回溯算法实验
实验八.回溯算法

实验八 回溯算法(4学时)一、实验目的与要求1、掌握装载问题的回溯算法;2、初步掌握回溯算法;二、实验题有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi ,且 装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
三、实验提示装载问题↔ 问题描述有一批共n 个集装箱要装上2艘载重量分别为c 1和c 2的轮船,其中集装箱i 的重量为w i ,且 ,要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船。
如果有,请给出该方案。
↔ 编程任务利用回溯法试设计一个算法求出该装载问题的解。
↔ 数据输入由文件input.txt 提供输入数据。
文件的第1行中有2个正整数n 及c ,表示有n 个集装箱,第一艘船的载重量为c 。
接下来的一行为每个集装箱的重量。
↔ 结果输出程序运行结束时,将计算出的最优解输出到文件output.txt 中,如果某集装箱被装入船上,则对应的解为1,如果不能装入则为0。
输入文件示例 输出文件示例input.txt output.txt3 30 16 15 150 1 1代码:#include<stdio.h>#include<stdlib.h>#include<fstream.h>int result;int nn,cc;int *ww,*superbestx,*superbestw;template<class Type>class Loading{friend Type Maxloading(Type[],Type,int,int[]);public:void Backtrack(int i);int n,////集装箱数*x,//当前解*bestx;//当前最优解 211c c w ni i +≤∑=Type* w,//集装箱重量数组c,//第一艘轮船的载重量cw,//当前载重量bestw,//当前最优载重量r;//剩余集装箱重量};template<class Type>void Loading<Type>::Backtrack(int i){//搜索第i层结点if(i>n){////到达叶结点if(cw>bestw){for(int j=1;j<=n;j++)bestx[j]=x[j];bestw =cw;}return;}//搜索子树r-=w[i];if((cw + w[i]) <= c)//{x[i]=1;cw+=w[i];Backtrack(i+1);cw -=w[i];}if(cw+r>bestw)//{x[i]=0;Backtrack(i+1);}r+=w[i];}template<class Type>Type Maxloading(Type w[],Type c, int n,int bestx[]) {//返回最优载重量Loading<Type> X;//X.x = new int[n+1];X.w = w;X.c = c;X.n = n;X.bestx = bestx;X.bestw = 0;X.cw = 0;//X.r = 0;for(int i=1;i<=n;i++)X.r+=w[i];//初始时r为全体物品的重量和//计算最优载重量X.Backtrack(1);delete [] X.x;for(int k=0;k<n;k++)superbestx[k] = X.bestx[k];result=X.bestw;// delete [] X.x;return result;}int main(int argc,int *argv){// Loading<int> X;ifstream in("input.txt");//打开输入文件ofstream out("output.txt");//打开输出文件in>>nn;//集装箱数in>>cc;//第一艘轮船的载重量ww = (int *)malloc(sizeof(int)*nn);superbestx = (int *)malloc(sizeof(int)*nn);// superbestw = (int *)malloc(sizeof(int)*nn);for(int i=0;i<nn;i++){in>>ww[i];//集装箱重量数组superbestx[i]=0;//初始当前化最优解}Maxloading(ww,cc,nn, superbestx);for(int kk=0;kk<nn;kk++)out<<superbestx[kk]<<'\t';//将最优解写入输出文件out<<endl;system("type output.txt");//显示输出文件in.close;//关闭输入文件out.close;//关闭输出文件system("pause");return 0;}。
回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。
二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。
其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。
通过这种方法,可以找到问题的所有解,或者找到最优解。
四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。
(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。
(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。
回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名实验题目回溯算法实验评分表指导教师评分标准序号评分项目评分标准满分打分1 完成度按要求独立完成实验准备、程序调试、实验报告撰写。
202 实验内容(1)完成功能需求分析、存储结构设计;(2)程序功能完善、可正常运行;(3)测试数据正确,分析正确,结论正确。
303 实验报告内容齐全,符合要求,文理通顺,排版美观。
404 总结对实验过程遇到的问题能初步独立分析,解决后能总结问题原因及解决方法,有心得体会。
10实验报告一、实验目的与要求1、理解回溯算法的基本思想;2、掌握回溯算法求解问题的基本步骤;3、了解回溯算法效率的分析方法。
二、实验内容【实验内容】最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。
【回溯法解题步骤】1、确定该问题的解向量及解空间树;2、对解空间树进行深度优先搜索;3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。
4、达到叶结点时记录下当前最优解。
5、实验数据n,m,]][[jiw,]][[ji c的值由自己假设。
三、算法思想和实现【实现代码】【实验数据】假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。
总价不超过7(c<=7)。
部件重量表:重量供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 2 2部件3 3 4 1部件价格表:价格供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 3 1部件3 1 1 3【运行结果】实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。
四、问题与讨论影响回溯法效率的因素有哪些?答:影响回溯法效率的因素主要有以下这五点:1、产生x[k]的时间;2、满足显约束得x[k]值的个数;3、计算约束函数constraint的时间;4、计算上界函数bound的时间;5、满足约束函数和上界函数约束的所有x[k]的个数。
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
回溯算法实验

中南大学《算法设计与分析》实验报告姓名:专业班级:学号:指导教师:完成日期:20010.1一.实验名称回溯算法实验二.实验目的1. 掌握回溯算法思想2. 掌握回溯递归原理3. 了解回溯法典型问题三.实验内容1. 编写一个简单的程序,解决8皇后问题2. 批处理作业调度3. 数字全排列问题四.算法思想分析1. 编写一个简单的程序,解决8皇后问题在N*N的棋盘上,放置N个皇后,要求每一横行,每一列,每一对角线上均只能放置一个皇后,求可能的方案及方案数。
问题的状态即棋盘的布局状态,状态空间树的根为空棋盘,每个布局的下一步可能布局为该布局结点的子结点;任意两个王后不放在同一行或同一列或同一斜线。
因此为了简化状态空间树,采用逐行布局的方式,即每个布局有n个子结点回溯过程分析:(1)从空棋盘起,逐行放置棋子。
(2)每在一个布局中放下一个棋子,即推演到一个新的布局。
(3)如果当前行上没有可合法放置棋子的位置,则回溯到上一行,重新布放上一行的棋子。
2. 批处理作业调度给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入: a.作业数 b.每个作业完成时间表:要求输出: a.最佳完成时间 b.最佳调度方案3. 数字全排列问题任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
实验五_回溯法

算法分析与设计实验报告学号姓名班级上课地点教师上课时间实验五回溯法1. 实验目的1.1掌握回溯法的设计思想;1.2 掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;1.3 学会利用回溯法解决实际问题。
2. 实验环境2.1 Eclipse2.2 Window XP3. 实验内容3.1 旅行商问题:给定一个n顶点网络(有向或无向),要求找出一个包含所有n个顶点的具有最小耗费的环路。
输入:顶点个数、邻接矩阵;输出:最小耗费、旅行的环路。
3.2 n后问题:nXn棋盘上放置n个皇后使得每个皇后互不受攻击,即任二皇后不能位于同行同列和同一斜线上。
输入:皇后的个数,输出:所有可能的方案以及总的方案数。
4. 教师批改意见成绩签字:日期:实验报告细表1旅行商问题1.1 算法设计思想回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始结点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的活结点,并成为当前扩展结点。
如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。
此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。
回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
1.2 程序源码package lvxingshang;import java.util.Scanner;public class Bttsp {static int n; // 图G的顶点数static int[] x; // 当前解static int[] bestx; // 当前最优解static float bestc; // 当前最优值static float cc; // 当前费用static float[][] a; // 图G的邻接矩阵public static void tsp() {// 置x为单位矩阵x = new int[n + 1];for (int i = 1; i <= n; i++) {x[i] = i;}bestc = (float) -1.0;bestx = new int[n + 1];cc = 0;System.out.println("最短路线为:");backtrack(2);for (int i = 1; i <= n; i++) {System.out.print(bestx[i] + " ");}System.out.println("1");}private static void backtrack(int i) {if (i == n) {if (a[x[n - 1]][x[n]] > 0&& a[x[n]][1] > 0&& (bestc < 0 || cc + a[x[n - 1]][x[n]]+ a[x[n]][1] < bestc)) {for (int j = 1; j <= n; j++) {bestx[j] = x[j];bestc = cc + a[x[n - 1]][x[n]] + a[x[n]][1];}}}else{for (int j = i; j <= n; j++)// 是否可以进入x【j】子树?if (a[x[i - 1]][x[j]] > 0&& (bestc < 0 || cc + a[x[i - 1]][x[j]] < bestc)) { // 搜索子树int temp = x[i];cc += a[x[i - 1]][x[j]];x[i] = x[j];x[j] = temp;backtrack(i + 1);temp = x[i];x[i] = x[j];x[j] = temp;cc -= a[x[i - 1]][x[j]];}}}public static void main(String[] args) {Scanner s = new Scanner(System.in);System.out.println("请输入售货员要去的城市个数:");String line = s.nextLine();// 读入nn = Integer.parseInt(line);a = new float[n + 1][n + 1];System.out.println("请输入来往各个城市之间的花费 \n");for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {a[i][j] = s.nextFloat();}}tsp();System.out.println("最短距离是:" + bestc);s.close();}}1.3 实验结论1.4 心得体会由于编程途中最优解一直输不出,尝试着各种方法,觉得很累。
回溯算法实验报告

回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中原工学院信息商务学院
实验报告
实验项目名称回溯划算法的应用
课程名称算法设计与分析
学院(系、部)中原工学院信息商务学院学科专业计算机科学与技术系班级学号计科132班17号姓名程一涵
任课教师邬迎
日期2014年12月9日
实验五回溯算法的应用
一、实验目的
1.掌握回溯算法的基本概念
2.熟练掌握回溯算法解决问题的基本步骤。
3.学会利用回溯算法解决实际问题。
二.问题描述
题目一:N皇后问题
要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。
规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。
求所有的解要求:键盘输入皇后的个数n (n ≤ 13)
输出有多少种放置方法
输入输出实例:
三.算法设计
首先,确定第一行皇后的位置,再确定第二行的位置,并且要注意不能同行同列同对角线,若是发现有错则返回上一层,继续判断。
满足约束条件时,则开始搜索下一个皇后的位置,直到找出问题的解。
四.程序调试及运行结果分析
五.实验总结
通过这次试验,使得我们面对问题时的解题思路变得更加灵活和多变,并且使我们的编写能力稍稍的提高一些。
初步了解了回溯算法,回溯算法实际是一个类似枚举的搜索尝试方法,他的主题思想是在搜索尝试的过程中寻找问题的解,当发现已不满足求解条件时,就回溯返回,尝试别的路径。
他特别适用于求解那些涉及到寻求一组解的问题或者求满足某些约束条件的最优解的问题。
此算法具有结构清晰,容易理解且可读性强等优点,并且通过稍加变通也可以适用于其他类似问题
附录:程序清单(程序过长,可附主要部分)
#include <iostream>
#include <math.h>
using namespace std;
int a[20],n;
backdate(int n);
int check(int k);
void output(int n);
int main()
{
int n;
cout<<"请输入皇后的个数:";
cin>>n;
cout<<"位置排列是:"<<endl;
backdate(n);
return 0;
}
backdate(int n)
{
int k;
int num=0;
a[1]=0;
k=1;
while(k>0)
{
a[k]=a[k]+1;
while((a[k]<=n) && (check(k)==0))
a[k]=a[k]+1;
if(a[k]<=n)
if(k==n)
{
num++;
output(n);
}
else
{
k=k+1;
a[k]=0;
}
else
k=k-1;
}
cout<<"一共有"<<num<<"种情况。
"<<endl;
}
int check(int k)
{
int i;
for(i=1;i<=k-1;i++)
if(abs(a[i]-a[k])==abs(i-k) || a[i]==a[k])
return(0);
return(1);
}
void output(int n)
{
int i;
cout<<"[";
for(i=1;i<=n;i++)
cout<<a[i]<<",";
cout<<"]"<<endl;
}。