神经生物学总结
神经生物学知识点总结

神经生物学知识点总结神经生物学是研究神经系统结构、功能和发育的学科,涵盖了广泛的知识领域,包括神经细胞、神经网络、神经递质等。
本文将对神经生物学的一些重要知识点进行总结。
1. 神经细胞结构与功能神经细胞是神经系统的基本组成单位,主要包括细胞体、树突、轴突和突触等部分。
细胞体内含有细胞核和细胞器,负责细胞的代谢和调控活动。
树突负责接收其他神经细胞的输入信息,轴突负责传递神经冲动,而突触是神经元之间的连接点,通过神经递质传递信号。
2. 神经系统的分层结构神经系统可以分为中枢神经系统(包括大脑和脊髓)和周围神经系统(包括神经和神经节)。
中枢神经系统负责整体的调控和控制,而周围神经系统则将信息传递到中枢神经系统或从中枢神经系统传递出来。
3. 神经冲动的传导神经冲动是神经细胞内部产生的电信号,可以在神经细胞内传导,也可以通过神经元之间的突触传递。
神经冲动的传导是由离子通道的开闭所控制的。
当神经冲动到达轴突末端时,会释放出神经递质,通过突触传递到下一个神经元。
4. 突触可塑性突触可塑性是指神经元之间连接强度的可变性。
它可以通过长期增强或长期抑制来增加或减少神经元之间的连接。
突触可塑性在学习和记忆等认知功能中起重要作用。
5. 神经递质神经递质是神经冲动在突触传递时释放的化学物质,它可以兴奋或抑制相邻神经元。
常见的神经递质有乙酰胆碱、多巴胺和谷氨酸等。
神经递质的释放和清除是神经信号传递过程中不可或缺的环节。
6. 神经发育神经发育是指神经系统在胚胎和幼年阶段形成和成熟的过程。
这个过程中包括神经细胞的生成、迁移和分化,以及神经突触的形成和重塑。
神经发育的异常可能导致神经系统功能障碍。
7. 神经系统疾病神经系统疾病包括神经退行性疾病(如帕金森病和阿尔茨海默病)、神经感染性疾病(如脑膜炎和脊髓灰质炎)以及神经精神疾病(如抑郁症和精神分裂症)等。
这些疾病的发生和发展与神经生物学的异常有关。
总结:神经生物学牵涉到神经细胞的结构与功能、神经系统的分层结构、神经冲动的传导、突触可塑性、神经递质、神经发育以及神经系统疾病等多个方面。
神经生物学综述(一)2024

神经生物学综述(一)引言概述:神经生物学是研究神经系统的结构、功能和发展的科学领域。
它涉及到神经元的形成、突触传递、信号转导以及神经元网络的形成和塑性等方面。
本文将从神经元的结构和功能、突触传递、神经信号转导、神经元网络的形成和塑性以及神经系统的发展等五个大点来综述神经生物学的相关内容。
正文:一、神经元的结构和功能1. 神经元的基本结构:细胞体、树突、轴突等组成.2. 神经元的功能:信息传递、信息处理、动作生成等.3. 神经元的特殊功能:感觉神经元、运动神经元、中间神经元等.4. 神经元的电活动:动作电位、静息电位等.5. 神经元的兴奋性和抑制性:阈值、兴奋性传导等.二、突触传递1. 突触的结构:突触前膜、突触间隙、突触后膜等.2. 突触传递的机制:神经递质的释放、突触后受体的作用等.3. 兴奋性突触和抑制性突触:神经递质的种类和功能.4. 突触可塑性:长时程增强、长时程抑制等.5. 突触传递的调节:自动脉冲生成系统、突触可塑性调节系统等.三、神经信号转导1. 神经递质的合成和释放:合成途径、细胞内运输等.2. 神经受体的结构和分类:离子通道受体、酪氨酸激酶受体等.3. 第二信使的作用:细胞内信号转导的重要分子.4. 神经调节物质的作用:内源性神经肽等.5. 神经信号传递的异常和疾病:神经精神疾病、神经退行性疾病等.四、神经元网络的形成和塑性1. 神经元网络的发育:轴突导向、突触形成等.2. 神经突触的稳定性和可塑性:突触连接的稳定性、突触可塑性的调节等.3. 学习和记忆的神经机制:突触可塑性的重要作用.4. 神经元网络的重构和修复:再生神经学的研究进展.5. 神经网络的计算和信息处理:神经网络模型的发展与应用.五、神经系统的发展1. 胚胎发育中的神经系统:神经管的形成、神经细胞的迁移等.2. 神经系统在成体中的重建和再生:神经干细胞的应用.3. 神经生长因子的作用:神经细胞发育的重要分子调控.4. 神经系统的运动学和感受机制:脊髓运动神经元的发育、感觉神经元的分化等.5. 神经系统的功能成熟和稳定:大脑发育的关键时期、神经元成熟的调控等.总结:综上所述,神经生物学综述了神经元的结构和功能、突触传递、神经信号转导、神经元网络的形成和塑性以及神经系统的发展等方面的内容。
神经生物学知识点

神经生物学知识点神经生物学是研究神经系统结构、功能和作用的学科,涉及到神经元、突触、神经传递等一系列生物学过程。
本文将介绍一些重要的神经生物学知识点,帮助读者深入了解这一领域。
一、神经元和突触神经元是神经系统的基本结构和功能单元,主要负责信息的接收、处理和传递。
它由细胞体、树突、轴突和突触组成。
1. 细胞体:神经元的细胞体包含细胞核和细胞质,是神经元的代谢中心。
2. 树突:树突是一种短而分支的突起,负责接收其他神经元传递的信息。
3. 轴突:轴突是一种长且单一的突起,可将信息从细胞体传递到其他神经元。
4. 突触:突触是神经元之间的连接点,信息通过神经递质在突触间传递。
二、神经传递神经传递是指信息在神经元之间的传递过程,包括电信号传递和化学信号传递两种方式。
1. 电信号传递:神经元内部存在负离子和正离子的电荷差异,当神经元受到刺激时,离子通道打开,电荷发生变化,产生电脉冲信号。
这种信号的传递速度快,主要发生在轴突内。
2. 化学信号传递:当电脉冲信号传递到轴突末梢时,会释放神经递质,通过突触将信号传递给其他神经元。
神经递质会与突触后膜上的受体结合,引发新的电信号,从而传递信息。
三、神经系统的分布与功能神经系统分为中枢神经系统(CNS)和周围神经系统(PNS),分别负责感知、控制和调节机体的各种生理活动。
1. 中枢神经系统(CNS):中枢神经系统由大脑和脊髓组成,是指挥和控制全身各个器官和组织的中心。
大脑负责高级认知、情绪调节等功能,脊髓负责传递神经信号。
2. 周围神经系统(PNS):周围神经系统包括脑神经和脊神经,将感觉信息从感受器传递给中枢神经系统,并将指令从中枢神经系统传递给肌肉和腺体。
四、神经调节与神经递质神经调节是指神经系统通过释放神经递质来调节机体内各种生理过程。
以下是几种常见的神经递质及其作用:1. 乙酰胆碱(Acetylcholine,简称ACh):ACh是一种常见的神经递质,在神经-肌肉接头传递信号时起重要作用。
神经生物学知识点总结

神经生物学知识点总结神经生物学是关于神经系统的科学领域,涉及到神经元的结构、功能、发生、发育、疾病等各方面知识。
本文将从细胞水平、单元回路水平、神经系统水平三个方面,总结一些常见的神经生物学知识点。
细胞水平1. 神经元神经元是神经系统的基本功能单元。
其主要结构包括细胞体、树突、轴突等。
树突主要接收神经冲动,而轴突则在神经末梢释放神经递质。
神经元的典型结构有单极神经元、双极神经元和多极神经元。
神经元之间通过突触相互连接。
2. 神经胶质细胞神经胶质细胞是神经系统中的非神经元细胞,主要具有支持、保护神经元的功能。
与神经元相比,神经胶质细胞数量更多。
其中星形胶质细胞、少突胶质细胞和密集胶质细胞是三种常见的胶质细胞。
3. 动作电位动作电位是神经元在兴奋状态下产生的一种电信号。
其产生主要是由于神经元的钠离子通道和钾离子通道的开关机制。
动作电位具有特定的形态和时间序列特征,可以被记录和分析。
4. 突触传递突触传递是一种神经信号传递方式,由神经元的轴突末梢释放神经递质,影响相邻神经元或肌肉、腺体等靶细胞。
突触传递主要包括化学突触传递和电子突触传递两种方式,前者是通过神经递质介导的,后者是通过电流通过直接传递关节隙。
5. 突触可塑性突触可塑性是指突触传递能力的改变。
其主要形式包括长时程增强(LTP)和长时程抑制(LTD)。
LTP和LTD的产生机制包括突触前活动变化、突触后细胞膜电位变化和神经递质浓度变化等。
单元回路水平1. 神经环路神经环路是由多个神经元组成的,具有特定功能的神经网络结构。
神经环路可以通过神经突触连接,从而形成复杂的功能。
常见的神经环路包括反射弧和中枢神经环路等。
2. 突触后势突触后势是当神经元被兴奋后,在不同时间尺度上的形成的一种延迟激活现象。
突触后势的强度和持续时间因不同的突触类型而异,但是它可以影响神经元的电活动,从而影响神经网络的功能。
3. 网络动力学神经系统中的神经回路具有复杂的动力学特性。
2、神经生物学名词解释总结

神经生物学名词解释总结第九章神经系统第一节神经元和神经胶质细胞01. nerve impulse (神经冲动)沿神经纤维传导的一个个动作电位称为神经冲动。
02. axoplastic transport (轴浆运输)轴突内的轴浆经常流动,进行性物质的运输和交换,称为轴浆运输。
第二节神经元之间的信息传递03. synapse (突触)神经元间相互"接触"并传递信息的部位,根据媒介物性质的不同可分为化学性突触和电突触。
04. excitatory postsynaptic potential, EPSP (兴奋性突触后电位)突触前膜释放的兴奋性神经递质与突触后膜受体结合,导致突触后膜去极化,产生兴奋性突触后电位。
05. inhibitory postsynaptic potential, IPSP(抑制性突触后电位)突触前膜释放的抑制性神经递质与突触后膜受体结合,导致突触后膜超极化,产生抑制性突触后电位。
06. after discharge(后放)在反射活动中,当刺激停止后,传出神经仍可在一定时间内发放神经冲动的现象。
07. non-directed synaptic transmission(非定向突触传递)神经递质从轴突末梢的曲张体释出后通过弥散作用到达效应细胞,与其相应的膜受体结合而传递信息。
第三节神经递质与受体08. neurotransmitter(神经递质)由神经元合成,突触前膜释放,特异性作用于突触后膜受体,参与突触传递的化学物质称为神经递质。
09. neurotransmitter co-existence(递质共存)两种或两种以上的递质可以共存于同一神经元内的现象称为递质共存。
第四节神经反射10.nonconditioned reflex (非条件反射)指在出生后无需训练先天就具有的反射,包括防御反射、食物反射、性反射等。
11.conditioned reflex (条件反射)指在出生后通过训练而在后天形成的反射,它可以建立,也能消退,数量可以不断增加。
神经生物学 总结

NMDA受体的结构特点: (1)共有两种类型的亚单位,NR1和NR2;其中NR2又有 多种亚型。 (2)受体为四聚体结构,NR1亚单位必不可少。 (3)是配体门控和电压门控的杂 杂 合型受体(Mg2+阻断作用)。 合型 (4)对Ca2+ , Na+,K+均有通 Ca 透性。 (5)甘氨酸辅助激活。 (6)受体活性受Zn2+和多胺等多 种物质调控。
4 G受体包括: Rhodopsin-R (视紫红质) GABAB-R mGlu-R,
2 神经递质 (neurotransmitter)定义: neurotransmitter)定义: 由突触前神经元合成并在末梢处释放, 由突触前神经元合成并在末梢处释放,能特异性作用 于突触后神经元或效应器上的受体, 于突触后神经元或效应器上的受体,使突触后神经元 或效应器细胞产生一定效应的信息传递物质。 或效应器细胞产生一定效应的信息传递物质。 递质的鉴定: 3 递质的鉴定: ⑴ 突触前神经元内具有合成神经递质的前体及酶系统, 突触前神经元内具有合成神经递质的前体及酶系统, 能够合成该递质。 能够合成该递质。 递质存储于突触小泡,冲动到达时能释放入突触间隙。 ⑵ 递质存储于突触小泡,冲动到达时能释放入突触间隙。 能与突触后膜受体结合发挥特定的生理作用。 ⑶ 能与突触后膜受体结合发挥特定的生理作用。 存在使该递质失活的酶或其它环节(如重摄取)。 ⑷ 存在使该递质失活的酶或其它环节(如重摄取)。 ⑸ 有特异性受体激动剂或拮抗剂,能拟似或阻断递质 有特异性受体激动剂或拮抗剂, 的作用。 的作用。
轴突和树突的主要不同点
构筑特征及蛋白组分 发生次序 形态结构 数量 长度 起始阶段 末端 棘刺 髓鞘 细胞器 核糖体、粗面内质网与 高尔基复合体mRNA 突触小泡 无(胚胎轴突和轴丘有, 有 少) 优势存在(突触前) 选择性存在 每个神经元一条 长、分支少 特异化、与胞体有分界 不逐渐变细 无 部分轴突髓鞘化 多发性且可变 短、多级分支 无特异化、核周质的延 伸 逐渐变细 常附有树突棘 极少髓鞘化 先 轴 突 树 轴突出现以后 突
神经生物学总结

神经生物学总结1、神经元的定义、分类:神经元又称神经细胞,是构成神经系统结构和功能的基本单位,由细胞体和细胞突起构成。
细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。
神经元分类:①根据神经元数目分类:假单极神经元:从胞体发出一个突起,在离胞体不远处呈T型分为两支,因此,称假单极神经元。
其中一支突起细长,结构与轴突相同,伸向周围,称周围突,其功能相当于树突,能感受刺激并将冲动传向胞体;另一分支伸向中枢,称中枢突,将冲动传给另一个神经元,相当于轴突。
双极神经元:从胞体两端各发出一个突起,一个是树突,另一个是轴突。
多极神经元:有一个轴突和多个树突,是人体中数量最多的一种神经元,多极神经元又可依轴突的长短和分支情况分为两型:①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元;②高尔基Ⅱ型神经元,其胞体小,轴突短,在胞体附近发出侧支。
②根据神经元的功能:感觉神经元:也称传入神经元是传导感觉冲动的,胞体在脑、脊神经节内,多为假单极神经元。
其突起构成周围神经的传入神经。
神经纤维终末在皮肤和肌肉等部位形成感受器。
运动神经元:也称传出神经元,是传导运动冲动的神经元,多为多极神经元。
胞体位于的灰质和节内,其突起构成传出神经纤维。
神经纤维终未,分布在肌组织和腺体,形成效应器。
中间神经元:也称联合神经元,是在神经元之间起联络作用的神经元,是多极神经元,人类中,最多的神经元,构成中枢神经系统内的复杂网络。
胞体位于中枢神经系统的灰质内,其突起一般也位于灰质。
③根据神经元所释放的神经递质不同分类:胆碱能神经元:该神经元的神经末梢能释放乙酸胆碱。
胺能神经元:能释放单胺类神经递质:肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、组胺等。
如能释放肾上腺素的称为肾上腺素能神经元,如交感神经节内的神经元等。
氨基酸能神经元: 能释放谷氨酸、γ-氨基丁酸等。
肽能神经元:能释放脑啡肽、P物质等肽类物质,这类神经元所释放的物质总称为神经肽。
神经生物学 总结(一)2024

神经生物学总结(一)引言概述:神经生物学是研究神经系统结构、功能和发展的学科,它涉及到神经元、神经通讯、神经调节和神经发育等方面的内容。
本文将从神经元的结构和功能、神经通讯的原理、神经调节的机制、神经发育的过程以及神经生物学的应用等5个大点进行阐述。
正文:一、神经元的结构和功能1. 神经元的基本结构:由细胞体、树突、轴突和突触组成。
2. 神经元的功能:接收、处理和传递信息的能力。
3. 神经元的类型:感觉神经元、运动神经元和中间神经元等。
4. 神经元的兴奋传导:神经膜的通透性变化引起的电信号传递过程。
5. 神经元的兴奋阈值:触发神经元产生动作电位的最小刺激强度。
二、神经通讯的原理1. 神经突触的结构:由突触前元和突触后元组成。
2. 突触前元的释放机制:通过电化学方式释放神经递质,跨越突触间隙作用于突触后元。
3. 突触后元的响应机制:接受神经递质信号,产生电信号传递到下一个神经元。
4. 神经递质的种类:多种神经递质用于不同神经通讯过程。
5. 突触可塑性:突触连接的可增强或减弱的能力,是学习和记忆的基础。
三、神经调节的机制1. 神经系统的调节:通过神经系统内的神经递质释放和神经元膜电位变化来调节生理过程。
2. 自主神经系统:分为交感神经系统和副交感神经系统,分别负责不同的生理调节过程。
3. 神经调节的反馈机制:通过负反馈和正反馈调节生理过程的平衡。
4. 神经调节与情绪:神经系统参与情绪的产生和调节。
5. 神经调节和疾病:神经系统的紊乱导致多种神经性疾病的发生。
四、神经发育的过程1. 神经胚胎学:研究神经系统发育的起源和发展过程。
2. 神经细胞分化:原始神经母细胞分化为不同类型的神经元和神经胶质细胞。
3. 神经元迁移:神经元从胚胎的起始位置迁移到最终的定位。
4. 突触形成:神经元通过突触的形成与其他神经元相连接,建立神经网络。
5. 神经元成熟:神经元通过形态和功能的成熟建立起健康的神经系统。
五、神经生物学的应用1. 神经药理学:研究药物对神经系统的作用和治疗神经性疾病的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、神经元的定义、分类:神经元又称神经细胞,是构成神经系统结构和功能的基本单位,由细胞体和细胞突起构成。
细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。
神经元分类:①根据神经元数目分类:假单极神经元:从胞体发出一个突起,在离胞体不远处呈T型分为两支,因此,称假单极神经元。
其中一支突起细长,结构与轴突相同,伸向周围,称周围突,其功能相当于树突,能感受刺激并将冲动传向胞体;另一分支伸向中枢,称中枢突,将冲动传给另一个神经元,相当于轴突。
双极神经元:从胞体两端各发出一个突起,一个是树突,另一个是轴突。
多极神经元:有一个轴突和多个树突,是人体中数量最多的一种神经元,多极神经元又可依轴突的长短和分支情况分为两型:①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元;②高尔基Ⅱ型神经元,其胞体小,轴突短,在胞体附近发出侧支。
②根据神经元的功能:感觉神经元:也称传入神经元是传导感觉冲动的,胞体在脑、脊神经节内,多为假单极神经元。
其突起构成周围神经的传入神经。
神经纤维终末在皮肤和肌肉等部位形成感受器。
运动神经元:也称传出神经元,是传导运动冲动的神经元,多为多极神经元。
胞体位于中枢神经系统的灰质和植物神经节内,其突起构成传出神经纤维。
神经纤维终未,分布在肌组织和腺体,形成效应器。
中间神经元:也称联合神经元,是在神经元之间起联络作用的神经元,是多极神经元,人类神经系统中,最多的神经元,构成中枢神经系统内的复杂网络。
胞体位于中枢神经系统的灰质内,其突起一般也位于灰质。
③根据神经元所释放的神经递质不同分类:胆碱能神经元:该神经元的神经末梢能释放乙酸胆碱。
胺能神经元:能释放单胺类神经递质:肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、组胺等。
如能释放肾上腺素的称为肾上腺素能神经元,如交感神经节内的神经元等。
氨基酸能神经元:能释放谷氨酸、γ-氨基丁酸等。
肽能神经元:能释放脑啡肽、P物质等肽类物质,这类神经元所释放的物质总称为神经肽。
现在认为神经肽不直接引起效应细胞的改变,仅对神经递质的效应起调节作用,故将神经肽称为神经调质。
2、突触的定义及分类:突触是指一个神经元的冲动传到另一个神经元或传到另一细胞间的相互接触的结构, 由突触前膜、突触间隙和突触后膜三部分构成。
化学性突触传递过程:突触由突触前膜、突触间隙和突触后膜三部分组成。
当神经冲动抵达轴突末梢时,突触前膜发生去极化,导致电压门控Ca2+通道开放,Ca2+进入突触前末梢内,促使一定数量的小泡与突触前膜接触融合,然后小泡与突触前膜粘合处出现破裂口,小泡内递质和其他内容物释放到突触间隙;进入突触间隙的神经递质作用于突触后膜上的特异性受体或化学门控通道,产生突触后电位。
根据突触后膜发生去极化或超极化,可将突触后电位分为兴奋性和抑制性突触后电位两种。
中枢兴奋传递的特征当兴奋通过化学性突触传递时,主要表现有以下6方面特征:(一)单向传递在反射活动中,兴奋只能向一个方向传播,即从突触前末梢传向突触后神经元。
(二)中枢延搁兴奋通过反射中枢时往往较慢,这一现象称为中枢延搁,兴奋通过化学性突触比在同样长的神经纤维上传导要慢得多。
反射通路上跨越的化学性突触数目越多,则兴奋传递所需的时间也越长。
(三)兴奋的总和在反射活动中,单根神经纤维的传入冲动一般不能使中枢发出传出效应;而若干神经纤维的传入冲动同时到达同一中枢,才能产生传出效应。
(四)兴奋节律的改变测定某—反射弧的传入神经和传出神经在兴奋传递过程中的放电频率,两者往往不同。
医学教育网搜|索整理(五)后发放在环式联系中,即使最初的刺激已经停止,传出通路上冲动发放仍能继续一段时间,这种现象称为后发放。
(六)对内外环境变化敏感和容易发生疲劳。
突触分类:①根据神经冲动通过突触的方式分类:电突触:前后膜间隙窄;双向传导无延迟;缝隙连接的孔径较大。
化学性突触:前后膜以神经递质交互,传导由前膜到后膜,有延迟,结构功能不对称,前膜有突触囊泡,内含神经递质,后膜有PSD(突触后膜致密区);前后膜间隙大。
②根据突触接触接触部位:轴突-树突突触、轴突-胞体突触、轴突-轴突突触。
③根据突触的结合形式分类:兴奋性突触、抑制性突触。
受体,首先与内源性配体(递质、调质、激素及细胞性因子等信息分子)或相应药物与毒素等结合,并产生特定效应的蛋白质。
分类,按药理效应分类:乙酰胆碱受体(AChR)、肾上腺素受体(NAR)、多巴胺受体(DAR)和阿片受体(APR);④按解剖学定位分类:膜受体(突触前受体-调节神经末梢递质合成与释放、突触后受体-实现跨膜信息转导)、核受体。
⑤按受体跨膜信息转导机制分类:1)G蛋白偶联受体:由受体、G蛋白和效应酶组成。
G蛋白是实现受体和效应器间信息转导的膜蛋白家族,功能的激活与失活受控于GDP-GTP-GDP转化开关。
受体与配体结合后,通过与受体偶联的相应G蛋白,调节膜上相应效应酶,影响一种或数种第二信使物质的产生与代谢,并通过级联反应,导致效应细胞的功能改变;2)受体门控离子通道或配体门控离子通道受体:能与特异配体结合的离子通道组成的受体;3)酶活性受体:只有一个跨膜螺旋,本身兼有配体的识别部位与激酶活性两部分。
3、跨膜信息转导:细胞外的信息分子(第一信使)特异性地与细胞表面的受体结合,刺激细胞产生胞内调节信息分子(第二信使),将信息传递到细胞特异性的反应系统,进而产生生理或病理性应答反应。
4、神经递质与神经调质:神经递质:突触前神经元合成并在末梢出释放、经突触间隙扩散、特异性的作用于突触后神经元或效应器细胞上的受体引致信息从突触前传递到突触后的一些化学物质。
是化学传递的物质基础。
神经调质:神经元、胶质细胞或其他分泌细胞产生和释放,作用于特定受体(不直接参与神经元间的信息传递或不直接引起效应细胞的功能改变),通过调节神经递质的释放及基础水平,影响突触后效应细胞对递质的反应性,间接调节神经递质的传递效应。
5、神经递质的种类及特定类型:胆碱类(乙酰胆碱)、单胺类(多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、组织胺)、氨基酸类(兴奋性氨基酸如谷氨酸、天门冬氨酸,抑制性氨基酸如y-氨基丁酸、甘氨酸)、神经肽类(下丘脑释放素类、神经垂体激素类、阿片肽类、垂体肽类、脑肠肽类)、嘌呤类、CO、NO。
特定类型神经递质:①乙酰胆碱(Ach):乙酰辅酶A和胆碱在乙酰基转位酶(ChAT)催化下生成。
胆碱高亲和力载体为合成限速因子,调制胆碱浓度,胆碱为限速底物。
Ach合成后因乙酰胆碱转运体部分进入囊泡储存,部分存于胞质。
神经冲动引起神经末梢去极化和Ca内流,通过胞裂外排的方式释放ACh。
乙酰胆碱受体,分毒蕈碱受体(M-AChR,为G蛋白偶联受体)和烟碱受体(N-AChR 为配体门控离子通道受体)。
②儿茶酚胺(CA)类递质:是指去甲肾上腺素(NE或NA)、多巴胺(DA)和肾上腺素(E或AD)。
合成:以酪氨酸羟化酶(限速酶)、多巴脱羧酶脱羧生成多DA,DA经多巴胺-B-羟化酶(NA特异性标志酶)羟化生成NA,NA经苯乙醇氨氮位甲基移位酶(AD标志酶)催化获得甲基生成AD。
储存:NA储存在囊泡中防止递质弥散出神经元,避免胞质内酶的代谢或毒物的作用而失活,并使递质在胞质中保持较低的水平避免损害。
依靠囊泡膜上的囊泡单胺类转运体摄取和储存。
释放:CA通过Ca依赖的胞裂外排方式释放。
失活:1、被细胞外液和血浆稀释到引起突触后反应的阈下值浓度;2、突触前膜转运体重摄取(膜摄取),储存在囊泡中,并在下次冲动时释放(中枢神经系统CA类递质失活主要方式),突触后膜和非神经组织也可有少量摄取;3、单胺氧化酶(MAO)或儿茶酚胺-氧位-甲基转移酶(COMT)降解。
受体:1、去甲肾上腺素受体;2、多巴胺受体(主要靶酶是腺苷酸环化酶AC)。
③5-羟色胺:合成:色氨酸经色氨酸羟化酶(限速酶,5-HT对其有负反馈调节作用)羟化生成5-羟色氨酸,再经5-羟色氨酸脱羧酶脱羧生成5-羟色胺。
5-HT不易通过血脑屏障,中枢神经系统和外周的5-HT分属两个独立的系统。
储存:囊泡储存。
失活:突触前膜转运体重摄取,部分经单胺氧化酶降解。
受体:除5-HT3受体,均为G蛋白偶联受体。
④兴奋性氨基酸(谷氨酸、门冬氨酸):合成:谷氨酸和门冬氨酸为不能通过血脑屏障的非必须氨基酸,葡萄糖经三羧酸循环产生的a-酮戊二酸和草酰乙酸,经转氨酶作用下分别生成,作为神经递质,谷氨酸的主要来源是由谷氨酰胺在谷氨酰胺酶水解而成。
储存:于中枢神经系统谷氨酸能神经末梢的囊泡中,以胞裂外排的形式释放,其释放是Ca依赖性的。
失活:释放如突触间隙的谷氨酸和门冬氨酸,大部分被谷氨酸或门冬氨酸能神经末梢摄取再利用。
摄入胶质细胞的谷氨酸在谷氨酰胺合成酶的作用下转变为谷氨酰胺,再进入神经末梢后可敬谷氨酸脱氨酶生成谷氨酸,形成神经元和胶质细胞之间的谷氨酰胺循环。
受体:1、NMDA受体,是配体门控的Ca可通透的离子通道型受体,激活后通道开放,单价阳离子和Ca通透性增加引起突触后膜去极化。
其激活与开放受配体和膜电位的双重调节(激动剂的结合和突触后膜的去极化)。
NMDA受体受多种内源性的物质或药物的调制;2、AMPA受体和KA受体是Na和K通透性离子通道型受体,对膜电位的改变不敏感,开放时只通透Na和K,少数AMPA对Ca通透。
AMPA、KA与NMDA受体协同介导兴奋性突触传递;3、促代谢型谷氨酸受体(mGluRs)为G蛋白偶联受体;4、L-AP4受体是促代谢型的自身受体。
⑤抑制性氨基酸:r-氨基丁酸(GABA)。
合成:由谷氨酸经谷氨酸脱氢酶脱羧生成。
储存:突触囊泡与胞质中,囊泡释放依赖Ca,胞质释放不依靠Ca。
失活:神经元和胶质细胞上的GABA转运体对GABA的重摄取可及时中止GABA 在突触间隙的活动。
受体:GABA A是配体门控离子通道;GABA B是G蛋白偶联受体,介导突触前或突触后抑制。
⑥甘氨酸:甘氨酸在线粒体合成,释放后依靠高亲和力的甘氨酸转运体(Na/Cl依赖性转运体)甘氨酸重摄取,小部分由胶质细胞摄取。
受体是氯离子通道受体,为脊髓中间神经元的抑制性递质。
6、最重要的兴奋性神经递质:谷氨酸Glu。
谷氨酰胺循环:释放入突触的Glu,大部分被神经末梢摄取再利用。
摄入胶质细胞的Glu在谷氨酰胺合成酶的作用下转变成谷氨酰胺,后者进入神经末梢后可经谷氨酰胺酶脱氨基生成Glu,形成神经元和胶质细胞之间的谷氨酰胺循环。
三个受体:NMDAR(钠钙内流,K外流),AMPAR,KAR(钠内流,钾外流)。
7、最重要抑制性神经递质:γ-氨基丁酸,谷氨酸脱羧形成(单胺类和抑制性神经递质:钠氯依赖性受体,兴奋性:钠氯依赖性)。
8、神经营养因子(NTF)的概念、信号、受体:概念:1)是一类为神经系统提供营养微环境的多肽或蛋白质分子。