《自动控制》一二阶典型环节阶跃响应实验分析报告

合集下载

自动控制实验报告一-典型环节及其阶跃响应

自动控制实验报告一-典型环节及其阶跃响应

实验一环典型环节节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。

检查无误后接通电源。

4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击实验课题弹出实验课题参数窗口。

在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:YM A X- Y∞Ó%=——————×100%Y∞ T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态 值所需的时间值,便可得到T P 与T S 。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数:G (s )=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C; 3.积分环节 G(S)= 1/TS T=RC 4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。

自动控制原理实验报告

自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。

实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。

利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。

时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

自控实验报告实验总结

自控实验报告实验总结

一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。

为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。

本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。

二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。

三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。

通过改变电路参数,分析了参数对系统性能的影响。

2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。

3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。

4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。

四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。

在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。

在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。

在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。

2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。

在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。

3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。

通过调整校正装置的参数,可以使系统达到期望的性能指标。

4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。

比例环节的模拟电路及其传递函数示图2-1。

G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。

G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。

G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。

G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。

G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。

G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。

2、启动应用程序,设置T和N。

参考值:T=0.05秒,N=200。

3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。

实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。

2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。

实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。

2、进一步学习实验仪器的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。

自动控制原理实验

自动控制原理实验

自动控制原理实验报告册实验一典型环节及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。

2、掌握控制系统时域性能指标的测量方法。

二、实验公式1、比例环节G(S)= -R2/R12、惯性环节G(S)= -K/TS+1 K= R2/R1, T= R2C3、积分环节G(S)= -1/TS T=RC4、微分环节G(S)= -RCS5、比例+微分环节G(S)= -K(TS+1) K= R2/R1, T= R2C6、比例+积分环节G(S)= K(1+1/TS) K= R2/R1, T=R2C三、实验结果1、比例环节阶跃波、速度波、加速度波依次为:2、惯性环节阶跃波、速度波、加速度波依次为:3、积分环节阶跃波、速度波、加速度波依次为:4、微分环节阶跃波、速度波、加速度波依次为:5、比例+微分环节阶跃波、速度波、加速度波依次为:6、比例+积分环节阶跃波、速度波、加速度波依次为:实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比和无阻尼自然频率对系统动态性能的影响。

定量分析和与最大超调量和调节时间之间的关系。

2、进一步学习使用实验系统的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验公式1、超调量:%=(Y MAX-Y OO)/Y OO X100%2、典型二阶系统的闭环传递函数:(S)= (1) (s)=U2(s)/U1(s)=(1/T2)/(S2+(K/T)S+1/T2) (2)式中:T=RC, K=R2/R1由(1)(2)可得: Wn=1/T=1/RCE=K/2=R2/2R1三、实验结果R1=100K、R2=50KR1=100K、R2=100KR1=100K、R2=100KR1=50K、R2=200K实验三控制系统的稳定性分析一、实验目的1、观察系统的不稳定现象。

2、研究系统开环增益和时间常数对系统稳定性的影响。

二、实验公式开环传递函数:G(S)=10K/S(0.1S+1)(TS+1)式中:K1=R3/R2 R2=100K R3=0~500K T=RC R=100K C=1uf或C=0.1uf三.实验结果第一种情况:C=1uf R3=50r3=100kr3=150kr3=200kr3=250kr3=450k第二种情况:C=0.1uf R=50kr=100k200k300k实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

自控原理实验报告 实验一

自控原理实验报告 实验一

自动控制原理实验报告一、二阶系统的电子模拟及时域响应的动态测试学院姓名班级学号日期一、实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间Ts。

2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间Ts。

三、实验原理1.一阶系统:系统传递函数为:∅(S)=C(S)R(S)=KTS+1模拟运算电路如图1- 1所示:图1- 1由图1-1得U0(S)U i(S)=R2/R1R2CS+1=KTS+1在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:0.25s、0.5s、1s2.二阶系统:其传递函数为:ϕ(S)=C(S)R(S)=ωn2S+2ζωn S+ωn令ωn=1弧度/秒,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取R2C1=1 ,R3C2 =1,则R 4R 3=R 4C 2=12ξ及 ξ=12R 4C 2s T 理论及σ%理论由公式21-e %ξπξσ-=和)(8.05.3T ns <=ξξω及)(8.07.145.6T ns ≥-=ξωξ计算得到。

ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1,ζ=0.707四、实验步骤1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相;3. 检查线路正确后,模拟机可通电;4. 双击桌面的“自控原理实验”图标后进入实验软件系统。

5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:
1.比例环节(P) 阶跃相应曲线。

传递函数:G(S)=-R2/R1=K
说明:K为比例系数
(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.
(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.
〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。

2、惯性环节(T) 阶跃相应曲线及其分析。

传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C
说明:特征参数为比例增益K和惯性时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。

〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。

比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反
之亦然。

传递函数:G(S)= -l/TS ,T=RC
说明:特征参数为积分时间常数T。

(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。

(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。

〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。

积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。

4、比例积分环节(PI) 阶跃相应曲线及其分析。

传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C
说明:特征参数为比例增益K和积分时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

〖分析〗:比例积分环节的输出是在比例作用的基础上,再叠加积分作用,其输出量随时间的增加无限地增加。

但是实际上放大器都有饱和特性,积分后的输出量不可能无限增加。

5、微分环节(D) 阶跃相应曲线及其分析。

传递函数:G(S)=-TS T=RC1
说明:特征参数为微分时间常数T。

(2)、R=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:T=0.01。

〖分析〗:微分环节在输入信号维持恒值情况下,输出信号按指数规律随时间推移逐步下降,经过一段时间后,稳定输出为0。

实际微分环节不具备理想微分环节的特征,但是仍能够在输入跃变时,于极短时间内形成一个较强的脉冲输出。

其特征参数T表征了输出脉冲的面积。

6、比例微分环节(PD) 阶跃相应曲线及其分析。

传递函数:G(S)=K(TS+1) K= -R2/R1,T=R2C1。

说明:特征参数为比例增益K和微分时间常数T。

(1)、R2=R1=100KΩ , C2=0.01µF,C1=1µF;特征参数实际值:K= -1,T=0.1。

(2)、R2=R1=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:K= -1,T=0.01。

〖分析〗:比例微分环节是在微分作用的基础上,再叠加比例作用,其稳定输出与输入信号成比例关系。

二、典型二阶系统的模拟实验: 典型二阶系统的闭环传递函数为:
其中ζ 和ωn 对系统的动态品质有决定的影响。

1.典型二阶系统的模拟电路,并测量其阶跃响应:
二阶系统模拟电路图
其结构图为:
系统闭环传递函数为:
式中 T=RC ,K=R 2/R 1。

比较上面二式,可得:ωn =1/T=1/RC ζ=K/2=R 2/2R 1 。

2、画出系统响应曲线,再由ts 和Mp 计算出传递函数,并与由模拟电路计算的传递函数相比较。

2
2
2
2)()()(n
n n
w s w s w s R s C S ++==ξ
φ
(1)当R1=R=100KΩ,C=1uF,ωn=10rad/s时:
① R2=40KΩ,ζ=0.2,响应曲线:
〖分析〗:系统处于欠阻尼状态,0<ζ<1。

系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。

其振荡频率为ωd ,称为阻尼振荡频率
〖分析〗:系统处于欠阻尼状态,0<ζ<1。

系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。

其振荡频率为ωd ,称为阻尼振荡频率。

〖总结〗:由①②两个实验数据和仿真图形可知:对不同的ζ,振荡的振幅和频率都是不同的。

ζ越小,振荡的最大振幅愈大,振荡的频率ωd也愈大,即超调量和振荡次数愈大,调整时间愈长。

当ζ=0.707时,系统达到最佳状态,此时称为最佳二阶系统。

〖分析〗:系统处于临界阻尼状态,ζ=1。

系统的闭环根为两个相等的实数根,系统处于稳定状态,其单位阶跃响应为单调上升曲线,系统无超调。

④ R2=240KΩ,ζ=1.2,响应曲线:
〖分析〗:系统处于过阻尼状态,ζ>1。

系统的闭环根为两个不相等的实数根,系统处于稳定状态,其单位阶跃响应也为单调上升曲线,不过其上升的速率较临界阻尼更慢,系统无超调。

⑤ R2=0KΩ,ζ=0,响应曲线:
〖分析〗:系统处于无阻尼或零阻尼状态,ζ=0。

系统的闭环根为两个共轭虚根,系统处于临界稳定状态(属于不稳定),其单位阶跃响应为等幅振荡曲线,又称自由振荡曲线,其振荡频率为ωn ,且ωn=1/(RC)。

(2)当R=100KΩ,C=0.1uF,ωn=100rad/s时:
① R2=40KΩ,ζ=0.2,响应曲线:
〖分析〗:在相同阻尼比ζ的情况下。

可见ωn 越大,上升时间和稳定时间越短。

其稳定性也越好。

② R2=100KΩ,ζ=0.5,响应曲线:
③ R2=0KΩ,ζ=0,响应曲线:
【总结】:典型二阶系统在不同阻尼比(无阻尼自然频率相同)情况下,它们的阶跃响应输出特性的差异是很大的。

若阻尼比过小,则系统的振荡加剧,超调量大幅增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间。

一般情况下,系统工作在欠阻尼状态下。

但是ζ过小,则超调量大,振荡次数多,调节时间长,暂态特性品质差。

为了限制超调量,并使调节时间较短,阻尼比一般在0.4~0.8之间,此时阶跃响应的超调量将在25%~1.5%之间。

在相同阻尼比ζ的情况下。

可见ωn 越大,上升时间和稳定时间越短。

其稳定性也越好。

相关文档
最新文档