第七章 动态规划

合集下载

运筹学动态规划

运筹学动态规划

运筹学动态规划第7章动态规划动态规划是Bellman 在1957年提出的解多阶决策问题的方法,在那个时期,线性规划很流行,它是研究静态问题的,而Bellman 提出的解多阶决策问题的方法适用于动态问题,相对于线性规划研究静态问题,取名动态规划。

动态规划方法应用范围非常广泛,方法也比较简单。

动态规划是将一个多阶决策问题分解为一系列的互相嵌套的一步决策问题,序贯求解使问题得到简化。

动态规划问题按照问题的性质可以分为确定性的和随机性的,按决策变量的和状态变量的取值可以分为离散型的和连续型的。

此外还有依据时间变量连续取值还是离散取值又分为连续时间动态规划问题和离散时间动态规划问题。

本章重点讨论离散时间确定性动态规划问题,包括状态变量和决策变量连续取值和离散取值两种情况。

7.1解多阶决策问题的动态规划法1.多阶决策问题的例(1)最优路径问题—多阶决策问题的例为了直观,先从最优路径问题谈起,它可以看作一个多阶决策过程。

通过最优路径问题的解可以看到用动态规划法解多阶决策问题的基本思想。

考虑图7-1所示的最优路径问题。

一汽车由S 点出发到终点F ,P 和Q 是一些可以通过的点。

图中两点间标出的数字是汽车走这一段路所需的时间(单位为小时)。

最优路径问题是确定一个路径,使汽车沿这条路径由S 点出发达到F 点所用时间最短。

最优路径问题可以看作一个多阶决策问题,由S 到城市甲是第1个阶段,第1个结点P 1或第2个结点Q 1做为第1阶段可以通过的两个站点,由城市甲到城市乙是第2阶段,这个阶段是从P 1或Q 1到P 2或Q 2,由城市乙到城市丙是第3阶段,这个阶段是从P 2或Q 2到P 3或Q 3,由城市丙的P 3或Q 3到F 做为第四阶段。

(2)最优路径问题的解对最优路径问题,存在一个非常明显的原理,即最优路径的一部分还是最优路径。

换句话说,如果SQ P Q F 123是所求的最优路径,那么,汽车从这一路径上的任何一点,例如P 2,出发到F 的最优路径必为P Q F 23。

第07章 动态规划 《运筹学》PPT课件

第07章  动态规划  《运筹学》PPT课件
最优路径问题 资源分配问题 排序问题 投资问题 装载问题 生产计划与库存问题 生产过程的最优控制等
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优

多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优

3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优

4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。

最优控制-第七章-动态规划法

最优控制-第七章-动态规划法

当∆t很小时,有

t t
t
Lx, u, t d t Lx, u, t t
J x, t min
*
min
uU

uU

tf
t0
Lx, u, t d t Φ xt f
tf t t

t t
t
Lx, u, t d t
Lx, u, t d t Φ xt f
P1 11
7
P2 4 2
P3 4 4
12 A 4 8 Q1
4 3 2 2 Q3 B
5 Q2
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如
上述最优路线问题,用动态规划法只须做10次
J x, t min Lx, u, t t J xt t , t t
* * uU


(8)
* J x , t J x, t * * J x x, t t J x, t t (12) x t x * T
A城出发到B城的行车时间最短。
P1 3 A 4 Q1 1
7
P2
2
P3 4
4
6 8 2 Q2
3 3 3
2 Q3 4
2
B
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。 由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。

动态规划(完整)

动态规划(完整)
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理
§7.3 动态规划应用举例
例 求解最短路问题
A1 2 Q 4 3 A3 A2 6 3 7 4 B1 1 4 2 4 4 1 5 6 B2 3 B3 3 3 C2 C1 3 4 T




分阶段的最短路径
• • • • • • • Ⅳ : C1—T Ⅲ --Ⅳ : B1—C1—T Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T Ⅰ--Ⅱ--Ⅲ --Ⅳ: Q—A2—B1—C1—T Q--A3—B1—C1—T Q--A3—B2—C2—T 3 4 7
决策为 xk 时的指标,则它就是第 k 段指标函
数,简记为vk 。 (2)过程指标函数(也称目标函数) 用f(sk , xk)表示第k子过程的指标函数。表
示处于第 k 段 sk 状态且所作决策为xk时,
从 sk 点到终点的距离。由此可见, f(sk , xk)
不仅跟当前状态 sk 有关,
还跟该子过程策略 pk(sk) 有关,严格说来,应
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
(1)阶段指标函数(也称阶段效应)
用vk(sk , xk)表示第 k 段处于状态 sk且所作
资规划, 排序问题和生产过程的最优控制
等问题;
§7.2 动态规划的基本概念和基本思想
一、基本概念
使用动态规划方法求解决策问题首先要将 问题改造成符合动态规划求解要求的形式, 要涉及以下概念: (1)阶段 (3)决策与策略 (2)状态 (4)状态转移方程

动态规划(完整)

动态规划(完整)

(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者从
给定阶段状态出发对下一阶段状态作出的选
择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
阶段变量描述当前所处的阶段位置,一 般用下标 k 表示;
(2) 确定状态
每阶段有若干状态(state), 表示某一阶段决策 面临的条件或所处位置及运动特征的量,称为 状态。反映状态变化的量叫作状态变量。 k 阶段的状态特征可用状态变量 sk 描述;
每一阶段的全部状态构成该阶段的状态集合Sk ,并有skSk。每个阶段的状态可分为初始状 态和终止状态,或称输入状态和输出状态, 阶段的初始状态记作sk ,终止状态记为sk+1 ,也是下个阶段的初始状态。
状态转移方程在大多数情况下可以由数学公 式表达, 如: sk+1 = sk + xk;
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
• 2、在全过程最短路径中,将会出现阶段的最优路
径;-----递推性
• 3、前面的终点确定,后面的路径也就确定了,且 与前面的路径(如何找到的这个终点)无关;----
-无后效性
• 3、逐段地求解最优路径,势必会找到一个全过程
最优路径。-----动态规划
§7.1多阶段决策问题
• 动态规划是解决多阶段最优决策的方法, 由美国数学家贝尔曼(R. Bellman) 于 1951年首先提出;

《动态规划》课件

《动态规划》课件
《动态规划》ppt课 件
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。

《动态规划课件》课件


应用场景:求解最短路径、背 包问题等
注意事项:避免重复计算子问 题和记忆化搜索
定义:将问题划分为 若干个较小的子问题, 并逐个解决子问题, 最终得到原问题的解
特点:将原问题分解为 更小的子问题,通过求 解子问题的最优解得到 原问题的最优解
应用场景:适用于 具有重叠子问题和 最优子结构特性的 问题
示例:背包问题、 最大子段和问题等
分段算法的代码 实现
分段算法的时间 复杂度分析
避免重复计算:使用备忘录或动态规划表来记录已计算过的子问题 减少子问题的数量:通过合并或减少不必要的子问题来降低计算复杂度 选择合适的递归方式:根据问题的特点选择最优的递归方式 优化递归栈:通过减少递归深度或使用循环代替递归来提高性能
优化算法:动态规划可以优化算法,提高计算效率 避免重复计算:通过记忆化搜索,避免重复计算,提高计算速度
添加标题ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
动态规划与分治法比较:分治法将 问题分解为子问题,而动态规划将 子问题联系起来
动态规划与回溯法比较:回溯法会 穷举所有可能解,而动态规划可以 避免不必要的搜索
机器学习与深度 学习中的动态规 划
自然语言处理中 的动态规划
计算机视觉中的 动态规划
推荐系统中的动 态规划
最大子段和问题的定义 最大子段和问题的应用场景 最大子段和问题的解决方法 最大子段和问题的实际应用案例
定义:矩阵链乘法问题是一种优化问题,通过动态规划算法来求解
应用场景:在科学计算、机器学习、图像处理等领域都有广泛的应用
算法原理:通过动态规划算法,将矩阵链乘法问题转化为子问题,从而避免重复计算,提高 计算效率
应用场景:背包问题在计算机科学、运筹学、经济学等领域都有广泛的应用,如资源分配、路径规划、时间表安 排等。

动态规划PPT学习教案

第14页/共45页
15
第一节 动态规划的基本 概念和基本方程
6、阶段指标、指标函数和最优指标函数 (1)衡量某阶段决策效益优劣的数量指标,称为
阶段指标,用vk(Sk,dk)表示第k阶段的阶段指标。 在不同的问题中,其含义不同。它可以是距离、 利润、成本等。 在引例中,用dk=vk(Sk,dk)表示在第k阶段由点Sk 到点Sk+1=dk(Sk)距离。如d2(B3,C1)=6。
第12页/共45页
13
第一节 动态规划的基本 概念和基本方程
S1 A,S2 B1, B2, B3 ,S3 C1,C2,C3 ,S4 D1, D2
(2)状态应具有无后效性(即马尔可夫性)。即如果某 阶段状态给定,则在这阶段以后过程的发展不受这阶段 以前各阶段状态的影响。 3、决策与决策变量。在某阶段对可供选择状态的决定( 或选择),称为决策。描述的变量称为决策变量。常用 dk(Sk)表示第k阶段处于状态Sk时的决策变量,它是状态 变量的函数。决策变量允许取值的范围,称为允许决策集 合,常用Dk(Sk)表示。显然dk(Sk)∈Dk(Sk)。 如在引例的第二阶段中,若从B1出发,D2(B1)={C1, C2, C3}如果决定选取B1 C2,则d2(B1)= C2。
A→B1→C2→D3→E 其长度为12。 显然,这种方法是不经济的,特别是当阶段数很多,各 阶段可供的选择也很多时,这种解法甚至在计算机上完 成也是不现实的。
第6页/共45页
7
第一节 动态规划的基本 概念和基本方程
由于我们考虑的是从全局上解决求A到E的最短路问题,
而不是就某一阶段解决最短路线,因此可考虑从最后一阶段 开始计算,由后向前逐步推至A点:
C
2
min
C2D1 C2 D2

《运筹学07动态规划》课件

组合动态规划:解决组合问题, 如旅行商问题、背包问题等
动态规划的应用场景
资源分配 问题:如 背包问题、 车辆路径 问题等
优化问题: 如最短路 径问题、 最大子数 组问题等
决策问题: 如股票买 卖问题、 投资组合 问题等
游戏问题: 如国际象 棋、围棋 等
生物信息 学:如基 因序列比 对、蛋白 质结构预 测等
优化策略的改进
动态规划的扩展:从线性规划到非 线性规划,从单阶段决策到多阶段 决策
优化策略的改进:引入并行计算, 提高计算效率
添加标题
添加标题
添加标题
添加标题
优化策略的改进:引入启发式算法, 如遗传算法、模拟退火算法等
优化策略的改进:引入智能优化算 法,如神经网络、深度学习等
动态规划与其他 算法的比较
感谢您的观看
汇报人:
动态规划的基本 思想:将问题分 解为更小的子问 题,并利用子问 题的解来求解原
问题
动态规划的步 骤:确定状态、 状态转移方程、 初始状态和边
界条件
动态规划的算 法实现:递归、 迭代、记忆化
搜索等
动态规划的应 用:背包问题、 最短路径问题、 资源分配问题

动态规划的经典 案例
最短路径问题
问题描述:在图中找到从起点到终点的最短路径 应用场景:交通网络、物流配送、电路设计等 解决方案:使用动态规划算法,通过状态转移方程求解 经典案例:旅行商问题、最短路径问题等
排班问题
问题描述:如何合理安排员工工作时间,使得员工满意度最高,同时满足 公司业务需求
动态规划方法:使用动态规划算法,通过状态转移方程和递归函数求解
状态转移方程:定义状态变量,表示员工在不同时间段的工作状态
递归函数:根据状态转移方程,递归求解最优解

《动态规划教学》课件


动态规划的理论研究
要点一
动态规划算法的收敛性研究
深入探讨动态规划算法的收敛速度和收敛条件,为算法优 化提供理论支持。
要点二
动态规划的近似算法研究
研究近似动态规划算法,在保证一定精度下降低计算复杂 度,提高求解效率。
THANK YOU
缺点
01
空间复杂度高
动态规划通常需要存储所有子问题的解决方案,因此其空 间复杂度通常较高。对于大规模问题,可能需要大量的存 储空间,这可能导致算法在实际应用中受到限制。
02 03
可能陷入局部最优解
虽然动态规划有助于找到全局最优解,但在某些情况下, 它可能陷入局部最优解。这是因为动态规划通常从问题的 初始状态开始,逐步解决子问题,如果初始状态不是最优 的,则可能在整个过程中都围绕着一个非最优的解决方案 。
期权定价
动态规划可以用于期权定价模型,以更准确地预测期 权价格。
计算机科学
算法优化
动态规划可以用于优化算法,以提高计算效率和 准确性。
数据压缩
动态规划可以用于数据压缩算法,以更有效地压 缩和解压缩数据。
游戏开发
动态规划可以用于游戏开发和AI算法,以提高游 戏的可玩性和智能性。
生物信息学
基因序列比对
动态规划可以用于基因序列比对 ,以ห้องสมุดไป่ตู้定不同基因序列之间的相 似性和差异性。
蛋白质结构预测
动态规划可以用于预测蛋白质的 三维结构,以更好地理解蛋白质 的功能和作用机制。
进化树构建
动态规划可以用于构建进化树, 以更好地理解物种的进化关系和 演化历程。
05
动态规划的优缺点
优点
高效性
动态规划能够有效地解决最优化问题,特别是那些具有重叠子问题和最优子结构的问题。通过将问题分解为子问题并 存储它们的解决方案,动态规划避免了重复计算,从而大大提高了算法的效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3
4
5
6
4 .不包含时间因素线性规划、非线性规划等静态
的规划问题(本质上是一次决策问题)也可以通过
适当地引入阶段的概念,应用动态规划方法加以解
3、决策:表示当过程处于某一阶段的某个状态时, 可以作出不同的决定,从而确定下一阶段的状态,这 种决定称为决策。
描述决策的变量,称为决策变量,用Uk(Sk )。决策变 量是状态变量的函数。可用一个数、一组数或一向量
(多维情形)来描述。
在实际问题中决策变量的取值往往在某一范围之内,
此范围称为允许决策集合,用Dk(Sk )表示。
决。
例:分割问题
n
max z xi i 1
n
i 1
xi
c
xi 0
x1 x2 x3
……
xn
c
二、解题思路:把多阶段的决策问题转化为依次
求解多个单阶段的决策问题。(以最短路问题为例)
18 5 A
3
13 1 B1 3
6
16 8 B2 7
6
13
C1 6 10 8
3 C2 5
93 C3 3
12 8 4 C4
4、状态转移方程
状态转移方程是确定过程由一 个状态到另一个状态的演变过
程。如果第k阶段状态变量sk的 值、该阶段的决策变量一经确
定,第k+1阶段状态变量sk+1的 值也就确定。
ss32
TT12((ss11,,
uu11
) ,
s2
,
u2
)
sk1 Tk (s1, u1, s2 , u2 , , sk , uk )
2. 机器负荷分配问题:
年初完好 机器S
高负荷x
完好率a(0<a<1) 年产量g(x) 完好率量h(s-x)
假定开始生产时完好的机器数量为s1,要求制定一个 五年计划,在每年开始时,决定如何重新分配完好的机器
在两种不同的负荷下生产的数量,使在五年内产品的总产
量达到最高。
高负荷X1
高负荷x2
S2=ax1
S3=ax2+
高负荷x5 S5=ax4+
S1
+b(s1-
第1年x1)
b(s2-x2)
第2年
b(s4-x4)
第5年
V1=g(x1) +h(s1-x1)
V2=g(x2)+ h(s2-x2)
V5=g(x5)+h(s5 -x5)
3 . 最短路问题:给定一个交通网络图如下,其中 两点之间的数字表示距离(或花费),试求从A点到 G点的最短距离(总费用最小)。
7
2 D1
2
6
D2 1 2
83 D3
3
7
E1 3
5
5 5
E2 2
96 6
E3
4
F1 4
G 33 F2
1
2
3
4
5
6
三、应用范围 1、动态 2、静态 四、缺点 1、建模后,没有统一的方法 2、维数障碍 五、分类 1、确定型(连续型、离散型) 2、随机型(连续型、离散型)
第二节 动态规划的基本概念
一、基本概念
动态规划是解决多阶段决策问题的一种有效方法。 但是不是一种算法。必须对具体问题进行具体分析, 运用动态规划的原理和方法,建立相应的模型,然 后再用动态规划方法去求解。
一、多阶段决策问题的典型例子:
1 . 生产决策问题
例:已知工厂对某台机器的每月生产能力和需求方的需求 量如下表,并且知道一月份生产前已有一台库存,现 制定3个月的生产计划,使生产与存储的总成本最少?
7、指标函数:Vkn(Sk, Pkn),k阶段,Sk状态下,作出Pkn子策 略带来的效果。动态规划模型的指标函数,应具有可分离 性,并满足递推关系。
图示如下:
s1
u1 1
s2
u2 2
s3
sk
uk k
sk+1
能用动态规划方法求解的多阶段决策过程是一类特 殊的多阶段决策过程,即具有无后效性的多阶段决 策过程。
无后效性(马尔可夫性) 如果某阶段状态给定后,则在这个阶段以后过程的
发展不受这个阶段以前各段状态的影响;
过程的过去历史只能通过当前的状态去影响它未来 的发展构;造动态规划模型时,要充分注意是否满足无后 效性的要求;
月份 需求量 生产能力 存储限制 生产成本 存储费
1
2
3
2
800
150
2
3
2
3
700
150
3
3
3
2
1000
200
S1=1
生产量x1
生产量x2
S2=S1+x1-
S3=S2+x2-D2
1月份D1
2月份
生产量x3
S4=0
3月份
V1=800 x1+150 S1
V2=700x 2+150S2
V3=1000 x3+200S3
如果状态变量不能满足无后效性的要求,应适当地 改变状态的定义或规定方法。
状态具有无后效性的多阶段决策过程的状态转移
方程如下
s2 T1 ( s1 , u1 ) s3 T2 ( s2 , u2 ) sk 1 Tk ( sk , uk )
动态规划中能 处理的状态转移 方程的形式。
5、策略:是一个按顺序排列的决策组成的集合。在实际问 题中,可供选择的策略有一定的范围,称为允许策略集合。 从允许策略集合中找出达到最优效果的策略称为最优策略。
1、阶段:
把一个问题的过程,恰当地分为若干个相互联系的阶段,以 便于按一定的次序去求解。 根段据 决描时策述间。阶和段空的间变的量自称然为特阶征段来变进量行,用的年k,表、但月示要、。便阶于段问的题划转分一一一化个组,个量为数数一向、、多般阶是
路段
2、状态:表示每个阶段开始所处的自然状况或客观条件。通 常一个阶段有若干个状态,描述过程状态的变量称为状态变量, 用Sk表示。 状态变量的取值有一定的允许集合或范围,此集合称为状态 允许集合。
第七章 动 态 规 划
(Dynamic programming)
主要内容
充分理解
1、动态规划的基本概念、基本思想
2、动态规划模型的建立和求解 掌握技巧
3、动态规划的应用:最短路问题;背包问题;
生产与存储问题;设备更新问题;复合系统工作可 靠性问题;机器负荷问题;静态规划问题;资源分 配问题。
第一节 动态规划概述
全过程策略:U1(S1), U2(S2),…, Un(Sn)
P1n={Ui(Si)}, i=1,…,n 子过程策略:Uk(Sk), Uk+1(Sk+1),…, Un(Sn)
Pkn={Ui(Si)}, i=k,…,n 6、阶段指标:Vk(Sk, Uk),k阶段,Sk状态下,作出Uk决策带
来的效果。在不同的问题中,指标的含义是不同的,它可 能是距离、利润、成本、产量或资源消耗等。
相关文档
最新文档