七年级数学绝对值PPT精品课件
合集下载
绝对值ppt课件

做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12
原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −
=_______
4
4
距离为_______,所以
=_______
注意
绝对值是求数轴上某点到原点
距离的运算
02
方法展示
02 方法展示
【示例1】化简下列各数:
=_____
− +
−
2020
=_____43;
【示例2】如果 = ,则 =_______
-2020
=_____
A、±
B、
C、−
③
2018
=_____
D、
二
绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
4
3
在数轴中标出点A、B的位置,并比较它们的大小:_____
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
人教版七年级上册数学绝对值ppt课堂课件

人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
2.若|a|+ |b-3| =0.则a =__0___,
b= __3___. 3.如果一个数的绝对值等于4.53 ,
则这个数是__4_._5_3或__-__4_.5_3____. 4.如果|x-1|=2,则x=___3或__-__1___. 5.如果a 的相反数是-0.86,那么|a|
东、西方向行驶10km,到达A、B两处(图
1.2-5)。
方向不同, (正负性)
(1)它们的行驶路线的方向相同吗?距(不离。管相方同向,)
(2)它们行驶路程的距离(线段OA、OB的长 度)相同吗?
A
10
-10
O
10
B
0
10
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
1.2.4
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
学习目标
1. 初步理解绝对值的概念,能求一个
数的绝对值. 2.通过应用绝对值解决相关问题,体 会绝对值的意义和作用.
人教版七年级上册数学课件:1.2.4绝 对值
❖
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
❖
7学习这篇课文,应该重点引导学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
人教版七年级数学上册 1.2.4.1 绝对值的定义及性质 教学课件(共28张PPT)

练习1:判断并改错: (1)一个数的绝对值等于本身,则这个数一定是正数; (2)一个数的绝对值等于它的相反数,则这个数一定是负数; (3)如果两个数的绝对值相等,那么这两个数一定相等; (4)如果两个数不相等,那么这两个数的绝对值一定不相等; (5)有理数的绝对值一定是非负数;
课堂精练
练习2:写出下列各数的绝对值:
人教版七年级数学上册
第一章 有理数 1.2.4.1 绝对值的定义及性质
新课导入
1. 什么是数轴?数轴定义包含哪几层含义? 2. 数轴上的点与有理数间的关系是怎样的? 3. 什么是相反数? 4. 相反数的代数意义和几何意义分别是什么?
合作探究
问题1 看图回答问题: 两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处, 它们的行驶路线相同吗?它们的行驶路程相同吗?
6,8,3.9, 5 , 2 ,100,0 2 11
3.口答:
6 = 0=
2 = 7
-3 =
8.2 =
-1 = 3
合作探究
问题1 结合上面口答题结果,一个数的绝对值与这个数有什么 关系?你能从中发现什么规律?
(1)一个正数的绝对值是它本身; (1)若a 0,则 a a;
(2)一个负数的绝对值是它的相反数;(2)若a 0,则 a -a;
(3)0的绝对值是0.
例如:上面的问题中在数轴上表示-3的点和表示3的点到原 点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3. 你能说说-2和2吗?
合作探究
-3 -2 -1 0 1 2 3 4
大象离原点4个单位长度:|4|=4. 那么两只小狗呢?
合作探究
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是 ____个长度单位. 2.-0.8的绝对值是____ .
课堂精练
练习2:写出下列各数的绝对值:
人教版七年级数学上册
第一章 有理数 1.2.4.1 绝对值的定义及性质
新课导入
1. 什么是数轴?数轴定义包含哪几层含义? 2. 数轴上的点与有理数间的关系是怎样的? 3. 什么是相反数? 4. 相反数的代数意义和几何意义分别是什么?
合作探究
问题1 看图回答问题: 两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处, 它们的行驶路线相同吗?它们的行驶路程相同吗?
6,8,3.9, 5 , 2 ,100,0 2 11
3.口答:
6 = 0=
2 = 7
-3 =
8.2 =
-1 = 3
合作探究
问题1 结合上面口答题结果,一个数的绝对值与这个数有什么 关系?你能从中发现什么规律?
(1)一个正数的绝对值是它本身; (1)若a 0,则 a a;
(2)一个负数的绝对值是它的相反数;(2)若a 0,则 a -a;
(3)0的绝对值是0.
例如:上面的问题中在数轴上表示-3的点和表示3的点到原 点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3. 你能说说-2和2吗?
合作探究
-3 -2 -1 0 1 2 3 4
大象离原点4个单位长度:|4|=4. 那么两只小狗呢?
合作探究
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是 ____个长度单位. 2.-0.8的绝对值是____ .
七年级数学上册PPT课件--《绝对值》

-4 ,-(-32),│-0.6│,-0.6,-│4.2│
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
七年级上册数学PPT课件--《绝对值》

3.绝对值为3的数是 .
4.绝对值为-3的数是 .
5.“任何数的绝对值都是正数”的说法对吗?
6.最小的绝对值为 .
7.绝对值最小的数是 .
8.绝对值小于4.5的整数是 .
练一练:
1.(1)在数轴上画出表示下列各数的点:
(2)填空:
∣0∣=
∣9∣=
∣-0.4∣=
∣ ∣=
∣-2∣=
(3)比较-3、-0.4、-2的绝对值的大小,并用“<”号把它们连接起来.
-3
∣ ∣=
-3
-0.4
0
9
-2
一.回答下列问题:
1.说出 表示的意义.
∣
∣
2.到原点距离为3的数是 .
9.绝对值不大于3的整数是 .
二.比较下列各对数的大小:
(1)2 与 0
(2)-2 与 0
(3)2 与 -2
(4)-2 与-4
(5)-2 与
∣
∣
-4
(7)-2 与
∣
-∣
-4
(1
0
1
2
3
2
所以-3的绝对值是 ;
表示2的点与原点的距离是 ,
表示0的点与原点的距离是 ,
所以2的绝对值是 ;
绝 对 值
小明的家在学校西边3Km处,小丽的家在学校东边2Km处。
-3
-2
-1
0
1
2
3
2
你能建立数轴恰当表示他们的位置吗?
假如他们步行的速度相同,谁先到学校?为什么?
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
例如:
表示-3的点与原点的距离是 ,
4
绝对值的表示方法
4.绝对值为-3的数是 .
5.“任何数的绝对值都是正数”的说法对吗?
6.最小的绝对值为 .
7.绝对值最小的数是 .
8.绝对值小于4.5的整数是 .
练一练:
1.(1)在数轴上画出表示下列各数的点:
(2)填空:
∣0∣=
∣9∣=
∣-0.4∣=
∣ ∣=
∣-2∣=
(3)比较-3、-0.4、-2的绝对值的大小,并用“<”号把它们连接起来.
-3
∣ ∣=
-3
-0.4
0
9
-2
一.回答下列问题:
1.说出 表示的意义.
∣
∣
2.到原点距离为3的数是 .
9.绝对值不大于3的整数是 .
二.比较下列各对数的大小:
(1)2 与 0
(2)-2 与 0
(3)2 与 -2
(4)-2 与-4
(5)-2 与
∣
∣
-4
(7)-2 与
∣
-∣
-4
(1
0
1
2
3
2
所以-3的绝对值是 ;
表示2的点与原点的距离是 ,
表示0的点与原点的距离是 ,
所以2的绝对值是 ;
绝 对 值
小明的家在学校西边3Km处,小丽的家在学校东边2Km处。
-3
-2
-1
0
1
2
3
2
你能建立数轴恰当表示他们的位置吗?
假如他们步行的速度相同,谁先到学校?为什么?
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
例如:
表示-3的点与原点的距离是 ,
4
绝对值的表示方法
北师大七年级数学上册《绝对值》课件(共25张PPT)

A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的
绝对值ppt课件

(3)绝对值等于它本身的数有正数和0.
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15
−
2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1
,
10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7
.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15
−
2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1
,
10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7
.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
A.2 C.2 和-2Fra bibliotekB.-2 D.2 或-2
2.(1)-25的符号是___-_____,绝对值是________;
(2)1023的符号是___+___,绝对值是________.
3.比较下列各组数的大小:
(1)-9 与-7; (2)-100 与+0.01.
解:(1)-9<-7. (2)-100<+0.01.
绝对值的非负性 【例 2】若|a|+|b|=0,求 a、b 的值. 思路导引:由绝对值的非负性可知:|a|≥0,|b|≥0. 解:因为|a|≥0,|b|≥0,且|a|+|b|=0, 所以|a|=0,|b|=0.所以 a=0,b=0. 【规律总结】几个非负数的和为零,那么这几个非负数都 为零.
1.若一个数的绝对值等于 2,则这个数是( D )
互为相反数的一对数有相同的绝对值.
归纳:一个正数的绝对值是它本身,一个负数的绝对值是 它的____相__反__数____,零的绝对值是______0_____.用式子表示为:
|a|=a0aa>=00 .即对任意有理数 a,总有|a|≥0. -aa<0
2.比较有理数的大小 (1)正数大于 0,0 大于负数,正数大于负数;两个负数,绝 对值大的反而小. (2)数轴上右边的数总比左边的数___大_____.
比较有理数的大小(重难点) 【例题】比较-34,-23的大小. 解:-34=34=192,-32=23=182,
因为192>182,所以-34<-23. 【规律总结】
(1)两个正数比较大小:与小学学过的一致. (2)两个负数比较大小:①先求这两个负数的绝对值;②比 较绝对值大小;③根据“绝对值大的这个数反而小”来判断. (3)正数>0>负数.
第4课时 绝对值
1.绝对值的概念及意义 探究:由相反数的性质知道,互为相反数的一对数在数轴 上的位置关于原点对称,它们到原点的距离___相__等___.例如, 数轴上表示 5 和-5 的两个点到原点的距离都是____5____.由此 启发,我们可得到绝对值的定义.
数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记 作|a|.