函数的极限及函数的连续性典型例题

合集下载

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。

函数极限与连续性知识点及典例

函数极限与连续性知识点及典例
x→x0 →
(3) lim f ( x) = f ( x0 ).
x→x0
如果上述三个条件中只 要有一个不满足 , 则称 函数f ( x )在点x 0处不连续 (或间断 ), 并称点 x 0为 f ( x )的不连续点(或间断点).
重庆邮电大学市级精品课程------高等数学
5. 间断点的分类 (1) 跳跃间断点 如果f ( x )在点x 0处左, 右极限都
记作 lim f ( x ) = ∞ (或 lim f ( x ) = ∞ ).
x → x0 x →∞
无穷小与无穷大的关系 在同一过程中,无穷大的倒数为无穷小; 在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大. 零的无穷小的倒数为无穷大.
重庆邮电大学市级精品课程------高等数学
无穷小的运算性质 定理1 在同一过程中,有限个无穷小的代数和 定理 在同一过程中 有限个无穷小的代数和 仍是无穷小. 仍是无穷小 定理2 有界函数与无穷小的乘积是无穷小. 定理 有界函数与无穷小的乘积是无穷小 推论1 在同一过程中,有极限的变量与无穷小的 推论 在同一过程中 有极限的变量与无穷小的 乘积是无穷小. 乘积是无穷小 推论2 常数与无穷小的乘积是无穷小. 推论 常数与无穷小的乘积是无穷小 推论3 有限个无穷小的乘积也是无穷小. 推论 有限个无穷小的乘积也是无穷小
∆x→0
末就 函数f (x)在 x 0 连 , 0 称为f (x)的 称 那 点 续x 连 点 续 .
定义2 lim f ( x) = f ( x0 ).
x→x0
重庆邮电大学市级精品课程------高等数学
2. 单侧连续
若函数 f ( x )在(a , x 0 ]内有定义 , 且f ( x 0 − 0) = f ( x 0 ), 则称f ( x )在点x 0处左连续; 若函数 f ( x )在[ x 0 , b )内有定义 , 且f ( x 0 + 0) = f ( x 0 ), 则称f ( x )在点x 0处右连续 .

高三数学复习函数的连续性

高三数学复习函数的连续性

第四节 函数的连续性及极限的应用1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义,0lim x x →f (x )存在,且0lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续.2..函数f (x )在点x =x 0处连续必须满足下面三个条件.(1)函数f (x )在点x =x 0处有定义; (2)0lim x x →f (x )存在;(3)0lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值.如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算:①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)•g(x),)()(x g x f (g(x)≠0)也在点x 0处连续。

②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。

4.函数f (x )在(a ,b )内连续的定义:如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数.f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a,b)内的每一点处连续,在a点处右极限存在等于f(a),在b点处左极限存在等于f(b).5.函数f(x)在[a,b]上连续的定义:lim f(x)=f(a),如果f(x)在开区间(a,b)内连续,在左端点x=a处有+x→alim f(x)=f(b),就说函数f(x)在闭区间[a,b]上连在右端点x=b处有-→bx续,或f(x)是闭区间[a,b]上的连续函数.6. 最大值最小值定理如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值7.特别注意:函数f(x)在x=x0处连续与函数f(x)在x=x0处有极限的联系与区别。

函数的连续性极其性质

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.无穷大量和无穷小量无穷大量我们先来看一个例子:已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。

为此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当时,成立,则称函数当时为无穷大量。

记为:(表示为无穷大量,实际它是没有极限的)同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函数当x→∞时是无穷大量,记为:。

无穷小量以零为极限的变量称为无穷小量。

定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量.记作:(或)注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。

无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。

关于无穷小量的两个定理定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.无穷小量的比较通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x0的去心领域内不为零,a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;b):如果,则称α和β是同阶无穷小;c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)例:因为,所以当x→0时,x与3x是同阶无穷小;因为,所以当x→0时,x2是3x的高阶无穷小;因为,所以当x→0时,sinx与x是等价无穷小。

函数的连续性及极限的应用

函数的连续性及极限的应用

函数的连续性1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义,0lim x x →f (x )存在,且limx x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续.2..函数f (x )在点x =x 0处连续必须满足下面三个条件.(1)函数f (x )在点x =x 0处有定义; (2)0lim x x →f (x )存在;(3)0lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值.如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算:①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)•g(x),)()(x g x f (g(x)≠0)也在点x 0处连续。

②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。

4.函数f (x )在(a ,b )内连续的定义:如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数.f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义:如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有+→ax lim f (x )=f (a ),在右端点x =b 处有-→bx lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 6. 最大值最小值定理如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。

高考第一轮复习数学函数的连续性及极限的应用

高考第一轮复习数学函数的连续性及极限的应用
又x=0也不是连续点,故选D
答案:D
3.下列图象表示的函数在x=x0处连续的是
A.①B.②③C.①④D.③④
答案:A
4.四个函数:①fx= ;②gx=sinx;③fx=|x|;④fx=ax3+bx2+cx+d.其中在x=0处连续的函数是____________.把你认为正确的代号都填上
答案:②③④
●典例剖析
图丁表示的是 fx存在,但它不等于函数在这一点处的函数值fx0.
●教师下载中心
教学点睛
1.函数fx在点x0处连续与fx在点x0处有极限的联系与区别:
其联系是:它要求 fx存在.
其区别是:函数在某点处连续比在此点处有极限所具备的条件更强.首先,fx在点x0处有极限,对于点x0而言,x0可以属于fx的定义域,也可以不属于fx的定义域,即与fx0是否有意义无关,而fx在点x0处连续,要求fx在点x0及其附近都有定义;其次,fx在点x0处的极限值与fx在点x0处的函数值fx0可以无关,而fx在点x0处连续,要求fx在点x0处的极限值等于它在这一点的函数值fx0.我们通常说“连续必有极限,有极限未必连续”,正是针对上述事实而言的.
1.函数fx在点x0处连续反映到函数fx的图象上是在点x=x0处是不间断的.一般地,函数fx在点x0处不连续间断大致有以下几种情况如下图所示.
图甲表示的是fx在点x0处的左、右极限存在但不相等,即 fx不存在.
图乙表示的是fx在点x0处的左极限存在,而右极限不存在,也属于 fx不存在的情况.
图丙表示的是 fx存在,但函数fx在点x0处没有定义.
2.函数fx在点x0处连续必须具备以下三个条件:
函数fx在点x=x0处有定义;
函数fx在点x=x0处有极限;

教材练习-函数的极限与连续()

教材练习-函数的极限与连续()

第1章.函数.极限和连续(约20%)1.函数(1).理解函数的概念,会求函数的定义域.表达式及函数值,会作出1些简单的分段函数图像。

定义域的求法原则(1)分母不为零(2)(3)(4)(5)同时含有上述4项时,要求使各部分都成立的交集例1. 求的定义域:(1)(2)(3)【提升】例2. 当是函数的定义域,求的定义域。

例3.当是函数的定义域,求的定义域。

表达式.函数值例4.下列各对函数中,两个函数相等的是———————————( ) A.与B.与C.与D.与例5.(1)设,则=______________(2)设,则=______________奇偶性例1.讨论函数的奇偶性。

(1)(2)例2.设是定义在上的任意函数,试证(1)是偶函数。

(2)是奇函数。

【综合】.设函数的定义域是全体实数,则函数是———( ) A.单调减函数 B.偶函数C.有界函数 D.周期函数求反函数例1.(1)(2)3角函数3角函数有正弦函数.余弦函数.正切函数.余切函数.正割函数和余割函数。

其中正弦.余弦.正切和余切函数的图形见图1-4。

2.极限(1).理解极限的概念(只要求极限的描述性定义),能依据极限概念描述函数的变化趋势。

理解函数在1点处极限存在的充分必要款件,会求函数在1点处的左极限与右极限。

性质3(数列极限几个常用的结论):1.()。

2.().例.计算极限(1)(2)(3)(4) (5) (6)(7) (8) (9)(3).理解无穷小量.无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。

会比较无穷小量的阶(高阶.低阶.同阶和等价)。

会运用等价无穷小量替换求极限。

无穷小量的阶的比较(以下讨论的和都是自变量在同1变化过程中的无穷小,且,而也是在这个变化过程中的极限):(1)若,则称是比高阶的无穷小量,记作(时),也称是比低阶的无穷小量。

(2)若(),则称与为同阶无穷小量。

(3)若,则称与是等价无穷小量,记作或.(4).理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:,,并能用这两个重要极限求函数的极限。

高三数学 函数的极限与连续性

高三数学 函数的极限与连续性
出 a,b.
【规范解答】 ∵li m
x→1+
xx+-31-2=
li m
x→1+
(x-1)( x+3+2)
x+3-4
=li m ( x+3+2)=4,3 分
x→1+
又∵函数 f(x)在 R 上处处连续,
∴li m f(x)=li m f(x)=4,
x→1+
x→1+
且 li m f(x)=f(1),∴a+b=4,6 分
=li m
x→-2
x(xx-+31)=-25.
(2) 原 式 = li m
x→2π
sin x-sin xcos x
sin cos
xx-sin
sin3x
x

li
m
x→2π
sin3 x·cos x
= li m
x→2π
1-cos x sin2 x·cos x

li
m
x→2π
1
(1+cos x)(cos x)
x→+∞
x→-∞
x 趋向于无穷大时,函数 f(x)的极限是 a.记作
li m f(x)=a
___x→_∞__________.也记作当 x→∞时,f(x)→a.
对于常数函数 f(x)=C(x∈R),也有 li m f(x)=C.
x→∞
2.当 x→x0 时函数 f(x)的极限 当自变量 x 无限趋近于常数 x0(但 x≠x0) 时,如果函数 f(x)无限趋近于_一__个__常__数__a__,
• 【答案】 B
• 3.若f(x)在区间[a,b]上连续,则 下列说法中不正确的是( )
• A.在(a,b)内每点都连续
• B.在a点处左连续
• C.在b点处左连续
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的极限及函数的连续性(一)典型例题一、重点难点分析:①
此定理非常重要,利用它证明函数是否
存在极限。

②要掌握常见的几种函数式变形求极限。

③函数f(x)在x=x0处连续的充要条件
是在x=x0处左右连续。

④计算函数极限的方法,若在x=x0处连续,则。

⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题例1.求下列极
限①②③④解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程
x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的
连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连
续的,又,∴,
∴ f(x)在x=1处连续。


,从而f(x)在点
x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。

例4.已知函数
, (a,b为常数)。

试讨论a,b为何值时,f(x)在x=0处连续。

解析:∵且,∴,∴a=1, b=0。

例5.求下列函数极限①②解析:①。

②。

例6.设
,问常数k为何值时,有存在?解析:∵
,。

要使存在,只需,∴ 2k=1,故时,存在。

例7.求函数
在x=-1处左右极限,并说明在x=-1处是否有极限?解析:由
,,∵
,∴ f(x)在x=-1处极限不存在。

三、训练题:1.已知
,则2.的值是
_______。

3. 已知,则=______。

4.已知
,2a+b=0,求a与b的值。

5.已知
,求a的值。

参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0。

相关文档
最新文档