解集是2<x<3.点评:本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.20.(8分)(•连云港)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x≤2000 18 0.15B 2000<x≤4000 a bC 4000<x≤6000D 6000<x≤8000 24 0.20E x>8000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=36,b=0.30,c=120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.考点:频数(率)分布表;用样本估计总体;条形统计图;中位数.分析:(1)首先根据A组的人数和所占的百分比确定c的值,然后确定a和b的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.解解:(1)观察频数分布表知:A组有18人,频率为0.15,答:∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.点评:本题考查了统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.理解平均数、中位数和众数的概念,并能根据它们的意义解决问题.21.(10分)(•连云港)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.解答:解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是2时,|x|=0,不会有奖.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(•连云港)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.考点:翻折变换(折叠问题);平行四边形的性质.分析:(1)由折叠和平行线的性质易证∠EDB=∠EBD;(2)AF∥DB;首先证明AE=EF,得出∠AFE=∠EAF,然后根据三角形内角和与等式性质可证明∠BDE=∠AFE,所以AF∥BD.解答:解:(1)由折叠可知:∠CDB=∠EDB,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=∠EBD,∴∠EDB=∠EBD;(2)AF∥DB;∵∠EDB=∠EBD,∴DE=BE,由折叠可知:DC=DF,∵四边形ABCD是平行四边形,∴DC=AB,∴DF=AB,∴AE=EF,∴∠EAF=∠EFA,在△BED中,∠EDB+∠EBD+∠DEB=180°,∴2∠EDB+∠DEB=180°,同理,在△AEF中,2∠EFA+∠AEF=180°,∵∠DEB=∠AEF,∴∠EDB=∠EFA,∴AF∥DB.点评:本题主要考查了折叠变换、平行四边形的性质、等腰三角形的性质的综合应用,运用三角形内角和定理和等式性质得出内错角相等是解决问题的关键.23.(10分)(•连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.考点:一元二次方程的应用;分式方程的应用.分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.解答:解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据题意得=,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1﹣y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.点评:本题考查了一元二次方程与分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(10分)(•连云港)已知如图,在平面直角坐标系xOy中,直线y=x﹣2与x 轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.考圆的综合题.点:分析:(1)由直线y=x﹣2与x轴、y轴分别交于A,B两点,可求得点A与点B的坐标,继而求得∠OBA=30°,然后过点O作OH⊥AB于点H,利用三角函数可求得OH的长,继而求得答案;(2)当⊙P过点B时,点P在y轴右侧时,易得⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,则可求得弧长;同理可求得当⊙P过点B时,点P在y轴左侧时,⊙P被y轴所截得的劣弧的长;(3)首先求得当⊙P与x轴相切时,且位于x轴下方时,点D的坐标,然后利用对称性可以求得当⊙P与x轴相切时,且位于x轴上方时,点D的坐标.解答:解:(1)原点O在⊙P外.理由:∵直线y=x﹣2与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,﹣2),在Rt△OAB中,tan∠OBA===,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠OBA=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP•tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).点评:此题属于一次函数的综合题,考查了直线上点的坐标的性质、切线的性质、弧长公式以及三角函数等知识.注意准确作出辅助线,注意分类讨论思想的应用.25.(10分)(•连云港)如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BD•cos∠HBD的值;(2)若∠CBD=∠A,求AB的长.考点:相似三角形的判定与性质;解直角三角形.分析:(1)首先根据DH∥AB,判断出△ABC∽△DHC,即可判断出=3;然后求出BH的值是多少,再根据在Rt△BHD中,cos∠HBD=,求出BD•cos∠HBD的值是多少即可.(2)首先判断出△ABC∽△BHD,推得;然后根据△ABC∽△DHC,推得,所以AB=3DH;最后根据,求出DH的值是多少,进而求出AB的值是多少即可.解答:解:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴=3,∴CH=1,BH=BC+CH,在Rt△BHD中,cos∠HBD=,∴BD•cos∠HBD=BH=4.(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴,∵△ABC∽△DHC,∴,∴AB=3DH,∴,解得DH=2,∴AB=3DH=3×2=6,即AB的长是6.点评:(1)此题主要考查了相似三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.26.(12分)(•连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.考点:几何变换综合题.专题:综合题.分析:(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,在直角三角形AMD中,求出AM的长,即为DM的长,根据勾股定理求出GM的长,进而确定出DG的长,即为BE的长;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.解答:解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°=,∵AD=2,∴DM=AM=,在Rt△AMG中,根据勾股定理得:GM==,∵DG=DM+GM=+,∴BE=DG=+;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.点评:此题属于几何变换综合题,涉及的知识有:正方形的性质,全等三角形的判定与性质,勾股定理,圆周角定理,以及锐角三角函数定义,熟练掌握全等三角形的判定与性质是解本题的关键.27.(14分)(•连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?考点:二次函数综合题.分析:(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)如图1,过点B作BG∥x轴,过点A作AG∥y轴,交点为G,然后分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),如图2,设MP与y轴交于点Q,首先在Rt△MQN中,由勾股定理得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.解答:解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(2,﹣1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,过点B作BG∥x轴,过点A作AG∥y轴,交点为G,∴AG2+BG2=AB2,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m++=m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的纵坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵2≤6≤8,∴取到最小值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.。
连云港市2012年中考模拟考试数学试卷

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是 A .2的相反数 B .21 的相反数 C .2-的相反数 D .21- 的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×1053.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y)2=2x 4y 2D .(x+y 2)2=x 2+y 4 4.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P第5题ABDC7.如图,已知□ABCD ,∠A=45°,AD=4,以AD 为直径的半圆O 与BC 相切于点B ,则图中阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x中自变量x 的取值范围_______▲________. 11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A’BC’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD =BC =40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm.第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫- ⎪⎝⎭-0(218.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年连云港市中考数学试卷解析

2012年连云港市中考数学试题一、选择题(本大题共8小题,每题3分,共24分)1.-3的绝对值是【 】A .3B .-3C . 1 3D .- 132.下列图案是轴对称图形的是【 】A .B .C .D .3.2011年度,连云港港口的吞吐量比上一年度增加31 000 000吨,创年度增量的最高纪录,其中数据“31 000 000”用科学记数法表示为【 】A .3.1×107B .3.1×106C .31×106D .0.31×1084.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于【 】A . 1 6B . 1 4C . 3 8D . 585.下列各式计算正确的是【 】A .(a +1)2=a 2+1B .a 2+a 3=a 5C .a 8÷a 2=a 6D .3a 2-2a 2=16.用半径为2cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径为【 】 A .1cm B .2cm C .πcm D .2πcm 7.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3=【 】A .50°B .60°C .70°D .80°8.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是【 】A .3+1B .2+1C .2.5D . 5二、填空题(本大题8个小题,每小题3分,共24分)9.写一个比3大的整数是 .10.方程组⎩⎨⎧x +y =32x -y =6的解为 .11.我市某超市五月份的第一周鸡蛋价格分别为7.2,7.2,6.8,7.2,7.0,7.0,6.6(单位:元/kg ),则该超市这一周鸡蛋价格的众数为 (元/kg ).12.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在 ℃范围内保存才合适.13.已知反比例函数y = 2x 的图象经过点A (m ,1),则m 的值为 .14.如图,圆周角∠BAC =55°,分别过B 、C 两点作⊙O 的切线,两切线相交与点P ,则∠BPC= °.15.今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,则条例实施前此款空调的售价为 元.16.如图,直线y =k 1x +b 与双曲线y = k 2 x 交于A 、B 两点,它们的横坐标分别为1和5,则不等式k 1x < k 2x-b 的解集是 .三、解答题(本题共11小题,共102分)17.计算:9-(- 15)0+(-1)2012.8.化简:(1+1m )÷ m 2-1 m 2-2m +1.19.解不等式: 32x -1>2x ,并把解集在数轴上表示出来.20.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:组别 垫球个数x (个) 频数(人数)频率 1 10≤x <20 5 0.10 2 20≤x <30 a 0.18 3 30≤x <40 20 b 440≤x <50160.32合计 1.00(1)填空:a = ,b = ;(2)这个样本数据的中位数在第 组;(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?排球30秒对墙垫球的中考评分标准分值 10 9 8 7 6 5 4 3 2 1 排球(个)403633302723191511721.现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm ),从中任意取出3根.(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.22.如图,⊙O 的圆心在坐标原点,半径为2,直线y =x +b (b >0)与⊙O 交于A 、B 两点,点O 关于直线y =x +b 的对称点O ′. (1)求证:四边形OAO ′B 是菱形;(2)当点O′落在⊙O上时,求b的值.23.我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?24.已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离B D的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km,参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,2≈1.41,5≈2.24)25.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.26.如图,甲、乙两人分别从A(1,3)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,t h后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.27.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,P为AB边上的一点,以PD、PC为边作□PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作□PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(3)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE、PC为边作□PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(4)如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作□PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.2012年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分) 1.(2011•义乌市)-3的绝对值是( )A.3 B.-3 C.D.考点:绝对值。
2001-2012年连云港市中考数学试题分类解析汇编(1)实数

一、选择题1. (2001年江苏连云港2分)已知|x|=2,则下列四个式子中一定正确的是【 】(A )x=2 (B )x=-2 (C )2x 4= (D )3x 8=2. (2001年江苏连云港2分)计算120-的结果等于【 】(A )0 (B )-1 (C )1 (D )±13. (2002年江苏连云港2分)2的相反数是【 】A .2B .-2C . 21D . 24. (2002年江苏连云港2分)三个实数-3、-2、0依次从小到大排列的顺序是【 】A .-3<-2<0B .-2<-3<0C . 0<-3<-2D .0<-2<-33<-2<0。
故选A 。
5. (2002年江苏连云港2分)用CZ1206型计算器计算某运算式子,若正确的按键顺序是,则此运算式子应是【 】A .43B .34C .34D .436. (2003年江苏连云港3分)下列算式中,运算结果为负数的是【 】(A ))3(-- (B )|3|- (C )23- (D )2)3(-7. (2003年江苏连云港3分)三峡工程全部竣工后,其年发电量将达到847亿千瓦时,则此年发电量(单位: 千瓦时)用科学记数法可表示为【 】(A) 101047.8⨯ (B) 111047.8⨯ (C) 810847⨯ (D) 1110847.0⨯8. (2003年江苏连云港3分)从社会效益和经济效益出发,我市投入资金进行生态环境建设,并以此发展旅游产业.根据规划,2003年投入800万元,以后每年投入都比上一年减少20%;2003年我市旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业的收人每年都比上一年增加25%.设2005年的投入为a万元,收入为b 万元;2003年至2005年三年的总投入为m万元,总收入为n万元,则下列判断中正确的是【】(A) a<b且m<n (B) a<b且m>n(C) a>b且m<n (D) a>b且m>n9. (2004年江苏连云港3分)12-的倒数是【】A.12- B.-2 C.2 D.12-10. (2004年江苏连云港3分)近年来,我市旅游产业迅速发展.据统计,2003年全市实现旅游收入41亿元,则此收入值(单位:元)用科学记数法可表示为【】A.4.1×109 B.4.1×108 C.41×108 D.0.41×101011. (2005年江苏连云港3分)在推荐“美猴王”孙悟空为2008年北京奥运会吉祥物的活动中,我市共印制了2 000 000枚申吉专用邮资封.2 000 000用科学记数法可表示为【 】(A )6102.0⨯ (B )7102.0⨯ (C )6102⨯ (D )7102⨯12. (2005年江苏连云港3分)与算式222333++的运算结果相等的是【 】(A )33 (B )32 (C )63 (D )8313. (2005年江苏连云港3分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么【 】(A )汉城与纽约的时差为13小时 (B )汉城与多伦多的时差为13小时(C )北京与纽约的时差为14小时 (D )北京与多伦多的时差为14小时14.(2006年江苏连云港3分)3-等于【 】A 、3B 、-3C 、31D 、31-15. (2007年江苏连云港3分)比1小2的数是【 】A.3- B.2- C.1- D.116. (2007年江苏连云港3分)A ,B ,C ,D ,E 五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a b),表示,则从景点A 到景点C 用时最少....的路线是【 】A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C17. (2008年江苏连云港3分)计算23-+的值是【】A.-5 B.-1 C.1 D.518. (2008年江苏连云港3分)据《连云港日报》报道,至2008年5月1日零时,田湾核电站1、2号两台机组今年共累计发电42.96亿千瓦时.“42.96亿”用科学记数法可表示为【】A.74.29610⨯B.84.29610⨯C.94.29610⨯D.104.29610⨯19. (2008年江苏连云港3分)实数a b,在数轴上对应点的位置如图所示,则必有【】A.a b0+>B.a b0-<C.ab0>D.a0 b<20. (2009年江苏省3分)2-的相反数是【】A.2B.2-C.12D.12-21. (2009年江苏省3分)如图,数轴上A,B两点分别对应实数a b、,则下列结论正确的是【】A.a b0+>B.ab0> C.a b0-> D.|a||b|0->22. (2010年江苏连云港3分)下面四个数中比-2小的数是【】A.1 B.0 C.-1 D.-323. (2010年江苏连云港3分)今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%.数据“110亿”用科学记数可表示为【】A.1.1×1010 B.11×1010 C.1.1×109 D.11×10924. (2011年江苏连云港3分)2的相反数是【】A.2 B.-2 C. 2 D.1 225. (2012年江苏连云港3分)-3的绝对值是【】A.3 B.-3 C.13D.1326.(2012年江苏连云港3分)2011年度,连云港港口的吞吐量比上一年度增加31 000 000吨,创年度增量的最高纪录,其中数据“31 000 000”用科学记数法表示为【】 A.3.1×107 B.3.1×106 C.31×106 D.0.31×108二、填空题1. (2001年江苏连云港3分)天文学里常用“光年”作为距离单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年连云港市中考数学试题一、选择题(本大题共8小题,每题3分,共24分)1.-3的绝对值是【】A.3 B.-3 C.13D.-132.下列图案是轴对称图形的是【】A.B.C.D.3.2011年度,连云港港口的吞吐量比上一年度增加31 000 000吨,创年度增量的最高纪录,其中数据“31 000 000”用科学记数法表示为【】A.3.1×107B.3.1×106C.31×106D.0.31×1084.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于【】A.16B.14C.38D.585.下列各式计算正确的是【】A.(a+1)2=a2+1 B.a2+a3=a5C.a8÷a2=a6D.3a2-2a2=16.用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为【】A.1cm B.2cm C.πcm D.2πcm7.如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3=【】A.50°B.60°C.70°D.80°8.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是【】A.3+1 B.2+1 C.2.5 D. 5二、填空题(本大题8个小题,每小题3分,共24分)9.写一个比3大的整数是 .10.方程组⎩⎨⎧x +y =32x -y =6的解为 .11.我市某超市五月份的第一周鸡蛋价格分别为7.2,7.2,6.8,7.2,7.0,7.0,6.6(单位:元/kg ),则该超市这一周鸡蛋价格的众数为 (元/kg ). 12.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在 ℃范围内保存才合适.13.已知反比例函数y = 2x的图象经过点A (m ,1),则m 的值为 .14.如图,圆周角∠BAC =55°,分别过B 、C 两点作⊙O 的切线,两切线相交与点P ,则∠BPC= °.15.今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,则条例实施前此款空调的售价为 元. 16.如图,直线y =k 1x +b 与双曲线y =k 2x交于A 、B 两点,它们的横坐标分别为1和5,则不等式k 1x <k 2x-b 的解集是 .三、解答题(本题共11小题,共102分)17.计算:9-(- 15)0+(-1)2012.8.化简:(1+1m )÷ m 2-1 m 2-2m +1.19.解不等式:32x-1>2x,并把解集在数轴上表示出来.20.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制组别垫球个数x(个)频数(人数)频率1 10≤x<20 5 0.102 20≤x<30 a0.183 30≤x<40 20 b4 40≤x<50 16 0.32合计 1.00(1)填空:a=,b=;(2)这个样本数据的中位数在第组;(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?分值10 9 8 7 6 5 4 3 2 1 排球(个)40 36 33 30 27 23 19 15 11 721.现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根.(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.22.如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O 关于直线y=x+b的对称点O′.(1)求证:四边形OAO′B是菱形;(2)当点O′落在⊙O上时,求b的值.23.我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?24.已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离B D的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km,参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,2≈1.41,5≈2.24)25.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.26.如图,甲、乙两人分别从A(1,3)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,t h后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.27.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,P为AB边上的一点,以PD、PC为边作□PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作□PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(3)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE、PC为边作□PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(4)如图3,若P为DC边上任意一点,延长P A到E,使AE=nP A(n为常数),以PE、PB为边作□PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分)1.(2011•义乌市)-3的绝对值是( )A.3 B.-3 C.D.考点:绝对值。
分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|-3|=-(-3)=3.故选A.点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2012•连云港)下列图案是轴对称图形的是( )A.B.C.D.考点:轴对称图形。
专题:常规题型。
分析:根据轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,结合选项即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、符合轴对称的定义,故本选项正确;故选D.点评:此题考查了轴对称图形的判断,属于基础题,解答本题的关键是熟练掌握轴对称的定义.3.(2012•连云港)2011年度,连云港港口的吞吐量比上一年度增加31 000 000吨,创年度增量的最高纪录,其中数据“31 000 000”用科学记数法表示为( )A.3.1×107 B.3.1×106 C.31×106 D.0.31×108考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将31 000 000用科学记数法表示为:3.1×107.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2012•连云港)向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于( )A.B.C.D.考点:几何概率。
分析:求出阴影部分的面积与三角形的面积的比值即可解答.解答:解:因为阴影部分的面积与三角形的面积的比值是=,所以扔沙包1次击中阴影区域的概率等于.故选C.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.(2012•连云港)下列各式计算正确的是( )A.(a+1)2=a2+1 B.a2+a3=a5 C.a8÷a2=a6 D.3a2-2a2=1考点:同底数幂的除法;合并同类项;完全平方公式。
专题:计算题。
分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、(a+1)2=a2+2a+1,故本选项错误;B、a2+a3≠a5,故本选项错误;C、a8÷a2=a6,故本选项正确;D、3a2-2a2=a2,故本选项错误;故选C.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.6.(2012•连云港)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为( ) A.1cm B.2cm C.πcm D.2πcm考点:圆锥的计算。