[北京交通大学信号与系统课件]第七章连续时间信号与系统的S域分析

合集下载

第四章 连续时间信号与系统的s域分析 (1)

第四章 连续时间信号与系统的s域分析 (1)

F s

0
f t e st dt
其中,s j 称为复频率
§ 4-1 拉普拉斯变换
1.拉普拉斯变换的定义 F s 实际上就是指数加权后的因果信 t e 号 f t , 0 t ,的FT。因此,求F s 的 t e f t ,并进而得到因果 逆FT,就可得到 信号f t ,即 f t e 1 F s e d F s e ds 2 2 j

0
e
f t dt

这使得增长速度不快于指数增长函数的信号都存在LT。使 LT收敛的取值范围称为LT的收敛域。 拉普拉斯变换的缺点是:不象傅里叶变换有明确的物理意 义,它没有明确的物理意义。复频率更多的是数学意义。
§ 4-1 拉普拉斯变换
2.典型信号的拉普拉斯变换 (1)单位冲激信号
f1 t u t f2 t u t F1 s F2 s
对于有冲激响应 ht 的因果LTI系统而言, 因果激励 f t 产生的零状态响应为yt ht f t 在s域中有 Y s H s F s 其中,系统函数 H s 是系统冲激响应 ht 的LT。
n t
n!
te
t
u t
s
1
2
t e
2
t
u t
s 3
2
§ 4-2 拉普拉斯变换的性质
n t t 例4-11 求因果指数加权正弦信号 e cos0 t ut
和 t n e t sin0 t ut 的LT。
t e
§ 4-1 拉普拉斯变换
1.拉普拉斯变换的定义


尽管奇异函数的使用扩大了傅里叶变换的应用范 围,仍有不少常见信号,例如指数增长因果信号, 不存在傅里叶变换。为了进一步扩大傅里叶变换 应用范围,先把信号进行恰当的指数衰减,然后 对它进行傅里叶变换。这就产生了如下定义的拉 普拉斯变换(Laplace Transformation,简写 LT)。 因果信号f t , 0 t 的拉普拉斯变换 F s 定义为

连续时间信号与系统的S域分析课件

连续时间信号与系统的S域分析课件

VS
频谱分析
在信号处理中,频谱分析是了解信号特性 的重要手段。通过s域分析,可以将时域 信号转换为频域信号,实现对信号的频谱 分析,了解信号的频率成分和功率分布等 特性。
THANKS.
系统的实现与仿真
控制系统硬件实现
根据系统设计要求,选择合适的硬件设备,如 传感器、执行器、控制器等,搭建控制系统。
控制系统软件实现
编写控制算法程序,实现控制系统的软件部分。
系统仿真
通过仿真软件对控制系统进行模拟实验,验证系统设计的正确性和有效性。
s域分析的用
05
在通信系统中的应用
信号传输
在通信系统中,信号经常需要经过长距离传输。在传输过程中,信号会受到各种 噪声和干扰的影响,导致信号质量下降。通过s域分析,可以对信号进行滤波、 均衡等处理,提高信号的抗干扰能力,保证信号的传输质量。
调制解调
在通信系统中,调制解调是实现信号传输的关键技术。通过s域分析,可以对信 号进行调制和解调,将低频信号转换为高频信号,或者将高频信号转换为低频信 号,实现信号的传输和接收。
在控制系统中的应用
系统稳定性分析
在控制系统中,系统的稳定性是非常重要的。通过s域分析,可以对系统的极点和零点进行分析,判断系统的稳 定性,以及系统对外部干扰的抑制能力。
稳定性分类
根据系统对输入信号的响应速度 和超调量,可以将系统的稳定性 分为渐近稳定、指数稳定和超调 稳定等类型。
系的s域
04
系统的状态空间表示
状态空间模型
描述系统的动态行为,包括状态方程和输出 方程。
输出方程
描述系统输出与状态变量和输入之间的关系。
状态方程
描述系统内部状态变量的变化规律。

[北京交通大学信号与系统课件]第七章连续时间信号与系统的S域分析

[北京交通大学信号与系统课件]第七章连续时间信号与系统的S域分析

六拉普拉斯反变换部分分式展开法计算拉普拉斯反变换方法 1 利用复变函数中的留数定理 2 采用部分分式展开法 [例] 采用部分分式展开法求下列的反变换解 Fs为有理真分式极点为一阶极点解解 Fs为有理假分式将Fs化为有理真分式归纳 1 Fs为有理真分式m n极点为一阶极点 2 Fs为有理真分式 m n极点为r重阶极点 3 Fs为有理假分式 m n 为真分式根据极点情况按1或2展开[例] 求下列Fs的反变换解解令s2q 解 k2 k3用待定系数法求信号的复频域分析小结信号的复频域分析实质是将信号分解为复指数信号的线性组合信号的复频域分析使用的数学工具是拉普拉斯变换利用基本信号的复频谱和拉普拉斯变换的性质可对任意信号进行复频域分析复频域分析主要用于线性系统的分析连续系统响应的复频域分析微分方程描述系统的S域分析电路的S域模型微分方程描述系统的S域分析时域微分方程时域响应yt S域响应Ys 拉氏变换拉氏反变换解微分方程解代数方程 S域代数方程二阶系统响应的S域求解已知 f ty0-y 0- 求yt 1 经拉氏变换将域微分方程变换为域代数方程 2 求解s域代数方程求出Yxs Yf s 3 拉氏反变换求出响应的时域表示式求解步骤 Yxs Yfs yt a1yt a2y t 系统的微分方程为 yt5yt6yt2ft8ft 激励fte-tut初始状态y0-3 y0-2求响应yt 例1 解对微分方程取拉氏变换可得电路的s域模型时域复频域 RLC串联形式的s域模型 [例2]图示电路初始状态为vc0--E 求电容两端电压 vct 解建立电路的s域模型由s域模型写回路方程求出回路电流电容电压为系统函数Hs与系统特性系统函数Hs 系统函数的定义Hs与ht的关系s域求零状态响应求Hs的方法零极点与系统时域特性零极点与系统频响特性连续系统的稳定性一系统函数Hs 1定义系统在零状态条件下输出的拉氏变换式与输入的拉式变换式之比记为Hs 2 Hs与ht的关系 ht t yft tht 一系统函数Hs 3求零状态响应 4求Hs的方法①由系统的冲激响应求解HsL[ht] ③由系统的微分方程写出Hs ht Hs ft yftftht Fs YfsFsHs ②由定义式第七章连续时间信号与系统的S域分析连续时间信号的复频域分析连续时间系统的复频域分析连续时间系统函数与系统特性连续时间系统的模拟 71 连续时间信号的复频域分析从付立叶变换到拉普拉斯变换单边拉普拉斯变换及其存在的条件常用信号的拉普拉斯变换拉普拉斯变换的性质拉普拉斯变换反变换一从傅里叶变换到拉普拉斯变换f teatut a 0的傅里叶变换不存在将ft乘以衰减因子推广到一般情况令s j 定义对 fte-t求傅里叶反变换可推出拉普拉斯正变换拉普拉斯反变换拉普拉斯变换符号表示及物理含义符号表示物理意义信号ft可分解成复指数est的线性组合 Fs为单位带宽内各谐波的合成振幅是密度函数 s是复数称为复频率Fs称复频谱关于积分下限的说明二单边拉普拉斯变换及其收敛条件积分下限定义为零的左极限目的在于分析和计算时可以直接利用起始给定的0-状态单边拉普拉斯变换单边拉普拉斯变换的收敛域对任意信号ft 若满足上式则 ft应满足 0 拉氏变换存在的充要条件为绝对可积 0称收敛条件收敛区 j 0 0称收敛坐标 S平面右半平面左半平面 [例] 计算下列信号拉普拉斯变换的收敛域分析求收敛域即找出满足的取值范围收敛域为全S平面不存在 1指数型函数e t ut 三常用信号的拉普拉斯变换同理正弦信号 2 阶跃函数ut 4 t的正幂函数t nn为正整数根据以上推理可得四拉普拉斯变换与傅里叶变换的关系 [例] 计算下列信号的拉普拉斯变换与傅里叶变换解时域信号傅里叶变换拉普拉斯变换不存在结论 1当收敛域包含纵轴时拉普拉斯变换和傅里叶变换均存在2当收敛域不包含纵轴时拉普拉斯变换存在而傅里叶变换不存在 3当收敛域的收敛边界位于纵轴时拉普拉斯变换和傅里叶变换均存在五拉普拉斯变换的性质 1线性特性若则 2展缩特性若则 3时移右移特性若则例题p241 4卷积特性 5乘积特性乘积性质两种特殊情况 1 指数加权性质s域平移特性若则 2线性加权性质s域微分特性 6微分特性 [证明] 重复应用微分性质求得若ft0 t 0则有 f r0 - 0r012 7积分特性若 f -10- 则有 [证明] 其中右边第一项第二项按部分分式得 8初值定理和终值定理若注意事项p247。

信号与线性系统分析-第7章

信号与线性系统分析-第7章
jω j2 -1 0 -j2
2
σ
根据初值定理,有
Ks h(0 ) lim sH ( s ) lim 2 K s s s 2 s 5
2s H ( s) 2 s 2s 5
第 3页
二、系统函数H(· )与系统的因果性
因果系统是指:系统的零状态响应yzs(.)不会出现于f(.)
第 13 页
§7.2
一、稳定系统的定义
系统的稳定性
一个系统,若对任意的有界输入,其零状态响应 也是有界的,则称该系统是有界输入有界输出(Bound Input Bound Output------ BIBO)稳定的系统,简称为稳 定系统。 即:若系统对所有的激励 |f(.)|≤Mf ,其零状态响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。
③ H(s)在虚轴上的高阶极点或右半平面上的极点,其 所对应的响应函数都是递增的。 即当t→∞时,响应均趋于∞。系统稳定?
第 8页
复习:s域与z域的关系
z=esT
s
1 ln z 式中T为取样周期 T
如果将s表示为直角坐标形式 s = +j ,将z表示为 极坐标形式 z = ej = eT , = T 由上式可看出: s平面的左半平面(<0)--->z平面的单 位圆内部(z=<1) s平面的右半平面(>0)--->z平面的单位圆外部(z=>1)
第 6页
系统稳定性问题?
系统的稳定性如何?
系统稳定:若系统对所有的激励 |f(.)|≤Mf ,其零状态 响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。 (2)在虚轴上 (a)单极点p=0或p12=±jβ, 则响应为Kε(t)或Kcos(βt+θ)ε(t)→稳态分量 (b) r重极点,相应A(s)中有sr或(s2+β2)r,其响应函数为

信号与系统课件:连续信号与系统的频域分析

信号与系统课件:连续信号与系统的频域分析

双边谱指的是当 n 为任何值时( -∞< n <∞ ), 和 θn 随频
率 nω 0变化的图形。
连续信号与系统的频域分析
若某周期信号傅里叶级数为
连续信号与系统的频域分析

图 3.3-1 周期信号频谱
连续信号与系统的频域分析
【例 3.3-1 】 试画出图 3. 2-1 所示的周期方波信号
的单边频谱和双边频谱。
A 2 =8 , A 3 =0 , A 4 =2 ,相位 φ 1 =-180° , φ 2 =0° ,
φ 3 =0° , φ 4 =90° 。于是 f ( t )的单边频谱如图 3. 3 4 所
示。
连续信号与系统的频域分析
图 3.3-4 信号 f ( t )的单边谱
连续信号与系统的频域分析
由单边频谱和双边频谱的关系,可得 f (t )的双边频谱如
种简洁形式:
连续信号与系统的频域分析
两种表达式中的系数的关系为
由式( 3. 2-5 )可知, A n 是 n 的偶函数; φ n 是 n 的奇函数。
连续信号与系统的频域分析
也可由式(3. 2-4 )得到式( 3. 2-2 ),系数的关系为
连续信号与系统的频域分析
式( 3. 2-4 )表明,任意周期信号可以分解为直流和许
指函数 ej ωt 为基本信号,将任意连续信号分成一系列不同频
率的正弦信号或虚指函数信号线性组合,并加分析。对周期
信号的分解工具是傅里叶级数,对非周期信号的分解工具是
傅里叶变换。利用信号的正弦分解思想,系统的响应可看做
各不同频率正弦信号产生响应的叠加,这种思想将时域映射
到频域,揭示了信号内在的频率特性以及信号时间特性与频

信号与系统PPT课件(共9章)第2章连续时间信号的时域分析可修改全文

信号与系统PPT课件(共9章)第2章连续时间信号的时域分析可修改全文
17
2.3 奇异信号
在信号与系统分析中,经常要遇到函数本身有不连续 点或其导数与积分有不连续点的情况,这类函数统称为奇 异函数或奇异信号。
1. 单位斜变信号
斜变信号指的是从某一时刻开始随时间正比例增长的 信号。其表达式为
R(t)
t 0
t0 t0
(2.2 1)
R(t)
R(t
t0
)
t 0
t0
t t0 t t0
0 cos
e jt cos t j sin t -1 12
2.2 常用连续时间信号
3. Sa(t)函数(抽样函数)
所谓抽样函数是指sin t与 t 之比构成的函数,以符号
Sa(t)表示 Sa(t) sin t t
波形如图:
(2.2 5)
13
2.2 常用连续时间信号
Sat 的性质:
(1) Sat Sa(t) 偶信号
6
2.2 常用连续时间信号
1. 实指数信号 2. 正弦信号 3. 抽样函数 4. 复指数信号 重点:典型确定性信号的描述 难点:复指数信号,抽样信号
7
2.2 常用连续时间信号
下面,我们将给出一些典型信号的表达式和波形。
1. 指数信号 指数信号的表达式为
f (t) Aet
(2.2 1)
f (t) Aet ( 0)
34
2.4 信号的运算
1. 信号的加减 2. 信号的乘法和数乘 3. 信号的反褶、时移、尺度变换 4. 信号的微分与积分运算 5. 信号的卷积
重点:信号的尺度变换,信号的卷积积分 难点:信号时移、反褶、尺度变换同时都有的情况
35
2.4 信号的运算
1. 信号的加减
两个信号的和(或差)仍然是一个信号,它在任意 时刻的值等于两信号在该时刻的值之和(或差),即

《信号与系统》连续时间信号与系统的S域分析

《信号与系统》连续时间信号与系统的S域分析

f2(t)
1
2
j
F1(s) F2 (s)
X

十.对s微分
24 页
若L f (t) F(s),则
L tn
f
(t)
(1)n
dn F(s) d sn
常用形式:Ltf (t) d F(s)
ds
n取正整数
十一.对s积分
若L
f
(t)
F ( s),则L
f
(t) t
s
F(s)d
s
X
信号与系统
VC
(s)
1 C
IC (s) s
iC (1) (0 s
)
1
1
sC IC (s) s vC (0 )
1
C
i (1)
C
(0
)
1 C
0
iC
(
)
d
vC (0 )
X

电容元件的s 域模型
16 页
iC t C vC t
1 vC (t) C
t
ic ( )d
VC
(s)
1 C
IC (s) s
4.4 拉普拉斯逆变换
(1)利用像函数直接求原函数 (2)部分分式法 (3)利用留数定理——围线积分法 (4)数值计算方法——利用计算机
信号与系统
部分分式法 求拉普拉斯逆变换
* 找F(s)的极点 * 部分分式展开法 * 求拉普拉斯逆变换 * 两种特殊情况
拉氏逆变 换的过程

一.找F(s)的极点
27 页
X

五.s域平移
19 页
若若LL ff ((tt)) FF((ss),),则则LLf (ft()te)eαtαt F(Fs (sα) α) 若L f (t) F(s),则 L f (t)eαt F(s α)

信号与系统的S域分析

信号与系统的S域分析

三、常用信号的拉普拉斯变换
3. (t ),
0
( n)
(t )
st
L[ (t )] (t )e dt 1
' 0 st
Re(s) , 即整个s平面
d st L[ (t )] ' (t )e dt (e ) t 0 s ds
1
F(s)为单位带宽内各谐波的合成振幅,是密度函数。 S 是复 数,称为复频率,F(s)称复频谱。 F(j)是频谱密度函数,简称频谱。
如果仅考虑信号加入之后 t≧0 的情况,就成为单边拉氏变换 (下式为正变换式,其反变换式与双边拉氏反变换式相同) :
LT [ f (t )] F ( s) f (t )e st dt
7 信号与系统的S域分析 p 10
lim f (t )e
t
s t
0 ,s s 0
二、单边拉普拉斯变换及其存在的条件
拉氏变换与单边拉氏变换存在的充分条件
lim f (t )e s t 0
t
,s s 0
右半平面 收敛域(ROC)
左半平面
虚部Hale Waihona Puke jS平面s0
s
实部
s0 称绝对收敛坐标,s s0 称收敛条件(仅针对实部Re(s)而言)。
7 信号与系统的S域分析 p 14
三、常用信号的拉普拉斯变换
1. 指数型函数 e t u(t)
cos 0 t u (t )

LT
正弦型信号
e
j 0 t
1 1 1 s ( ) 2 2 2 s j0 s j0 s 0
e 2
j 0 t
u (t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六拉普拉斯反变换部分分式展开法计算拉普拉斯反变换方法 1 利用复变函数中的留数定理 2 采用部分分式展开法 [例] 采用部分分式展开法求下列的反变换解 Fs为有理真分式极点为一阶极点解解 Fs为有理假分式将Fs化为有理真分式归纳 1 Fs为有理真分式m n极点为一阶极点 2 Fs为有理真分式 m n极点为r重阶极点 3 Fs为有理假分式 m n 为真分式根据极点情况按1或2展开[例] 求下列Fs的反变换解解令s2q 解 k2 k3用待定系数法求信号的复频域分析小结信号的复频域分析实质是将信号分解为复指数信号的线性组合信号的复频域分析使用的数学工具是拉普拉斯变换利用基本信号的复频谱和拉普拉斯变换的性质可对任意信号进行复频域分析复频域分析主要用于线性系统的分析连续系统响应的复频域分析微分方程描述系统的S域分析电路的S域模型微分方程描述系统的S域分析时域微分方程时域响应yt S域响应Ys 拉氏变换拉氏反变换解微分方程解代数方程 S域代数方程二阶系统响应的S域求解已知 f ty0-y 0- 求yt 1 经拉氏变换将域微分方程变换为域代数方程 2 求解s域代数方程求出Yxs Yf s 3 拉氏反变换求出响应的时域表示式求解步骤 Yxs Yfs yt a1yt a2y t 系统的微分方程为 yt5yt6yt2ft8ft 激励fte-tut初始状态y0-3 y0-2求响应yt 例1 解对微分方程取拉氏变换可得电路的s域模型时域复频域 RLC串联形式的s域模型 [例2]图示电路初始状态为vc0--E 求电容两端电压 vct 解建立电路的s域模型由s域模型写回路方程求出回路电流电容电压为系统函数Hs与系统特性系
统函数Hs 系统函数的定义Hs与ht的关系s域求零状态响应求Hs的方法零极点与系统时域特性零极点与系统频响特性连续系统的稳定性一系统函数Hs 1定义系统在零状态条件下输出的拉氏变换式与输入的拉式变换式之比记为Hs 2 Hs与ht的关系 ht t yft tht 一系统函数Hs 3求零状态响应 4求Hs的方法①由系统的冲激响应求解HsL[ht] ③由系统的微分方程写出Hs ht Hs ft yftftht Fs YfsFsHs ②由定义式第七章连续时间信号与系统的S域分析连续时间信号的复频域分析连续时间系统的复频域分析连续时间系统函数与系统特性连续时间系统的模拟 71 连续时间信号的复频域分析从付立叶变换到拉普拉斯变换单边拉普拉斯变换及其存在的条件常用信号的拉普拉斯变换拉普拉斯变换的性质拉普拉斯变换反变换一从傅里叶变换到拉普拉斯变换f teatut a 0的傅里叶变换不存在将ft乘以衰减因子推广到一般情况令s j 定义对 fte-t求傅里叶反变换可推出拉普拉斯正变换拉普拉斯反变换拉普拉斯变换符号表示及物理含义符号表示物理意义信号ft可分解成复指数est的线性组合 Fs为单位带宽内各谐波的合成振幅是密度函数 s是复数称为复频率Fs称复频谱关于积分下限的说明二单边拉普拉斯变换及其收敛条件积分下限定义为零的左极限目的在于分析和计算时可以直接利用起始给定的0-状态单边拉普拉斯变换单边拉普拉斯变换的收敛域对任意信号ft 若满足上式则 ft应满足 0 拉氏变换存在的充要条件为绝对可积 0称收敛条件收敛区 j 0 0称收敛坐标 S平面右
半平面左半平面 [例] 计算下列信号拉普拉斯变换的收敛域分析
求收敛域即找出满足的取值范围收敛域为全S平面不存在 1指数
型函数e t ut 三常用信号的拉普拉斯变换同理正弦信号 2 阶跃
函数ut 4 t的正幂函数t nn为正整数根据以上推理可得四拉普拉
斯变换与傅里叶变换的关系 [例] 计算下列信号的拉普拉斯变换与
傅里叶变换解时域信号傅里叶变换拉普拉斯变换不存
在结论 1当收敛域包含纵轴时拉普拉斯变换和傅里叶变换均存在
2当收敛域不包含纵轴时拉普拉斯变换存在而傅里叶变换不存在 3
当收敛域的收敛边界位于纵轴时拉普拉斯变换和傅里叶变换均存
在五拉普拉斯变换的性质 1线性特性若则 2展缩特性若则 3
时移右移特性若则例题p241 4卷积特性 5乘积特性乘积性质两
种特殊情况 1 指数加权性质s域平移特性若则 2线性加权性质s
域微分特性 6微分特性 [证明] 重复应用微分性质求得若ft0 t 0
则有 f r0 - 0r012 7积分特性若 f -10- 则有 [证明] 其中右边第一项第二项按部分分式得 8初值定理和
终值定理若注意事项p247。

相关文档
最新文档