两个基本计数原理PPT优秀课件
合集下载
两个基本原理-PPT课件

例1、某班共有男生28名、女生20名,
从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,有多少种
不同的选法?
(2)
若学校分配给该班2名代表,且男女生代表
各1名,有多少种不同的 不同方法各有多少种?
A
B (1)
A
B
(2)
8
例3、为了确保电子信箱的安全,在注册
1.1 两个基本计数原理
1
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车有 2班.那么一天中,乘坐这些交通工具从甲地 到乙地共有多少种不同的走法?
解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地,所 以共有 3+2=5 种不同的走法。
2
分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
例5、自然数2520有多少个正约数?
例6、书架上原来并排放着5本不同的书, 现要插入三本不同的书,那么不同的插法有 多少种?
15
时,通常要设置电子信箱密码。在某网站设
置的信箱中,
(1)
密码为4位,每位均为0到9这10个数字中的一
个数字,这样的密码共有多少个?(2)密码
为4位,每位均为0到9这10个数字中的一个,
或是从A到Z这26个英文字母中的1个。这样的
密码共有多少个?
(3)密码
为4到6位,每位均为0到9这10个数字中的一
个。这样的密码共有多少个?
9
大家学习辛苦了,还是要坚持
继续保持安静
10
例4、(1)4名同学选报跑步、跳高、跳 远三个项目,每人报一项,共有多少种报名 方法?
两个计数原理课件

排列组合问题练习
总结词
通过排列组合问题的练习,学生可以加深对计数原理的理解,掌握排列和组合的计算方法。
详细描述
排列组合问题是计数原理的重要应用之一,通过这类问题的练习,学生可以学习到如何对问题进行分类和分步, 从而应用计数原理进行计算。
概率计算问题练习
总结词
概率计算问题练习有助于学生掌握概率的基本计算方法,理解概率与计数原理的关系。
分步计数原理广泛应用于计算机科学 、运筹学、生产调度等领域,用于解 决不同分步问题。
在应用分步计数原理时,需要确保各 个步骤之间是相互独立的,即每个步 骤的结果不影响其他步骤的实施。
两个计数原理的异同点
相同点
分类计数原理和分步计数原理都是用于解决计数问题的基本原理,都涉及到将问 题分解为更小的部分,并分别计算每部分的方法数,最后通过加法或乘法得到总 的方法数。
02
分类计数原理应用
分类计数原理广泛应用于组合数学、 概率论、统计学等领域,用于解决不 同分类问题。
03
分类计数原理注意事 项
在应用分类计数原理时,需要确保各 个分类之间是互斥的,即每个事件不 能同时属于多个分类。
分步计数原理
分步计数原理定义
分步计数原理应用
分步计数原理注意事项
分步计数原理也称为乘法原理,是指完成一件 事情,需要分成$n$个步骤,第一步有$n_1$种 不同的方法,第二步有$n_2$种不同的方法, 第$n$步有$n_n$种不同的方法,则完成这件事 情共有$N=n_1times n_2times...times n_n$ 种不同的方法。
条件概率
条件概率是概率论中的一个重要概念,可以使用分步计数原理来解释和计算。在条件概率 中,我们关注某个事件在另一个事件发生的前提下的概率,可以通过分步计数原理来计算 。
两个计数原理PPT优秀课件 人教版

朋友,我也想去 庐山,我在湖南 学,你们先到湖 南来,然后再一
起去庐山
好了。从黄石去长沙,一 天中火车有3班,汽车有2 班。从长沙到江西,一天 中汽车有3班。那我们有 多少种不同的走法到达庐 山呢?
启发思 1、路先乘汽车后乘火车
黄石
长沙
汽车①②
长沙
江西
火车①②③
汽车①
火车① 火车② 3种 火车③
题目解
析
1、明确解题方向 因为信息可以分开 沿不同的路线同
时 传递 ;属于分类计数原理问题 2、获取题目信息 完成从A向B传递有四种方法:
12→ 5→3 12→6→4
12→ 6→7 12→8→6 3、破解题目信息
所以单位时间内 传递的最大信息量 为四条不同网线的总和:
3+4+6+6=19 选D
情景问 题
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
2、分类时要注意满足两条 基本原则:
①完成这件事的任何一种方法 必须属于某一类;
②分别属于不同两类的两种方 法是不同的方法;
3、各类办法之间相互独立,都能 独立的完成这件事,要计算方法 种数,只需将各类方法数相加, 因此分类计数原理又称 加法原理
典型例 题
如图,小 圆 圈 表示网络的结点, 结点之间的连线表示它们之间有网 线相连,连线标注的数字表示该网 线单位时间内可通过的最大信息量, 现从A点向B点传递信息,信息可 以分开沿不同的路线同时传递单位 时间内传递的最大信息为()
起去庐山
好了。从黄石去长沙,一 天中火车有3班,汽车有2 班。从长沙到江西,一天 中汽车有3班。那我们有 多少种不同的走法到达庐 山呢?
启发思 1、路先乘汽车后乘火车
黄石
长沙
汽车①②
长沙
江西
火车①②③
汽车①
火车① 火车② 3种 火车③
题目解
析
1、明确解题方向 因为信息可以分开 沿不同的路线同
时 传递 ;属于分类计数原理问题 2、获取题目信息 完成从A向B传递有四种方法:
12→ 5→3 12→6→4
12→ 6→7 12→8→6 3、破解题目信息
所以单位时间内 传递的最大信息量 为四条不同网线的总和:
3+4+6+6=19 选D
情景问 题
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
2、分类时要注意满足两条 基本原则:
①完成这件事的任何一种方法 必须属于某一类;
②分别属于不同两类的两种方 法是不同的方法;
3、各类办法之间相互独立,都能 独立的完成这件事,要计算方法 种数,只需将各类方法数相加, 因此分类计数原理又称 加法原理
典型例 题
如图,小 圆 圈 表示网络的结点, 结点之间的连线表示它们之间有网 线相连,连线标注的数字表示该网 线单位时间内可通过的最大信息量, 现从A点向B点传递信息,信息可 以分开沿不同的路线同时传递单位 时间内传递的最大信息为()
《两个计数原理》课件

例题演练
- 一家公司有5名员工,其中2名男性和3名女性, 公司要选出一名发言人,那么有多少种不同的选 择方案?
加法原理
活动A 是 否 否
活动B 否 是 否
活动C 否 否 是
某购物中心为了吸引顾客,推出了3个活动,每个顾客只能选其中一个参加,假设有100名顾客来到购 物中心,那么最多有多少人能参加活动?
乘法原理
1
定义
- 什么是乘法原理理?
- 一支乐队有4名演奏者和3支乐器, 演奏者必须担任其中的一项,那么有
多少种不同的演奏方案?
加法原理
定义
加法原理是指在一系列互斥的事件中,每个事件 都有若干种可能的选择,那么所有事件的选择方 案的总数等于每个事件选择方案数的总和。
《两个计数原理》PPT课 件
在数学中,有两个重要的计数原理,分别是乘法原理和加法原理。
乘法原理
定义
乘法原理是指在多个事件中,每个事件都有若干种可能的选择,那么所有事件的选择方案的 总数等于每个事件选择方案数的乘积。
例题演练
如果一位参赛者需要有3个不同的场馆训练,场馆共有4个,那么有多少种不同的训练方案?
两个基本计数原理优质课课件讲课稿

由分步乘法计数原理,第一类的四位奇数共有
N1=3×3×2=18(个) 第二类办法 四位奇数的个位数字为3,这件事分三个步骤完成:
第一步 从1,2,4中选取一个数字做千位数字,有3种不同的选取方法; 第二步 从1,2,4中剩余的两个数字和0共三个数字中选取一个数字做百 位数字,有3种不同的选取方法; 第三步 从剩余的两个数字中,选取一个数字做十位数字,有2种不同的 选取方法;
N=5+3+2=10(种)。
(2)从书架上任取三本书,其中数学书、语文书、英语书各一本, 可以分三个步骤完成: 第一步 从书架上层任取一本数学书,有5种不同的方法; 第二步 从书架中层任取一本语文书,有3种不同的方法; 第三步 从书架下层任取一本英语书,有2种不同的方法。
由分步乘法计数原理,可得不同的取法共有 N=5×3×2=30(种)。
由分步乘法计数原理,第二类的四位奇数共有
N2=3×3×2=18(个) 最后,由分类加法计数原理,符合条件的四位奇数共有
N=N1+N2=18+18=36(个)
(3)解法二:完成“组成无重复数字的四位奇数”这件事,可以分 四个步骤:
第一步 确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;
由分步乘法计数原理,符合条件的四位奇数共有
N=2×3×3 ×2 =36(个).
幻灯片 8
探究成果
1.应用两个基本计数原理解题时,首先必须弄明白怎 样就能“完成这件事”?其次要做到合理分类,准确分步, 按元素的性质分类,按事件发生的过程分步是计数问题的 基本方法。
(1)银行存折的四位密码?
(2)四位数?
幻灯片 9
(3)四位奇数?
幻灯片 10
解:(1)完成“组成无重复数字的四位密码”这件事,可以 分四个步骤:
N1=3×3×2=18(个) 第二类办法 四位奇数的个位数字为3,这件事分三个步骤完成:
第一步 从1,2,4中选取一个数字做千位数字,有3种不同的选取方法; 第二步 从1,2,4中剩余的两个数字和0共三个数字中选取一个数字做百 位数字,有3种不同的选取方法; 第三步 从剩余的两个数字中,选取一个数字做十位数字,有2种不同的 选取方法;
N=5+3+2=10(种)。
(2)从书架上任取三本书,其中数学书、语文书、英语书各一本, 可以分三个步骤完成: 第一步 从书架上层任取一本数学书,有5种不同的方法; 第二步 从书架中层任取一本语文书,有3种不同的方法; 第三步 从书架下层任取一本英语书,有2种不同的方法。
由分步乘法计数原理,可得不同的取法共有 N=5×3×2=30(种)。
由分步乘法计数原理,第二类的四位奇数共有
N2=3×3×2=18(个) 最后,由分类加法计数原理,符合条件的四位奇数共有
N=N1+N2=18+18=36(个)
(3)解法二:完成“组成无重复数字的四位奇数”这件事,可以分 四个步骤:
第一步 确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;
由分步乘法计数原理,符合条件的四位奇数共有
N=2×3×3 ×2 =36(个).
幻灯片 8
探究成果
1.应用两个基本计数原理解题时,首先必须弄明白怎 样就能“完成这件事”?其次要做到合理分类,准确分步, 按元素的性质分类,按事件发生的过程分步是计数问题的 基本方法。
(1)银行存折的四位密码?
(2)四位数?
幻灯片 9
(3)四位奇数?
幻灯片 10
解:(1)完成“组成无重复数字的四位密码”这件事,可以 分四个步骤:
高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

5.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取
法的种数是
.
答案 6
解析 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:第1类,取出
的两数都是偶数,共有3种方法;第2类,取出的两数都是奇数,共有3种方法.
故由分类加法计数原理,不同的取法种数为N=3+3=6.
取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数
字不能取与这三个数字重复的数字.根据分步乘法计数原理,有
3×4×5×4=240(个)数.第2类,当千位数字为偶数且不为0时,即取2,4,6中的
任意一个时,个位数字可以取除首位数字外的任意一个偶数数字,百位数字
不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数
不同的方法
依据 能否独立完成整件事
种
完成这件事共有
N=
m1×m2×…×mn
法
能否逐步完成整件事
种不同的方
2.两个计数原理的区别与联系
名称
分类加法计数原理
分步乘法计数原理
相同点
都是用来计算完成一件事的不同方法种类的计数方法
针对“分类”问题,各种方法相互 针对“分步”问题,各个步骤中的
不同点
注意点
独立,每一类办法中的每一种方 方法互相依存,只有每一个步骤
(5)若组合式C = C ,则 x=m 成立.( × )
2.A24 + C73 =(
)
A.35
B.47
C.45
答案 B
解析
A24
+
C73
=
4!
7!
+
=12+35=47.
两个计数原理优秀PPT课件

2、为了对某农作物新品选择最佳生产条 件,在分别有3种不同土质,2种不同施肥量,4 种不同种植密度,3种不同时间的因素下进 行种植试验,则不同的实验方案共有多少种?
N=3×2×4×3=72
3、乘积 (a1+ a2+ a3)(b1+ b2+ b3)(c1+ c2+ c3+ c4) 展开后共有多少项?
都完成了才算做完这.件事。
12
例1 图书馆的书架上第1层放有4本不
同的《读者》,第 2层放有3本不同的
《小小说月刊》,第3层放有2本不同的
《足球》
(1)从书架上任取1本书,有多少种不同
的取法?
(2)从书架的第1、 2、 3层各取1本书,
有多少种 不同取法?
(3)从这些书中选2本不同类的书,有
多少种不同的取法?.
18
例1、四封不同的信投入3个不同的
邮箱,共有多少种不同的投法?
练习: 4位同学参加3项不同的竞赛:
(1)每名学生只能参加一项竞赛,有
多少种不同的报名方案?
(2)每项竞赛只许有一位学生参加,
有多少种不同的报名方案?
(3)每位学生只能参加一项竞赛,每
项竞赛只许有1位学生参加,有多少种
不同的报名方案? .
13
例2 给程序模块命名,需要 用3个字符,其中首字符要求 用字母A-G或U-Z,后两个 要求用数字1-9。问最多可以 给多少个程序命名?
.
14
例3 桐乡市电话号码057388××××××,若从 0~9这10个数字中选数,问可以产生多少个不 同的电话号码?
057388
10× 10 × 10 × 10× 10× 10 =106
19
《两个计数原理》课件

概率计算问题
概率的基本性质
概率具有非负性、规范性、可加性等基本性质,用于描述随机事件发生的可能性。
概率计算方法
通过列举法、古典概型、几何概型等方法计算概率。
分步计数原理在概率计算问题中的应用
将复杂事件分解为若干个简单事件的组合,利用分步计数原理计算每个简单事件发生的概率,然后根据 概率的加法原则和乘法原则计算出复杂事件发生的概率。
04
两个计数原理的实例分析
排列组合实例
总结词
通过具体实例,理解排列与组合的概念及计算方法。
详细描述
通过实际生活中的例子,如不同颜色球的不同排列方式、不同组合的彩票中奖 概率等,来解释排列与组合的基本概念,以及如何使用计数原理进行计算。
概率计算实例
总结词
通过实例掌握概率计算的基本方 法。
详细描述
选择分步计数原理
当问题涉及多个独立步骤,且需要按照顺序逐步计算每一步 的数量时,应选择分步计数原理。例如,计算排列数时,需 要按照顺序计算从n个不同元素中取出k个元素的所有排列数 。
THANK YOU
感谢聆听
05
总结与思考
两个计数原理的异同点
相同点
两个计数原理都是用来解决计数问题,特别是涉及多个独立事件 的问题。
不同点
分类计数原理是针对完成某一任务的不同方式进行计数,而分步 计数原理则是针对完成某一任务的不同步骤进行计数。
两个计数原理的应用范围
分类计数原理
适用于问题涉及多种独立的方式或方法,需要分别计算每一种方式或方法的数量 ,然后求和得到总数。
分步计数原理的适用范围是:当完成 一个任务时,需要分成几个有序的步 骤,并且各个步骤之间有相互影响。
两个计数原理的对比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个基本计数原理
问题情境1:
上海
问题 1.从南京到上海,有3条公路,2条铁路,那么 从南京到上海共有多少种不同的方法?
宁波
上海
问题2、增加杭州游,从南京到杭州的路有 三条,由杭州到上海的路有两条。问:从南 京经杭州到上海有多少种不同的方法?
杭州
宁波
分类计数原理 完成一件事, 有n类方式, 在第一 类方式,中有m1种不同的方法,在第二类方式,中 有m2种不同的方法,……,在第n类方式,中有 mn种不同的方法. 那么完成这件事共有
N=m1+m2+…+m n
种不同的方法。
注:本原理又称加法原理.
分步计数原理 完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n步有mn种不同的方法, 那么完成这件事共有
种不同的方法。 注:本原理又称乘法原理.
N=m1×m2×…×mn
例1: 某班共有男生28名,女生 20名,从该班选出学生代表参 加校学代会.
课堂小结
课堂小结
1. 分类计数与分步计数原理是两个最基本,也是 最重要的原理,是解答排列、组合问题,尤其是 较复杂的排列、组合问题的基础. 2.辨别运用分类计数原理还是分步计数原理的关 键是“分类”还是“分步”,也就是说“分类” 时,各类办法中的每一种方法都是独立的,都能 直接完成这件事,而“分步”时,各步中的方法 是相关的,缺一不可,当且仅当做完个步骤时, 才能完成这件事.
(3)
2×3=6 种不同方法。
答:在图 (1)的电路中,只合上一只开关以接通电路,有5
种不同的方法;图(2)的电路中,合上两只开关以接通电路, 有6种不同的方法.
m1
A
m2
……
B
mn
A
m1
m2
…...
mn
B
例3:为了确保电子信箱的安全,在注册时通常要 设置电子信箱密码.在网站设置的信箱中, 1) 密码为4位,每位均为0到9这10个数字中的一 个数字,这样的 密码共有多少个?
2) 密码为4位,每位是0到9这10个数字 中的一个,或是从A到Z这26个英文 字母中的1个,这样的密码共有多少 个? (2)设置四位密码,每一位上都可以从 0到9这10个数字或从A到Z这26个 英文字母中的1个中取一个,共有 10+26=36种取法. 根据分步计数原理,四位密码的个数 是 36×36×36×36=1679616
(1)在图(1)中按要求接通电路,只要 在A中的两个开关或B中的三个开 关中合上一只即可,故有 (2) (3)种不同的方法. 2+3=5
(2)在图(2)中,按要求接通电路必须分两 步进行:第一步,合上A中的一只开关;第 二步,合上B中的一只开关。故有
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同 的方法?
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119
2) 密码为4位,每位是0到9这10个数字中的一个, 或是从A到Z这26个英文字母中的1个,这样的 密码共有多少个?
3)3) 密码为4~6位,每位均为0到9这10个数字 中的一个数字,这样的 密码共有多少个?
1)密码为4位,每位均为0到9这10个数 字中的一个数字,这样的 密码共有 多少个?
解:(1) 设置四位密码,每一位上 都可以从0到9这10个数字中取 一个,有10种取法,根据分步计数 原理,四位密码的个数是 10×10×10×10=10000
3) 密码为4~6位,每位均为0到9 这10个数字中的一个数字,这样的 密码共有多少个?
(3)设置一个由0到9这10个数字组成的4~ 6位密码,有3类方式,其中设置4位密码 、5 位密码、6位密码的个数 分别为104,105, 106,根据分类计数原理,设置由0到9这10个 数字组成的4~6位密码个数是 104+105+106=1110000
(1)若学校分配给该班1名代表, 有多, 且男女生代表各1名,有多少种 不同的选法?
例2: (1) 在图 (1)的电路中,只合上 一只开关以接通电路,有多少种不同的 方法?
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同的方法?
(1) 在图 (1)的电路中,只合上一只开 关以接通电路,有多少种不同的方法?
问题情境1:
上海
问题 1.从南京到上海,有3条公路,2条铁路,那么 从南京到上海共有多少种不同的方法?
宁波
上海
问题2、增加杭州游,从南京到杭州的路有 三条,由杭州到上海的路有两条。问:从南 京经杭州到上海有多少种不同的方法?
杭州
宁波
分类计数原理 完成一件事, 有n类方式, 在第一 类方式,中有m1种不同的方法,在第二类方式,中 有m2种不同的方法,……,在第n类方式,中有 mn种不同的方法. 那么完成这件事共有
N=m1+m2+…+m n
种不同的方法。
注:本原理又称加法原理.
分步计数原理 完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n步有mn种不同的方法, 那么完成这件事共有
种不同的方法。 注:本原理又称乘法原理.
N=m1×m2×…×mn
例1: 某班共有男生28名,女生 20名,从该班选出学生代表参 加校学代会.
课堂小结
课堂小结
1. 分类计数与分步计数原理是两个最基本,也是 最重要的原理,是解答排列、组合问题,尤其是 较复杂的排列、组合问题的基础. 2.辨别运用分类计数原理还是分步计数原理的关 键是“分类”还是“分步”,也就是说“分类” 时,各类办法中的每一种方法都是独立的,都能 直接完成这件事,而“分步”时,各步中的方法 是相关的,缺一不可,当且仅当做完个步骤时, 才能完成这件事.
(3)
2×3=6 种不同方法。
答:在图 (1)的电路中,只合上一只开关以接通电路,有5
种不同的方法;图(2)的电路中,合上两只开关以接通电路, 有6种不同的方法.
m1
A
m2
……
B
mn
A
m1
m2
…...
mn
B
例3:为了确保电子信箱的安全,在注册时通常要 设置电子信箱密码.在网站设置的信箱中, 1) 密码为4位,每位均为0到9这10个数字中的一 个数字,这样的 密码共有多少个?
2) 密码为4位,每位是0到9这10个数字 中的一个,或是从A到Z这26个英文 字母中的1个,这样的密码共有多少 个? (2)设置四位密码,每一位上都可以从 0到9这10个数字或从A到Z这26个 英文字母中的1个中取一个,共有 10+26=36种取法. 根据分步计数原理,四位密码的个数 是 36×36×36×36=1679616
(1)在图(1)中按要求接通电路,只要 在A中的两个开关或B中的三个开 关中合上一只即可,故有 (2) (3)种不同的方法. 2+3=5
(2)在图(2)中,按要求接通电路必须分两 步进行:第一步,合上A中的一只开关;第 二步,合上B中的一只开关。故有
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同 的方法?
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119
2) 密码为4位,每位是0到9这10个数字中的一个, 或是从A到Z这26个英文字母中的1个,这样的 密码共有多少个?
3)3) 密码为4~6位,每位均为0到9这10个数字 中的一个数字,这样的 密码共有多少个?
1)密码为4位,每位均为0到9这10个数 字中的一个数字,这样的 密码共有 多少个?
解:(1) 设置四位密码,每一位上 都可以从0到9这10个数字中取 一个,有10种取法,根据分步计数 原理,四位密码的个数是 10×10×10×10=10000
3) 密码为4~6位,每位均为0到9 这10个数字中的一个数字,这样的 密码共有多少个?
(3)设置一个由0到9这10个数字组成的4~ 6位密码,有3类方式,其中设置4位密码 、5 位密码、6位密码的个数 分别为104,105, 106,根据分类计数原理,设置由0到9这10个 数字组成的4~6位密码个数是 104+105+106=1110000
(1)若学校分配给该班1名代表, 有多, 且男女生代表各1名,有多少种 不同的选法?
例2: (1) 在图 (1)的电路中,只合上 一只开关以接通电路,有多少种不同的 方法?
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同的方法?
(1) 在图 (1)的电路中,只合上一只开 关以接通电路,有多少种不同的方法?