高中数学概率计数原理的讲义73页PPT

合集下载

高中数学概率知识点全面解析PPT

高中数学概率知识点全面解析PPT

乘法公式和全概率公式
乘法公式的应用 乘法公式在概率论中的应用广泛,例如计算两个事件同时发生的概 率,其计算公式为P(A并B)=P(A)*P(B)。根据统计数据,这种方法 的准确率高达90%以上。 全概率公式的价值 全概率公式可以解决复杂问题中的概率计算问题,如在多个互斥事 件中寻找某个事件发生的原因。根据一项研究,使用全概率公式解 决问题的效率比传统方法提高了约30%。
连续型随机变量
连续型随机变量定义 连续型随机变量是一个可能取无限多个值的随机变量。 概率密度函数 连续型随机变量的概率密度函数用于描述该随机变量在某一区 间内取值的概率。 期望与方差 连续型随机变量的期望和方差是其重要特性,它们描述了该随 机变量的平均水平和离散程度。 实际应用 连续型随机变量广泛应用于金融、工程等实际问题中,如期权 定价模型。
Comprehensive Analysis of Probability Knowledge Points in High School Mathematics
高中数学概率知识点 全面解析
2023.11.03
目录
Content
01 概率的基本概念 02 条件概率与独立性 03 随机变量及其分布 04 多维随机变量及其联合分布 05 大数定律与中心极限定理
THANK YOU
2023.11.03
中心极限定理的内容和应用
中心极限定理概念 中心极限定理是概率论中的一个重要定理,描述了大量随机变量和的分布趋近于正态分布的现象 大数定律与中心极限定理 大数定律揭示了样本数量增加时,样本平均值趋近于期望值,而中心极限定理则描述了这一过程的概率分布 正态分布在实际应用中的重要性 由于中心极限定理的作用,许多实际问题中的随机变量都可以近似为正态分布,方便进行统计分析 中心极限定理在高中数学教学中的地位 作为概率论的核心内容之一,中心极限定理对于培养学生的数学思维、解决实际问题具有重要意义

2025届高中数学一轮复习课件《计数原理》ppt

2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.

《概率统计》PPT课件

《概率统计》PPT课件

后抽比先抽的确实吃亏吗?
“大家不必争先恐后,你们一个一个 按次序来,谁抽到‘入场券’的机会都 一样大.”
到底谁说的对呢?让我们用概率 论的知识来计算一下,每个人抽到“ 入场券”的概率到底有多大?
“先抽的人当然要比后抽的人抽到的机会大。”
我们用Ai表示“第i个人抽到入场券” i=1,2,3,4,5. 则 A 表示“第 i个人未抽到入场券” i 显然,P(A1)=1/5,P( A1)=4/5
P(A2)=0.4×0.5×(1-0.7)+0.5×0.7×(1-0.4)+ 0.4×0.7×(1-0.5)=0.41, P(A3)=0.4×0.5×0.7=0.14 P(B|A0)=0, P(B|A1)=0.2, P(B|A2)=0.6, P(B|A3)=1, 根据全概率公式有
P( B) P( B | Ai )P( Ai ) 0.458
P(Ai|B),表示症状B由Ai引起的概率 若P(Ai|B), i=1,2,…,n中,最大的一个是P(A1|B),
我们便认为A1是生病的主要原因,下面的关键是:
计算 P(Ai|B), i=1,2,…,n
P( Ai B) P( B | Ai ) P( Ai ) P( Ai | B) n Bayes公式 P( B) P( B | Ai ) P( Ai )
也就是说,
第1个人抽到入场券的概率是1/5.
由于 由乘法公式
A2 A1 A2
因为若第2个人抽到 了入场券,第1个人 肯定没抽到.
P ( A2 ) P ( A1 ) P ( A2 | A1 )
也就是要想第2个人抽到入场券,必须第1个人未 抽到, 计算得:
P(A2)= (4/5)(1/4)= 1/5

概率统计基础PPT课件

概率统计基础PPT课件

A .r=0
B.r=1
C.r<0
D.r>0
2021/6/20
8、10个产品中有3个不合格品,每次从中随机抽取一
个(取出后不放回)直到把3个不合格品都取出,至少
抽(A )次才确保抽出所有不合格品。
A 13
B9
C8
D7
29
9、15个产品中有5个不合格品,每次从中随机抽取一
个(取出后不放回),直到把5个不合格品都取出,
18
2021/6/20
(五)样本数据的整理
从总体X中获得的样本是总体的一个缩影,需要对样本数据进
行加工,将有用信息提取出来,以便对总体有所了解。
对数据加工有两种方法:一是计算统计量;二是利用图形与
表格。
19
2021/6/20
20
2021/6/20
21
2021/6/20
三、正态概率纸 1、用来检验一组数据是否来自正态分布 2、在确认样本来自正态分布后,可在正态概率纸上作出正态 均值与正态标准差的估计 3、在确认样本来自非正态分布后,可对数据作变换后再在正 态概率纸上描点,若诸点近似在一条直线附近,则可认为变 换后的数据来自某正态总体,常用的变换有如下两个:
10
2021/6/20
(二)二项分布 1、重复进行 n 次试验; 2、 n 次试验间相互独立; 3、每次试验仅有两个可能结果; 4、成功的概率为p,失败的概率为1-p
在上述四个条件下,设x表示n次独立重复试验中成功出 现的次数,则有
P( X x) n p x (1 p)nx x 0,1,, n x
2021/6/20
(三)正态分布
1、正态分布的概率密度函数
p(x)
1

2021学年高中数学第三章概率3.1.2概率的意义课件人教A版必修3.ppt

2021学年高中数学第三章概率3.1.2概率的意义课件人教A版必修3.ppt

[答一答] 4.某地气象局预报说,明天本地降水概率为 70%,请你结 合概率的意义作出正确的解释.
提示:“明天本地降水概率为 70%”是指本地降水的可能 性是 70%,而不是本地 70%的区域会降水.当然,降水是一个 随机事件,随机事件在一定条件下可能发生,也可能不发生, 因此降水概率为 70%是指降水的可能性为 70%,本地不一定下 雨,也不一定不下雨.天气预报是气象专家根据观测到的气象 资料和经验,经过分析推断得到的.如果本地不下雨,并不能 说天气预报是错误的.
第三章
概率
3.1 随机事件的概率
3.1.2 概率的意义
[目标] 1.通过实例,进一步理解概率的意义;2.会用概率的 意义解释生活中的实例;3.了解“极大似然法”和遗传机理中的 统计规律.
[重点] 概率的意义及应用. [难点] 概率意义的理解.
要点整合夯基础 课堂达标练经典
典例讲练破题型 课时作业
知识点五 律
试验与发现及遗传机理中的统计规
[填一填] 概率知识在科学发展中起着非常重要的作用,奥地利遗传学
家孟德尔利用杂交豌豆所做的试验中,得到了显性与隐性的比例
接近___3___1____,分析找出了遗传规律,成为近代遗传学的奠基 人.可见,利用概率统计知识,对数据加以分析,有时可以得到
意想不到的结论.
提示:不一定,但正面向上的次数应是 50 次左右.
知识点二
游戏的公平性
[填一填] 尽管随机事件发生具有随机性,但是当大量重复这一过程 时,它又呈现出一定的规律性,因此利用__概__率____知识可以解释
和判断一些游戏规则的公平性、合理性.
[答一答] 2.在生活中,有时要用抽签的方法来决定一件事情,这样 做是否公平呢?

高考数学一轮复习 第九章 计数原理、概率与统计 第三节 二项式定理课件 理

高考数学一轮复习 第九章 计数原理、概率与统计 第三节 二项式定理课件 理
★★★★★

1.二项式定理 (1)定理:公式(a+b)n=C���0��� an+C���1��� an-1b+…+C������������ an-kbk+…+C������������ bn(n∈N*)叫 做二项式定理.(a+b)n 的二项展开式共有 n+1 项,其中各项的系数 C������������ (k∈{0,1,2,…,n})叫做二项式系数. (2)通项:式中的C������������ an-kbk 叫做二项展开式的通项,用 Tk+1 表示,即二项 展开式的通项为第 k+1 项,Tk+1=C������������ an-kbk.
������
������
=
(−������)kC5������
5-2������
������ 2
,

5-2������ 2
=
3 , 解得������
2
=
1, 所以

������C51=30,
解得 a=-6.
【参考答案】 D
(2)(2015·天津高考)在
������-
1 4������
6
的展开式中
x2
的系数为
.
【解题思路】本题主要考查二项式定理.
展开式中的含有
提醒:展开式中第 k+1 项的二项式系数与第 k+1 项的系数不是同一概念.
3.常用的数学方法与思想
公式代入法、赋值法、函数与方程思想.
1.(2015·山东实验中学四诊)在二项式
1 ������
-������2
5
的展开式中,含
x4 的项

《高二数学概率》课件

《高二数学概率》课件

如何将概率与统计结合应用
在实际应用中,概率论和统计学是相辅相成的。 在数据分析中,我们可以利用概率论中的知识来 理解和描述数据的随机性,从而更好地进行统计 推断和预测。
在统计推断中,可以利用概率论中的知识来评估 样本的代表性和可靠性,以及推断总体的特征和 趋势。
在概率论的学习过程中,可以通过引入实际数据 和案例来加深对概念和公式的理解,同时也可以 培养解决实际问题的能力。
概率的乘法性质
概率的减法性质
概率的完备性
若两个事件A和B是互斥 的,则
P(A∪B)=P(A)+P(B)。
若两个事件A和B是独立 的,则
P(A∩B)=P(A)×P(B)。
若事件A是事件B的子事 件,则P(A)≤P(B)。
所有事件的概率之和为1 ,即∑P(Ai)=1,其中Ai
表示第i个事件。
02
概率的计算方法
04
概率的应用
概率在日常生活中的应用
天气预报
通过概率计算,气象学家可以预测未来天气的变 化,从而为人们的出行和生活提供参考。
彩票
概率是彩票游戏的核心,玩家根据概率计算期望 收益,决定是否购买彩票。
医学诊断
医生在诊断疾病时,会考虑各种症状出现的概率 ,以做出更准确的判断。
概率在社会科学中的应用
市场调研
定义
离散型随机变量在某些特定取值 上具有确定的概率,这些概率可
以用概率分布列来表示。
例子
投掷一枚骰子,每个面向上的概率 是1/6,这是一个离散型随机变量 。
应用
在统计学、决策理论、可靠性工程 等领域有广泛应用。
连续型随机变量的概率分布
定义
连续型随机变量在某个区间内的 取值概率可以用概率密度函数来

高中数学 3.1.2概率的意义课件 新人教A版必修3

高中数学 3.1.2概率的意义课件 新人教A版必修3
精选ppt
思考6:奥地利遗传学家孟德尔从1856年开始 用豌豆作试验,他把黄色和绿色的豌豆杂交, 第一年收获的豌豆都是黄色的.第二年,他把 第一年收获的黄色豌豆再种下,收获的豌豆既 有黄色的又有绿色的.同样他把圆形和皱皮豌 豆杂交,第一年收获的豌豆都是圆形的.第二 年,他把第一年收获的圆形豌豆再种下,收获 的豌豆却既有圆形豌豆,又有皱皮豌豆.类似 地,他把长茎的豌豆与短茎的豌豆杂交,第一 年长出来的都是长茎的豌豆. 第二年,他把这 种杂交长茎豌豆再种下,得到的却既有长茎豌 豆,又有短茎豌豆.试验的具体数据如下:
思考4:围棋盒里放有同样大小的9枚白 棋子和1枚黑棋子,每次从中随机摸出1 枚棋子后再放回,一共摸10次,你认为 一定有一次会摸到黑子吗?说明你的理 由.
不一定.摸10次棋子相当于做10次重 复试验,因为每次试验的结果都是随 机的,所以摸10次棋子的结果也是 随机的.可能有两次或两次以上摸到 黑子,也可能没有一次摸到黑子,摸 到黑子的概率为1-精0选pp.t910≈0.6513.
思考1:在一场乒乓球比赛前,必须要 决定由谁先发球,并保证具有公平性, 你知道裁判员常用什么方法确定发球权 吗?其公平性是如何体现出来的?
精选ppt
裁判员拿出一个抽签器,它是-个 像大硬币似的均匀塑料圆板,一面是红 圈,一面是绿圈,然后随意指定一名运 动员,要他猜上抛的抽签器落到球台上 时,是红圈那面朝上还是绿圈那面朝上。 如果他猜对了,就由他先发球,否则, 由另一方先发球. 两个运动员取得发球 权的概率都是0.5.
降水概率≠降水区域;明天本地下雨的 可能性为70%.
精选ppt
思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为 这次天气预报不准确?如何根据频率与 概率的关系判断这个天气预报是否正确?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档