回溯算法实例一

合集下载

回溯推理的例子

回溯推理的例子

回溯推理的例子
回溯推理的例子有很多,下面为您介绍一个:
某公路段道班女工龙某被人强奸并扼死在床上。

侦查人员勘验现场后,得出以下侦查假设:室内没有搏斗痕迹,说明死者与凶手是认识的;死者指甲里留有血迹和残破皮肤,说明死者抓破过凶手的身体。

此外,侦查人员还提取了死者阴道里的精斑,经化验所含精液人的血型为O型。

侦查人员很快将罗某列为重点嫌疑对象。

依据为:罗某与死者龙某是在同一个道班工作,住房相邻非常熟悉;罗的血型鉴定为O型,与死者阴道遗留物的血型形同;罗的右肩、右耳和右手等部位都留有近似被抓伤的痕迹。

这个例子中,侦查人员从案件现场的一些线索出发,回溯推理出嫌疑人的特征和行为,最终锁定嫌疑人。

这就是回溯推理的一个实际应用。

如需更多关于“回溯推理”的例子,建议查阅相关案例分析文章。

回溯算法的应用场景

回溯算法的应用场景

回溯算法的应用场景回溯算法是一种经典的问题求解算法,常用于解决组合问题、排列问题、搜索问题等。

它通过不断地尝试和回退来寻找问题的解,可以在有限的时间内找到问题的所有解,或者找到满足特定条件的解。

下面将介绍回溯算法的几个常见应用场景。

1. 组合问题组合问题是指从给定的一组元素中选取若干个元素,使得它们满足一定的条件。

例如,在一副扑克牌中选取若干张牌,使得它们的点数之和等于给定的目标值。

回溯算法可以通过枚举所有可能的组合来解决这类问题。

具体实现时,可以使用递归或迭代的方式进行求解。

2. 排列问题排列问题是指从给定的一组元素中选取若干个元素进行全排列,使得每个元素都不重复出现。

例如,在一组数字中找出所有可能的排列。

回溯算法可以通过枚举所有可能的排列来解决这类问题。

具体实现时,同样可以使用递归或迭代的方式进行求解。

3. 搜索问题搜索问题是指在给定的搜索空间中找到满足一定条件的解。

例如,在迷宫中找到从起点到终点的路径,或者在一个图中找到满足特定条件的子图。

回溯算法可以通过不断地尝试和回退来搜索所有可能的解,并找到满足条件的解。

在搜索问题中,通常使用深度优先搜索来实现回溯算法。

4. 数独问题数独问题是指在一个9×9的网格中填入1至9的数字,使得每行、每列和每个小方格中的数字均不重复。

回溯算法可以通过逐个地尝试填入数字,并不断检查当前状态是否满足条件来解决数独问题。

当无法继续填入数字时,回溯算法会回退到前一步继续尝试其他可能的解。

5. 棋盘问题棋盘问题是指在一个给定大小的棋盘上放置一定数量的棋子,使得它们满足一定的规则。

例如,在N皇后问题中,要在一个N×N大小的棋盘上放置N个皇后,使得它们任意两个皇后都不在同一行、同一列或同一对角线上。

回溯算法可以通过逐行地尝试放置皇后,并检查每次放置是否满足规则来解决这类问题。

回溯算法的应用场景不仅限于上述几个例子,还涉及到许多其他问题,如密码破解、迷宫生成、单词搜索等。

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例回溯算法是一种基于深度优先的算法,用于解决在一组可能的解中找到满足特定条件的解的问题。

其核心思想是按照特定的顺序逐步构造解空间,并通过剪枝策略来避免不必要的。

回溯算法的实现通常通过递归函数来进行,每次递归都尝试一种可能的选择,并在达到目标条件或无法继续时进行回溯。

下面介绍几个常用的回溯算法实例:1.八皇后问题:八皇后问题是一个经典的回溯问题,要求在一个8×8的棋盘上放置8个皇后,使得每个皇后都不能相互攻击。

即每行、每列和对角线上都不能有两个皇后。

通过在每一列中逐行选择合适的位置,并进行剪枝,可以找到所有满足条件的解。

2.0-1背包问题:0-1背包问题是一个经典的组合优化问题,要求在一组物品中选择一些物品放入背包,使得其总重量不超过背包容量,同时价值最大化。

该问题可以通过回溯算法进行求解,每次选择放入或不放入当前物品,并根据剩余物品和背包容量进行递归。

3.数独问题:数独问题是一个经典的逻辑推理问题,要求在一个9×9的网格中填入数字1-9,使得每行、每列和每个3×3的子网格中都没有重复数字。

该问题可以通过回溯算法进行求解,每次选择一个空格,并依次尝试1-9的数字,然后递归地进行。

4.字符串的全排列:给定一个字符串,要求输出其所有可能的排列。

例如,对于字符串"abc",其所有可能的排列为"abc"、"acb"、"bac"、"bca"、"cab"和"cba"。

可以通过回溯算法进行求解,每次选择一个字符,并递归地求解剩余字符的全排列。

回溯算法的时间复杂度通常比较高,因为其需要遍历所有可能的解空间。

但是通过合理的剪枝策略,可以减少的次数,提高算法效率。

在实际应用中,可以根据具体问题的特点来设计合适的剪枝策略,从而降低算法的时间复杂度。

回溯例题

回溯例题

分析:此题数据较小,可以用回溯来做,通过搜索以指定字母为龙头的所有可 分析 能的接龙情况,从中找出长度最长的一条“龙”。为提高搜索效率,程序先进 行预处理,建立常量表add[i,j],表示第j个串连在第i个串之后能增加的长度。若第 j个串不能连在第i个串的后面,则add[i,j]=0。一个需要注意的地方是计算add[i,j] 的时候要计算最大可能值。例如:当第i个串和第j个串分别是ABABABAB和 ABABABC时,add[i,j]等于5而不等于1。
1 16 13 6
2 15 4 7
11 8 9 10
12 5 14 3
int a[11][11]; /*记录棋盘格子填数的状态*/ int used[101]; /*标记一个数是否用过*/
main() { scanf(“%d”,&n); for ( i=1; i<=2*nห้องสมุดไป่ตู้n;i++) /*用筛选法求素数表*| p[i]=1; for( i=2;i<=n*3/2 ;i++) { j=i*2; while (j<=2*n*n) { } } for( i=1;i<=n*n;i++) used[i]=0; a[1][1]=1; _______________; used[1]=1; _______________; try=(1,2,1); printf(“no”); } p[j]=0; j=j+i;
void try( int x,inty,int dep); { int i; /*已填好所有格子*/ dep==n*n if (___________) printf; else i=1;i<=n*n;i++ { for (______________) /*通过穷举为当前位置找数*/ if(__________________) /*i未用过且可填入格(x,y)中*/ !used[i] && ok(x,y,i) a[x][y]=i { _________; _________; used[i]=1 if (y==n) /*当前行填完,转下一行x列 try(x+1,x,dep+1) ; else if (x==n) /*当前列填完,转下一列y+1行*/ try(y+1,y+1,dep+1) else if(x<=y) try(x,y+1,dep+1) /*填本行下一列*/ else try(x+1,y,dep+1) /*填本列下一行*/ used[i]=0; } } }

第5章回溯法PPT课件

第5章回溯法PPT课件

二、回溯的一般描述
一旦某个j元组(x1,x2,…,xj)违反D中仅涉及 x1,x2,…,xj 的一个约束,就可以肯定,以(x1, x2,…,xj)为前缀的任何n元组
(x1,x2,…,xj,xj+1,…,xn)都不会是问题P 的解。
三、回溯的一般步骤
回溯法正是针对这类问题,利用这类问题的 上述性质而提出来的比枚举法效率更高的算 法。
由于这是第一次用计算机证明数学定理,所以哈肯 和阿佩尔的工作,不仅是解决了一个难题,而且从 根本上拓展了人们对“证明”的理解,引发了数学 家从数学及哲学方面对“证明”的思考。
实例—n皇后问题
在一个n×n的棋盘上放置n个国际象棋中 的皇后,要求所有的皇后之间都不形成攻 击。请你给出所有可能的排布方案数。
n
4
5
6
7
8
总数
2
10
4
40
92
n皇后问题
对于n皇后问题而言,我们很难找出很合适的方法 来快速的得到解,因此,我们只能采取最基本的枚 举法来求解。
但我们知道,在n×n的棋盘上放置n个棋子的所有
回溯算法(一)
什么是回溯
入口回溯
▪迷宫游戏
回溯
➢什么是回溯法
回溯
▪回溯法是一个既带
有系统性又带有跳跃
性的的搜索算法
回溯
▪回溯法是以深度优先的方式系统地搜索问题 出口 的解, 它适用于解一些组合数较大的问题。
回溯(Trackback)是什么?
为什么回溯?
怎样回溯?
What
Why
How
一、回溯的概念
解问题P的最朴素的方法就是枚举法,即对E 中的所有n元组逐一地检测其是否满足D的全 部约束,显然,其计算量是相当大的。

第5章 回溯法(1-例子)

第5章 回溯法(1-例子)

n; // 作业数};
8
} //end Backtrack
旅行售货员问题
9
旅行售货员问题
解空间树 —— 排列树 剪枝函数:当搜索到第i 层,图G中存在从顶点1经i个 顶点到某其他顶点的一条路 径,且x[1:i]的费用和大于当前 已获得的最优值时,剪去该子 树的搜索。 算法效率:
O((n-1)!)*O(n) =O(n!)
cleft -= w[i];
b += p[i];
i++;
} // 装满背包
if (i <= n) b += p[i]/w[i] * cleft;
return b;
4
}
0-1背包问题
例:n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 解空间树如下:
物品 1 物品 2 物品 3 物品 4
class Flowshop { friend Flow(int**, int, int []);
f+=f2[i];
private:
if (f < bestf) {
void Backtrack(int i);
Swap(x[i], x[j]);
int **M, // 各作业所需的处理时间
Backtrack(i+1);
(2)将剩余的集装箱装上第二艘轮船。
将第一艘轮船尽可能装满等价于选取全体集装箱的一个子集,
使该子集中集装箱重量之和最接近c1。由此可知,装载问题等
价于以下特n殊的0-1背包问题。
max wi xi i 1
用回溯法设计解装载问题的O(2n)计
n
s.t. wi xi c1
算时间算法。

回溯算法在生活中案例

回溯算法在生活中案例

回溯算法在生活中案例
回溯算法是一种通过探索所有可能的解来解决问题的算法,当发现当前解不满足条件时,它会回溯到上一步,重新尝试其他可能的解。

以下是一些回溯算法在生活中的实际应用案例:
1. 组合优化问题:在日常生活中,很多问题可以通过组合优化问题来求解。

例如,旅行商问题(Traveling Salesman Problem),该问题是一个著名的组合优化问题,通过回溯算法可以找到最短路径或最优解。

2. 游戏AI:在游戏中,AI常常需要做出决策,而回溯算法可以帮助AI在游戏中进行决策。

例如,在棋类游戏中,AI可以使用回溯算法来分析游戏局面,预测游戏的胜负结果。

3. 数据库查询优化:在数据库查询中,回溯算法可以用于优化查询。

例如,在关系型数据库中,查询优化器可以使用回溯算法来选择最优的查询计划。

4. 编译器设计:在编译器的设计中,回溯算法可以用于语法分析。

编译器通过语法分析将源代码转化为机器代码,而回溯算法可以帮助编译器检查源代码是否符合语法规则。

5. 图像处理:在图像处理中,回溯算法可以用于图像修复、去噪等任务。

通过回溯算法可以找到最优的修复方案或去噪参数。

6. 决策支持系统:在决策支持系统中,回溯算法可以帮助决策者进行决策。

例如,在医疗诊断中,医生可以使用回溯算法来分析病人的病情,并给出最佳的治疗方案。

总之,回溯算法在许多领域都有广泛的应用,可以帮助人们解决复杂的问题。

第5章 回溯法(1-例子)

第5章 回溯法(1-例子)

{ if ((count>half)||(t*(t-1)/2-count>half)) return; if (t>n) sum++;
-++-+ -
else for (int i=0;i<2;i++) { p[1][t]=i;
-+
count+=i;
for (int j=2;j<=t;j++) { p[j][t-j+1]=p[j-1][t-j+1]^p[j-1][t-j+2]; count+=p[j][t-j+1];
对n=4, 四后问题的两个布局
无效布局
有效布局
14
对n=5, 五后问题
……
15
对n=8, 八后问题有92个解之多
1
Q
2
Q
3
Q
4
Q
5
Q
6Q
7
Q
8
Q
1 2345678
1
Q
2
Q
3
Q
4
Q
5
Q
6
Q
7Q
8
Q
1 2345678
16
四后问题的解空间
每行只能放置一个皇后,因此用xi表示第i行皇后 放置在xi列。
void Queen::Backtrack(int t)
{
if (t>n) sum++;
else
for (int i=1;i<=n;i++) {
x[t]=i;
if (Place(t)) Backtrack(t+1);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【问题】填字游戏问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。

试求出所有满足这个要求的各种数字填法。

可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。

如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。

当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。

为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。

在满足要求的情况下,继续用同样的方法为下一方格填入整数。

如果最近填入的整数不能满足要求,就改变填入的整数。

如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。

如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。

回溯法找一个解的算法:{ int m=0,ok=1;int n=8;do{if (ok) 扩展;else 调整;ok=检查前m个整数填放的合理性;} while ((!ok||m!=n)&&(m!=0))if (m!=0) 输出解;else 输出无解报告;}如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。

相应的算法如下:回溯法找全部解的算法:{ int m=0,ok=1;int n=8;do{if (ok){ if (m==n){ 输出解;调整;}else 扩展;}else 调整;ok=检查前m个整数填放的合理性;} while (m!=0);}为了确保程序能够终止,调整时必须保证曾被放弃过的填数序列不会再次实验,即要求按某种有许模型生成填数序列。

给解的候选者设定一个被检验的顺序,按这个顺序逐一形成候选者并检验。

从小到大或从大到小,都是可以采用的方法。

如扩展时,先在新位置填入整数1,调整时,找当前候选解中下一个还未被使用过的整数。

将上述扩展、调整、检验都编写成程序,细节见以下找全部解的程序。

【程序】# include <stdio.h>;# define N 12void write(int a[ ]){ int i,j;for (i=0;i<3;i++){ for (j=0;j<3;j++)printf(“%3d”,a[3*i+j]);printf(“\n”);}scanf(“%*c”);}int b[N+1];int a[10];int isprime(int m){ int i;int primes[ ]={2,3,5,7,11,17,19,23,29,-1};if (m==1||m%2=0) return 0;for (i=0;primes>;0;i++)if (m==primes) return 1;for (i=3;i*i<=m;){ if (m%i==0) return 0;i+=2;}return 1;}int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1},{2,4,-1},{3,-1},{4,6,-1},{5,7,-1}};int selectnum(int start){ int j;for (j=start;j<=N;j++)if (b[j]) return jreturn 0;}int check(int pos){ int i,j;if (pos<0) return 0;for (i=0;(j=checkmatrix[pos])>;=0;i++)if (!isprime(a[pos]+a[j])return 0;return 1;}int extend(int pos){ a[++pos]=selectnum(1);b[a][pos]]=0;return pos;}int change(int pos){ int j;while (pos>;=0&&(j=selectnum(a[pos]+1))==0) b[a[pos--]]=1;if (pos<0) return –1b[a[pos]]=1;a[pos]=j;b[j]=0;return pos;}void find(){ int ok=0,pos=0;a[pos]=1;b[a[pos]]=0;do {if (ok)if (pos==8){ write(a);pos=change(pos);}else pos=extend(pos);else pos=change(pos);ok=check(pos);} while (pos>;=0)}void main(){ int i;for (i=1;i<=N;i++)b=1;find();}/jh/23/437639.html五、回溯法回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。

当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。

如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。

在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。

扩大当前候选解的规模,以继续试探的过程称为向前试探。

1、回溯法的一般描述可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。

其中Si是分量xi 的定义域,且|Si| 有限,i=1,2,…,n。

我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。

但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。

换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>j。

因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。

回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。

树T类似于检索树,它可以这样构造:设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。

从根开始,让T的第I层的每一个结点都有mi个儿子。

这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。

照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。

另外,对于任意的0≤i≤n-1,E 中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。

特别,E中的任意一个n元组的空前缀(),对应于T的根。

因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。

在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。

在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P 的一个解。

【问题】组合问题问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。

例如n=5,r=3的所有组合为:(1)1、2、3 (2)1、2、4 (3)1、2、5(4)1、3、4 (5)1、3、5 (6)1、4、5(7)2、3、4 (8)2、3、5 (9)2、4、5(10)3、4、5则该问题的状态空间为:E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}约束集为: x1<x2<x3显然该约束集具有完备性。

问题的状态空间树T:2、回溯法的方法对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为:从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。

具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。

在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。

相关文档
最新文档