锡铋相图

合集下载

实验五二组分金属固液相图的绘制

实验五二组分金属固液相图的绘制

实验五 二组分金属固液相图的绘制一、实验目的1. 掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法2. 了解固液相图的特点,进一步学习和巩固相律等有关知识。

二、实验原理二组分金属相图是表示两种金属混合体系组成与凝固点关系的图。

由于此体系属凝聚体系,一般视为不受压力影响,通常表示为固液平衡时液相组成与温度的关系。

若两种金属在固相完全不溶,在液相可完全互溶,其相图具有比较简单的形式。

步冷曲线法是绘制相图的基本方法之一,是通过测定不同组成混合体系的冷却曲线来确定凝固点与溶液组成的关系。

通常是将金属混合物或其合金加热全部熔化,然后让其在一定的环境中自行冷却,根据温度与时间的关系来判断有无相变的发生。

图III-5-1是二元金属体系一种常见的步冷曲线。

tTTTB %图III-5-1 步冷曲线 图III-5-2两组分金属固液相图当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2段)。

若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。

当融熔液继续冷却到某一点时,如3点,由于此时液相的组成为低共熔物的组成。

在最低共熔混合物完全凝固以前体系温度保持不变,步冷曲线出现平台,(如图3~4段)。

当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(4~5段)。

若图III-5-1中的步冷曲线为图III-5-2中总组成为P 的混合体系的冷却曲线,则转折点2 相当于相图中的G 点,为纯固相开始析出的状态。

水平段3~4相当于相图中H 点,即低共熔物凝固的过程。

因此,根据一系列不同组成混合体系的步冷却曲线就可以绘制出完整的二组分固液平衡相图。

三、实验仪器与试剂铂电阻 1支 纯锡(A. R.)金属相图实验炉(JXL —2) 1个 纯铋(A. R.) 微电脑控制器 1个 石墨粉 不锈钢套管 1个 液体石蜡硬质玻璃样品管7个托盘天平1台四、实验步骤1. 配制样品用最小刻度为0.1g的托盘天平分别配制含铋量为10%、25%、57%、70%、90%的铋~锡混合物和纯锡、纯铋各40g,装入7个样品管中。

实验二 锡-铋二组分合金相图

实验二 锡-铋二组分合金相图

五、数据记录及处理
(1)参考值
(2)配样
(3)试管的最高温度
(4)样品随时间变化的冷却温度记录
(5)根据上表绘制步冷曲线如下
(6)在步冷曲线中找到各曲线的拐点及处理如下
(7)根据上表中液相线,固相线坐标绘制Sn-Bi二组分固液相图如下
表格使用说明:
(一)(4)黄色单元格是原始数据输入区根据自己组实际数据填写,若某组数据大于54个,则需变更函数。

步骤:t列可以按照t1列、t2列、t3列、t4列、t5列的顺序从每列的第一个数据向下填充,有多少就填多少个。

(二)(6)中的黄色单元格所填数据需要观察(5)中步冷曲线的拐点数据,步骤:将鼠标放置在各拐点处所显示的数据如下图所示,填写括号中232,其余各点一样操作
(三)如需打印该文档将黄色单元格改为无色,并且删除“表格使用说明”即红色字体。

[VIP专享]铋一铅一锡三元系相图

[VIP专享]铋一铅一锡三元系相图

实验五三元合金的显微组织(Microstructure of Ternary Alloys)实验学时:1 实验类型:综合前修课程名称:《材料科学导论》适用专业:材料科学与工程一、实验目的1.熟悉铋一铅一锡三元系相图和典型合金的显微组织。

2.了解三元合金的显微组织与其三元相图的关系。

二、概述三元相图可以帮助我们分析三元合金的平衡凝固过程及凝固后的显微组织。

对于铸锭和铸件,如果凝固时的冷却速率较小(如砂模铸造),也可借助相图分析其凝固过程和凝固后的显微组织。

下图为铋一铅一锡三元相图的液相面投影图的示意。

图中Bi、Pb、Sn分别代表纯组元铋、铅、锡;(Bi)、(Pb)、(Sn)分别代表以铋、铅、锡为溶剂的固溶体;(β)代表以Bi--Pb二元系中的β相为溶剂的固溶体。

为帮助了解铋一铅一锡三元相图,下面给出该三元相图各边的二元相图简图。

图中(Bi)、(Pb)、(Sn)分别代表各二元系中以铋、铅、锡为溶剂的固溶体。

由上图可知,各二元系在液态时均为无限互溶,但在固态则为有限溶解,在铅一铋二元系中还出现了中间相β。

在锡一铋二元系中,有一个共晶转变L→(Sn)+(Bi),转变温度为138.5℃。

在铅一铋二元系中有一个包晶转变和一个共晶转变,包晶转变温度为184℃,反应式为L+(Pb)→β;共晶转变温度为125℃,反应式为L→β+(Bi)。

在铅一锡二元系中,有一个共晶转变L→(Pb)+(Sn),转变温度为188℃。

各二元系中的三相平衡都要进入三元系,成为三元系中的三相平衡。

根据相律,三元系中三相平衡的自由度数等于1,因而是在一个温度范围内进行的。

当降至某一定温度时,这些三相平衡将参与四相反应。

由液相面投影图可知,在铋一铅一锡三元系中存在两个四相平衡,一是在P点发生的四相包共晶反应,反应式为L+(Pb)→β+(Sn);另一个是在E点发生的四相共晶反应,反应式为L→(Bi)+β+(Sn)。

根据相律,三元系中四相平衡的自由度数等于零,因而是一个恒温转变。

二元合金相图的绘制与应用

二元合金相图的绘制与应用

实验 二元合金相图的绘制与应用一、目的要求1、理解步冷曲线,学会用热分析方法测绘Sn-Bi 二元合金相图2、学会铂电阻的测温技术,尝试用金属相图测量装置测量温度的方法3、掌握微电脑控制器的使用方法4、理解产生过冷现象的原因及避免产生过冷现象的方法二、基本原理相图是用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图。

对蒸气压较小的二组分凝聚体系,常以温度-组成图来描述。

热分析方法与步冷曲线热分析方法是绘制相图常用的基本方法之一。

将两种金属按一定比例配成并把它加热成均匀的液相体系,然后让它在一定的环境中自行冷却,并每隔一定的时间(例如0.5min 或1min )记录一次温度,以温度T 为纵坐标,以时间t 为横坐标,做出温度-时间(T-t )曲线,称为步冷曲线。

若体系均匀冷却时,冷却过程不发生相变化,则体系的温度随时间的变化是均匀的,则步冷曲线不出现转折或平台,而是一条直线,冷却速度快。

若冷却过程中发生了相变化,由于相变化过程中伴随有热效应,发生相变热,所以体系温度随时间的变化速度将发生改变,体系的冷却速度减缓,步冷曲线就出现转折或平台。

测定一系列组成不同的样品的步冷曲线,从曲线上找出各相对应体系发生相变的温度,就可以绘制出被测系统的相图。

这就是用热分析法绘制液固相图的概要.如图所示:Bi-Cd 合金冷却曲线曲线1、5是纯物质的步冷曲线。

当系统从高温冷却时,开始没有发生相变化,温度下降比较快,步冷曲线较陡;冷却到A 的熔点时,固体A 开始析出,系统出现两相平衡(固体A 和溶液平衡共存),根据相律,此时f= k-Ø+1=1-2+1=0,系统温度维持不变,步冷曲线出现bc 的水平线段;直到液相完全凝固后,温度又继续下T /℃t降。

曲线2、4是A与B组成的混合物的步冷曲线。

与纯物质的步冷曲线不同。

系统从高温冷却到温度b’时,开始有固体A不断析出,这时体系呈两相,溶液中含A的量随之减少,由于不断放出凝固热,所以温度下降速度变慢,曲线的斜率变小(b’c’段)。

二组分金属相图的绘制

二组分金属相图的绘制

二组分金属相图的绘制一.实验目的1.用热分析法(冷却曲线法)测绘Bi—Sn二组分金属相图。

2.了解固液相图的特点,进一步学习和巩固相律等有关知识。

二.实验原理表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。

较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi—Cd系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi—Sn系统。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

图1冷却曲线图2由冷却曲线绘制相图热分析法(冷却曲线法)是绘制相图的基本方法之一。

它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。

通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图1)。

当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。

若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc段)。

当融熔液继续冷却到某一点时,如c点,由于此时液相的组成为低共熔物的组成。

在最低共熔混合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd段)。

当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de段)。

由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。

根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T-某或T-wB图)。

不同组成熔液的冷却曲线对应的相图如图2所示。

图3可控升降温电炉前面板1.电源开关2.加热量调节旋钮3、4.电压表5.实验坩埚摆放区6.控温传感器插孔7.控温区电炉8.测试区电炉9.冷风量调节用热分析法绘制相图时,被测系统必须时时处于或接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

BiSn二元金属相图的绘制(热电势法)实验报告

BiSn二元金属相图的绘制(热电势法)实验报告

Sn—Bi二元金属相图的绘制(热电势法)一、实验目的1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图;2、掌握热电势法测定金属相图的方法;3、掌握热电偶温度计的使用,学习双元相图的绘制;二、实验原理研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。

用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。

表示在温度--组成图中,即得到该体系的相图。

液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。

本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图。

三、实验仪器和试剂坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶.锡(AR)232;铋(AR)271四、实验步骤1、准备工作在杜瓦瓶中装入室温水,按图连接路线并检查线路。

热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。

这时位置所指温度热电势为0,代表温度为室温。

2、测量(1)加热试样:置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已熔化,停止加热。

(2)测量步冷曲线当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。

当平台出现后一会抬起记录笔并调节走纸速度为0。

同上步骤,依次测量含Bi 30%,58% 的混合物。

五、实验数据记录及处理1.测纯Sn的各样品电势变化各样品的步冷曲线如下: 纯Sn :0246810123.54.04.55.05.56.0电势(m v )时间(min )30%Bi :58%Bi :5101520251.52.02.53.03.54.04.55.05.5电势(m v )时间(min)5101520251.52.02.53.03.54.04.55.0电势(m v )时间(min )量程为10mV ,加热电压为150mV 时热电偶的工作曲线为:2、测纯Bi的各样品电势变化各样品的步冷曲线如下: 1.纯Bi :-112345678101112131415电势(m v )时间(min)2、58%Bi :-551015202530354045678910电势(m v )时间(min)3、80%Bi :-551015202530352468101214电势(m v )时间(min)量程为20mV由以上两组样品的相变温度的 Sn —Bi 二元金属的相图如下:Bis n温度(℃)组分(%)由图可知:合金的最低共熔温度是145℃,即含58% Bi 时,此点为三相点。

铋锡

铋锡
生物 实验楼
实验六 二元组分金属相图
指导教师 魏西莲
实验六
二元组分金属相图
一 实验目的
1. 学会用热分析法测绘Sn—Bi二组分金属相图。 2. 了解纯物质的步冷曲线和混合物的步冷曲线的 形状有何不同,其相变点的温度应如何确定。 3. 了解热电偶测量温度和进行热电偶校正的方 法。掌握自动平衡记录仪的使用方法。
二 基本要求
(1)学会用热分析法测绘Sn-Bi二组分 金属相图。
(2)了解热电偶测量温度和进行热 电偶校正的方法。
三 实验原理
测绘金属相图常用的实验方法是热分析法,原理是将 一种金属或两种金属混合物熔融后,使之均匀冷却,每隔 一定时间记录一次温度,表示温度与时间关系的曲线称步 冷曲线。当熔融体系在均匀冷却过程中无相变时,温度将 连续均匀下降得一平滑的步冷曲线;当体系内发生相变则 因体系产生的相变热与自然冷却时体系放出的热量相抵消, 步冷曲线就会出现转折或水平线段,转折点对应的温度, 为该组成体系的相变温度。利用步冷曲线所得到的一系列 组成和所对应的相变温度数据,以横轴表示混合物的组成, 纵轴上标出开始出现相变的温度,把这些点连起来,就可 绘出相图。二元简单低共熔体系的冷却曲线具有图5-1所 示的形状
本实验请同学们参考其 它学校的视频文件
具体操作:
鼠标放在上面任何字上面即可观看
A
H 546
505
熔化物(单相)
固熔体
0
固熔体+熔化物
熔化物+Bi(s)
E
Sn(s)+Bi(s)
0.4
0.2
0.6
0.8
1.0
真实的Sn-Bi二元相图
十 思考题
1. 对于不同成分的混合物的步冷曲线,其水平段有什么 不同?为什么? 2. 作相图还有哪些方法? 3. 作图时应注意那些问题? 4. 做好步冷曲线的关键是什么? 5. 是否可以用升温曲线来做相图? 6. 为什么要缓慢冷却合金做步冷曲线? 7.为什么样品中严防进入杂质?如果进入杂质则步 冷曲线会出现什么情况?

实验二 锡-铋二组分合金相图的绘制

实验二 锡-铋二组分合金相图的绘制

五、数据记录及处理
(1)参考值
(2)配样
(3)试管的最高温度
(4)样品随时间变化的冷却温度记录
(5)根据上表绘制步冷曲线如下
(6)在步冷曲线中找到各曲线的拐点及处理如下
(7)根据上表中液相线,固相线坐标绘制Sn-Bi二组分固液相图如下
表格使用说明:
(一)(4)黄色单元格是原始数据输入区根据自己组实际数据填写,若某组数据大于54个,则需变更函数。

步骤:t列可以按照t1列、t2列、t3列、t4列、t5列的顺序从每列的第一个数据向下填充,有多少就填多少个。

(二)(6)中的黄色单元格所填数据需要观察(5)中步冷曲线的拐点数据,步骤:将鼠标放置在各拐点处所显示的数据如下图所示,填写括号中232,其余各点一样操作
(三)如需打印该文档将黄色单元格改为无色,并且删除“表格使用说明”即红色字体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档