关于几何证明的教学反思

合集下载

沪教版八年级数学上册《几何证明》教案及教学反思

沪教版八年级数学上册《几何证明》教案及教学反思

沪教版八年级数学上册《几何证明》教案及教学反思一、教学目标1.了解几何证明的基本概念和方法;2.掌握基本的几何证明方法,如等腰三角形的性质、直角三角形的性质等;3.能够灵活运用所学的几何证明方法解决问题;4.培养学生的证明思维和可视化能力。

二、教学重难点重点1.等腰三角形的性质;2.直角三角形的性质;3.证明思维的培养。

难点1.多边形内部角和公式的证明;2.解决实际问题的证明方法。

三、教学内容1. 等腰三角形的性质知识点1.等腰三角形的定义;2.等腰三角形的性质:两底角相等,两腰相等;3.等腰三角形的判定方法。

教学过程1. 引入教师以生活中的实例引入,如城门上的双旗筒、音响演奏时的对称等,引导学生思考等腰三角形的性质。

2. 讲解教师通过图像和实例详细讲解等腰三角形的定义、性质和判定方法。

特别是两底角相等是等腰三角形最基本、最重要的性质,要重点讲解,让学生深刻理解。

3. 训练教师提供一些较为简单的练习题,让学生掌握等腰三角形的判定方法,培养学生发现、解决问题的能力。

2. 直角三角形的性质知识点1.直角三角形的定义;2.直角三角形的性质:勾股定理;3.直角三角形的判定方法。

教学过程1. 引入教师以勾股定理在实际应用中的例子引入,让学生认识到直角三角形的重要性。

2. 讲解教师通过图像和实例讲解直角三角形的定义、性质和判定方法。

特别是勾股定理是解决直角三角形问题的基本方法,要重点讲解,让学生深刻理解。

教师提供一些较为简单的练习题,让学生掌握勾股定理的应用,培养学生运用所学知识解决问题的能力。

3. 多边形内部角和公式的证明知识点1.多边形内部角和公式的定义;2.多边形内部角和公式的证明。

教学过程1. 引入教师以正多边形为例,引导学生思考如何计算它的内部角和。

通过引入正十二边形、正二十边形等一些例子,让学生感受到探究的乐趣。

2. 讲解教师通过推理、证明等方法讲解多边形内部角和公式的证明过程。

特别是对于较为困难的证明,要逐步分析,在保证理解的基础上进行深入探究。

解三角形的教学反思5篇

解三角形的教学反思5篇

解三角形的教学反思5篇第一篇:解三角形的教学反思解三角形的教学反思三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化,可看作前两节课的习题课。

本节课的重点是运用正弦定理和余弦定理处理三角形中的计算问题,难点是如何在理解题意的基础上将实际问题数学化。

在求解问题时,首先要确定与未知量之间相关联的量,把所求的问题转化为由已知条件可直接求解的量上来。

为了突出重点,突破难点,结合学生的学习情况,我是从这几方面体现的:我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能观察到此类题的考点及易错点。

这节课我试图根据新课标的精神去设计,去进行教学,试图以“问题”贯穿我的整个教学过程,努力改进自己的教学方法,让学生的接受式学习中融入问题解决的成份,企图把讲授式与活动式教学有机整合,希望在学生巩固基础知识的同时,能够发展学生的创新精神和实践能力,但我觉得自己还有如下几点做得还不够:①课堂容量中体来说比较适中,但由于学生的整体能力比较差,没有给出一定的时间让同学们进行讨论,把老师自己认为难的,学生不易懂得直接让优等生进行展示,学生缺乏对这几个题目事先认识,没有引起学生的共同参与,效果上有一定的折扣;②没有充分挖掘学生探索解题思路,对学生的解题思维只给出了点评,而没有引起学生对这一问题的深入研究,例如对于运用正弦定理求三角形的角的时候,出了给学生们常规方法外,还应给出老教材中关于三角形个数的方法,至少应介绍一下;③没有很好对学生的解题过程和方法进行点评,没起到“画龙点睛”的作用。

④本来准备了一道练习题,但没能很好把握时间,而放弃了,说明了对这堂课准备不足,缺乏对学生很好的了解。

高中数学必修五《解三角形》第二节余弦定理教学反思本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。

初中数学_三角形证明的复习教学设计学情分析教材分析课后反思

初中数学_三角形证明的复习教学设计学情分析教材分析课后反思

北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。

通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。

八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。

在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。

具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。

二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。

本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。

关于解析几何课程教学反思

关于解析几何课程教学反思

关于解析几何课程教学反思解析几何是高中数学中重要的一门学科,它旨在培养学生的空间思维能力和几何直观观察能力。

作为一名解析几何课程的教师,我一直致力于提高学生的学习效果和兴趣,通过课堂教学和反思实践,逐渐完善我的教学方法和策略。

一、教学目标的设定在每一节解析几何课程之前,我都会仔细考虑教学目标,并将其明确地告知学生。

教学目标的设定旨在帮助学生清晰了解本次课程的重点,从而能够有针对性地学习知识。

此外,我还通过设置具体的目标,比如提高学生的证明能力、培养学生的空间想象力等,来激发学生的学习兴趣和动力。

二、灵活多样的教学方法我意识到学生在解析几何方面的学习能力有所不同,因此,我采用了灵活多样的教学方法来满足不同学生的需求。

对于理论性的知识点,我会通过板书和讲解的方式进行讲解,以确保学生能够清晰地理解。

而对于实际应用方面的内容,我则借助课件和实例讲解的方式,让学生通过实际问题的解决来加深对知识的理解和运用。

三、积极互动的课堂氛围为了激发学生的学习兴趣和参与度,我非常注重课堂的互动氛围。

在课堂中,我经常利用提问和讨论的方式与学生互动,鼓励学生积极思考和表达自己的观点。

同时,我也鼓励同学们之间的合作与互助,通过小组讨论和团队解题的方式,促进学生之间的互动交流和合作学习。

四、课后作业的布置和点评课后作业是巩固和巩固学生所学知识的重要环节。

为了确保学生能够有效地完成作业并及时纠正误区,我会合理布置适量的练习题,并及时点评和讲解常见问题。

通过这种方式,我能够及时发现学生的学习困难并帮助他们解决,提高他们的学习效果和自信心。

五、定期课堂总结与复习为了巩固学生所学知识和加深对知识的理解,我定期进行课堂总结和复习。

在每个章节的结束,我会设计巩固性的测试和复习课,以检验学生对知识点的掌握情况,并及时对学生的学习情况进行评估和反馈。

通过这种方式,我能够及时发现学生的薄弱环节并采取相应措施进行辅导和提升。

总结起来,解析几何课程教学反思中,我重点关注教学目标的设定、灵活多样的教学方法、积极互动的课堂氛围、课后作业的布置和点评以及定期课堂总结与复习。

几何证明教学反思

几何证明教学反思

几何证明教学反思
教学内容反思:初二学生刚开始接触几何证明,对于他们来说,抽象难理解,刚开始时学习内容比较困难,对于几何证明的格式要求比较含糊,特别是推理过程会出现跳步和想当然,在证明的过程中,就必须要求学生写清每步推理的条件与结论,特别是写出的条件到结论之所以成立的理由,这样,每写一步,均明确其成立的理由,既不写多余的内容,也不漏写必须的步骤,养成严谨的推理习惯,以上问题改进的办法就是平时多练习,多提问,多反思,这样就能逐步提高和发展学生几何证明的能力.
教学过程反思:教学课时安排应该合理,符合实际,必要时进行灵活调整,一定要保证学生当堂消化,切记一味地追赶进度,而忽视了学生对知识的实际掌握程度。

在讲授新知识的过程中,注意知识点之间的衔接,以及学生对于数学转化思想的培养,变未知为已知,把没学进的转化为学过的,讲题过程中,老师应给学生做好示范,例如:做题的步骤,证明题的书写格式等,培养学生科学严谨的学习态度,最后,在每一节,每一章的学习结束后,要培养学生及时复习、巩固的好习惯,发现问题,及时解决,绝不能把问题堆积起来.
沧海无边,学海无境,教学有方,教无定法,只有不断地学习,反思,才能不断地进步和提高。

立体几何教学反思

立体几何教学反思

立体几何教学反思三篇篇一:立体几何教学反思今天我们结束了必修二的第一部分内容立体几何的学习,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。

之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学习立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。

所以感觉在解决问题的时候力不从心,无从下手。

其实,任何知识的学习都要遵循知识构建的结构和规律。

我们只要循着知识的发展和递进的规律进行学习和感悟总能有所收获。

课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。

只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。

必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。

从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关平行和垂直的性质和判定,对某些结论进行论证。

整个来说就是从整体到局部进行研究。

欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。

后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。

老师有宏观的认识才能影响学生有较高的认识。

篇二:立体几何教学反思今天我上了立体几何后,对这节课有许多的想法。

立体几何同学们在前面已经学习过,现在我们是一轮复习。

今天,我们复习立体几何,却没有达到我预计的目的,主要表现在以下几个方面:一、课堂气氛不活跃立体几何要说难也难,要说简单也简单,但涉及的知识比较多,定理定义比较多。

【最新推荐】初中几何证明教学反思-实用word文档 (6页)

【最新推荐】初中几何证明教学反思-实用word文档 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初中几何证明教学反思【导语】几何,就是研究空间结构及性质的一门学科。

它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。

下面关于几何证明教学反思,希望可以帮到您!篇一:几何图形教学反思这节课是人教版七年级上第四章《多姿多彩的图形》第一节,我们知道数学来源与生活,而且数学与生活也密切相关。

数学教学应培养学生自主探究学习的能力,自主探究不仅是知识的构建与运用、技能的形成与巩固,也包含了生活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成。

因此,在本节课的教学中我从课件展示生活中存在的大量图形入手,引出了几何图形的概念,在复习学生前两个学段学习的几何图形的基础上,引出了立体图形与立体图形的概念。

结合实例,使学生感受到几何图形与我们的生活息息相关,了解图形与几何知识在实际生活中用处很大,激发了学生的学习兴趣。

在教学中以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高。

通过本课的教学,我感到比较成功的地方有以下几个方面:1、利用课件展示图片,联系生活实际,激发学习动机,调动学生的积极性。

使学生以最佳状态投入到学习中去。

例如:给学生(多媒体课件展示)实物:茶杯(圆柱形)、苹果、乒乓球、漏斗、长方形和正方形包装盒让学生观察、思考、联想,逐一引导学生积极回答,点评后归纳出长方体、正方体、球、圆柱、圆锥等基本的立体图形。

2、面向全体学生,充分发挥学生的主体作用,让学生自觉参与到课堂中来。

课前,我让学生自己制作了长方体、六棱柱、圆柱体、圆锥、四棱锥等立体模型。

通过动手操作培养了学生动手操作能力同时也加深了学生对立体图形的认识。

初中数学_三角形内角和定理的证明教学设计学情分析教材分析课后反思

初中数学_三角形内角和定理的证明教学设计学情分析教材分析课后反思

《三角形内角和定理的证明》教学设计教学目标1、掌握”三角形内角和定理“的证明及其简单应用.2、通过一题多解,一题多变等,初步体会思维的多向性.教学重点:三角形内角和定理的证明.教学难点:三角形内角和定理的证明方法.教学过程一、动画情境,引入新课上学期,我们学习了三角形内角和定理,请问内容是什么?生:三角形的三个内角的和等于180゜.问:180゜你联想到了什么?生:平角180゜;平行线形成的同旁内角的和是180゜.请同学们认真观察这个动画:Flash动画截图:二、讲授新课1、创设情境把动画进行二次再现:问:从这个动画当中,你发现了什么?你受到了什么启示?生:观察动画,我们有如下启示:1、可以利用平行线实现角的“移动”.2、借助三角形的顶点“移动”角,可以少“移动”一个角.2、合作探究问:动画中是如何利用平行线实现角的移动的?生:借助顶点C,利用平行线实现角的“移动”:两直线平行,内错角相等.同位角相等.问:从动画的启示得知:要证明定理,我们必须做辅助线,这里我们如何做辅助线呢?生:作BC延长线CD ,过点C作射线CE∥BA. (学生演示)注意:1、这里的CD,CE称为辅助线,通常辅助线画成虚线.2、所作的辅助线是证明的一个重要组成部分,要在证明时首先叙述出来.请同学们把根据动画启示得到的方法的证明过程写下来。

(一生板演)已知:如图,△ABC.求证:∠A +∠B +∠C=180°证明:作B C延长线CD。

过点C作射线CE∥B A则∠ACE=∠A﹙两直线平行,内错角相等﹚∠DCE =∠B ﹙两直线平行,同位角相等﹚∵ ∠BCA +∠ACE +∠ECD =180°﹙平角定义﹚∴ ∠BCA +∠A +∠B = 180°﹙等量代换﹚问:添加辅助线有什么目的?生:1、利用平行线实现角的“移动”.2、构造平角或同旁内角.问:还有其他证明方法吗?请把你们预习成果在小组内交流.(3分钟后)各个小组组长互相交流每个小组汇总的方法,每人证明一种,尽量不重复,板演在后面黑板上.已知:如图,△A B C.求证:∠A +∠B +∠C=180°多种添加辅助线的证明方法:(学生尽可能的寻找多种方法)方法二:把三个角“凑”到A处,他过点A作直线PQ∥BC.证明:过点A作PQ∥BC,则∠1=∠B(两直线平行,内错角相等),∠2=∠C(两直线平行,内错角相等),又∵∠1+∠2+∠3=1800 (平角的定义),∴ ∠BAC+∠B+∠C=1800 (等量代换).注意:所作的辅助线是证明的一个重要组成部分,要在证明时首先叙述出来. 方法三:证明:过A作AE∥BC,∴∠B=∠BAE(两直线平行,内错角相等)∠EAB+∠BAC+∠C=180°(两直线平行,同旁内角互补)∴∠B+∠C+∠BAC=180°(等量代换)方法四:证明:过点P作PQ ∥ AC交AB于Q点,作PR ∥ AB交AC于R点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于几何证明的教学反思
门坎初中张宇
关于平行四边形,矩形,菱形,正方形的研究,我们的教学采用合情推理与演绎推理相结合的方法,在动态的变换过程中,探索发现这些图形的性质和判定方法,进而通过演绎推理加以证明。

让学生经历“探索——猜想与归纳——证明”的全过程,从而丰富教学活动经验,提高数学学习能力。

教学案例:矩形的判定方法的学习。

一、回顾:
1、矩形的定义:有一个直角的平行四边形叫做矩形。

2、矩形是特殊的平行四边形,具有以下特点:
(1)四个角都是直角;
(2)两条对角线相等;
(3)既是中心对称图形又是轴对称图形。

——通过这些特点,结合定义判定矩形的方法
二、新课:矩形的判定(探索---猜想与归纳---证明)
判定一:有三个角是直角的四边形是矩形。

判定二:对角线相等的平行四边形是矩形。

三.判定的运用。

(书上104-105)例题4,5,6.
通过例题的练习发现,常见的证明中有这样两类问题:
(1)证明:四边形是矩形-----(判定一)
(2)证明:平行四边形是矩形-----(定义及判定二)
提出问题:是否证明四边形是矩形就只能运用判定一?(学生思考并小结)
猜想:能否按下列流程来证明?
小结:证明一个四边形是矩形的两种思路:
(1)应用判定一。

直接证明四边形是矩形。

(2)先证明四边形是平行四边形,再应用定义及判定二证明平行四边形是矩形。

三、练习
通过这一案例不难看出,“探索---猜想与归纳---证明”这一学习过程是解决几何证明的一种重要方法,而这一过程不是只在某几道题,某几类问题中适用,而是贯穿整个教学过程中;同时这一方法对学生来说也不是一朝一夕就能完全掌握。

因此只有在教学中的每一个环节中贯彻这一过程,才能真正的让同学们掌握这一解决问题的重要方法。

相关文档
最新文档