高分子化学 第7章 配位聚合

合集下载

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(配位聚合)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(配位聚合)【圣才出品】

第7章配位聚合7.1 复习笔记一、基本概念1.配位聚合单体与引发剂以配位方式进行的聚合反应。

采用具有配位(或络合)能力的引发剂,单体先在活性种的空位上配位(络合)并活化,然后插入烷基-金属键中,实现链增长(有时包括链引发)。

配位聚合又有络合聚合、插入聚合、定向聚合等名称。

2.定向聚合任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是以形成有规立构聚合物为主,都是定向聚合。

定向聚合等同于立构规整聚合。

3.构型和构象构型是指由原子(或取代基)在手性中心或双键上的空间排布顺序不同而产生的立体异构;构象是指由C-C单键内旋转而产生的原子或基团在空间排列的无数特定的形象。

有伸展型、无规线团、螺旋型和折叠链等几种构象。

4.立体异构(1)定义立体异构是原子在大分子中不同空间排列所产生的异构现象。

(2)分类①光学异构:光学异构又称对映异构或手性异构,是由手性中心产生的,分R(右)型和S(左)型;②几何异构:又称顺反异构,是由双键引起的顺式(Z)和反式(E)的几何异构,两种构型不能互变。

5.光学活性聚合物聚合物不仅含有手性碳原子,而且能使偏振光的偏振面旋转,真正具有旋光性,这种聚合物称为光学活性聚合物。

6.立构规整聚合物(1)定义立构规整聚合物是指由一种或两种构型的结构单元(手性中心)以单一顺序重复排列的聚合物。

(2)分类①全同立构聚合物:取代基处于平面的同侧或相邻手性中心的构型相同的聚合物;②间同立构聚合物:取代基交替地处在平面的两侧或相邻手性中心的构型相反并交替排列的聚合物;③无规立构聚合物:取代基在平面两侧或手性中心的构型呈无规则排列的聚合物。

7.顺式(Z)构型和反式(E)构型当双键的两个碳原子各连接两个不同基团时,由于双键不能自由旋转,就有可能生成两种不同的由空间排列所产生的异构体。

两个相同基团处于双键同侧的叫做顺式,反之叫做反式。

8.立构规整度立构规整度是指立构规整聚合物占聚合物总量的百分数。

高分子化学(第五版)第7章

高分子化学(第五版)第7章
27
2)丙烯的配位聚合动力学 对于均相催化剂体系,可参照阴离子聚合增长速率
方程: Rp= kp[C*][M] α-TiCl3-AlEt3是微非均相体系,其聚合速率~时间(
Rp~t)曲线有2种类型:
A-衰减型 B-加速型
-TiCl3-AlEt3引发的丙烯
聚合动力学曲线
28
曲线A由研磨或活化后引发 体系产生:第Ⅰ段增长期,在 短时间内速率增至最大;第II 段衰减期;第III段稳定期,速 率几乎不变。
CH CH2
空位
R
环状过渡态
CH CH2 R
TiCl3和AlR3络合物在Ti上形成活性 点(或空位),丙烯在空位上配 位,形成σ-π络合物,配位活化后 的单体在金属-烷基链中插入增长。
配位和增长反复进行,形成大分子。
δ-
δ+
CH CH2 CH CH2 Mt
R
R
5
配位聚合的特点:
单体首先在过渡金属上配位形成σ-络合物;
Cl
Ⅳ B族过渡金属,如锆(Zr)、钛(Ti)、铪(Hf) +
茂型配体:至少一个环戊二烯基(Cp)、茚基(Ind)、芴基 (Flu)或它们的衍生物 +
非茂配体,如氯、甲基、苯基等。
18
空间几何构型
Ti
Cl
Cl
Cl
非桥链型 普通结构
X
R'
M
X
桥链型
R
R
R
R2
R
L
MCl2 2
R3
限定几何构型
19
茂金属引发剂的特点: 高活性,几乎100%金属原子都形成活性中心; 单一活性中心,可获得分子量分布很窄、共聚物组成
R代表速率,t为时间,下标0为起始最大值, 为后 期稳定值,k为常数,与丙烯压力有关,与三乙基铝浓度 无关。

配位聚合

配位聚合

3、立构规整性(重要概念) 立构规整聚合物:是指那些由一种或两种构 型的结构单元(即手性中心)以单一顺序重 复排列的聚合物。 立构规整度:又称为定向度或定向指数,指 立构规整性聚合物在整个聚合物中所占的重 量百分含量。
问题:在合成过程中,如何控制 聚合物的立构规整性?
配位聚合及其引发剂体系等
7.2 配位聚合和定向聚合
7.1 聚合物的立体异构
结构异构:元 素组成相同而 原子或基团键 接位置不同。
配位聚合所涉及的异构现象
1、几何异构(顺反异构)
(1)形成:取代基在双键或环形结构平面 两侧的空间排列方式不同而造成的。 (2)结构特点:主链上有“=”或“环” 顺式
CH CH2 CH CH2 CH2 CH CH CH2
不足 只解释了引发和增长,没有解释立 构的形成原因
(2)单金属机理 Ti上引发,Ti上增长
特点 解释了立体构型的形成原因 对共引发剂的考虑少 不足
单体在Ti-C键间插入与空位回跳交 替进行的可能性
乙丙橡胶的介绍
因为大量甲基的存在破坏了聚乙烯的高度结构对称性,
不结晶而成为橡胶。 分子链上不含双键,所以耐臭氧、耐化学品、耐老化、 耐候性最佳。 密度小,有优异的电性能和耐油性,广泛用于电线电 缆、汽车部件、耐热密封件、传送带和日用生活品。 也因为分子链上不含双键,所以只能采用过氧化物进 行自由基型链转移硫化,硫化速度慢,粘接性能差。 采用加入少量共轭双烯作为第三单体进行三元共聚来
碳-碳双键过渡金属引 自由基聚合、离子聚 发剂的活性中心的空位 合、配位聚合 上配位 有规或无规 络合聚合、插入聚合 有规 有规立构聚合
产物 别称 举例
Ziegler-Natta引发剂引 BuLi引发丁二烯聚合 发苯乙烯聚合

第七章配位聚合

第七章配位聚合

第七章配位聚合一、名称解释配位聚合:指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(Mt)-碳(C)中增长形成大分子的过程,所以也可称作插入聚合。

络合聚合:与配位聚合的含义相同,可以互用。

络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。

定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。

异构体:分子式相同,但原子相互联结的方式或顺序不同,或原子在空间的排布方式不同的化合物叫做异构体。

构象异构:由单键内旋转造成的立体异构现象。

立体构型异构:原子在大分子中不同空间排列所产生的异构现象。

对映异构:又称手性异构,由手性中心产生的光学异构体R型和S型。

顺反异构:由双键引起的顺式和反式的几何异构,两种构型不能互变。

全同立构:将碳-碳主链拉直成锯齿形,使处在同一平面上,取代基处于平面的同侧,或相邻手性中心的构型相同。

间同立构:若取代基交替地处在平面的两侧,或相邻手性中心的构型相反并交替排列,则称为间同立构聚合物。

全同聚合指数:一致立构规整度的表示方法,指全同立构聚合物占总聚合物的分数。

立构规整度:立构规整聚合物占聚合物总量的百分数。

二、选择题1. 氯化钛是α-烯烃的阴离子配位聚合的主引发剂,其价态将影响其定向能力,试从下列3种排列选出正确的次序( A )A TiCl3(α,γ,δ) > α- TiCl3-AlEtCl2>TiCl4B TiCl2>TiCl4>TiCl3(α,γ,δ)C TiCl4>TiCl3(α,γ,δ) > TiCl22. 下列聚合物中哪些属于热塑性弹性体(d和e)(a) ISI (b)BS (c) BSB (d)SBS (e) SIS3. 下列哪一种引发剂可使乙烯、丙烯、丁二烯聚合成立构规整聚合物?(1)n-C4H9Li/正己烷(2)萘钠/四氢呋喃(3) TiCl4-Al(C2H5)3(4) α- TiCl3-Al(C2H5) 2Cl(5)π-C3H5NiCl (6) (π-C4H7)2Ni4. 下列哪一种引发剂可使丙烯聚合成立构规整聚合物?(D)(A)n-C4H9Li/正己烷(B)萘钠/四氢呋喃(C) TiCl4-Al(C2H5)3(D) α- TiCl3-Al(C2H5) 2Cl三、简答题1. 聚乙烯有几类?如何合成?结构与性能有什么不同?与生产方法有何关系?答:聚乙烯主要有三类:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线形低密度聚乙烯(LLDPE)。

高分子化学-配位聚合

高分子化学-配位聚合


乙烯、丙烯在热力学上均具聚合倾向,但在很长一段时间内,却未年用TiCl Al(C组成的体系引发
乙烯聚合,首次在低温低压的温和条件下
K. Ziegler
非均相体系
G. Natta
1954年意大利科学家
引发剂引发丙烯聚合,首次获得
的聚合物
配位聚合
分子中原子或原子团互相连接次序相同、但空
顺式-1,4-聚丁二烯反式-1,4-聚丁二烯
对映体异构、手性异构)
顺式-1,4-聚异戊二烯反式-1,4-聚异戊二烯
实际上很难合成完全规整的高分子链,所以产生分子链
高分辨核磁共振谱是测定立构规整度的最有力手段,目前不仅可以测定三单元组,还可以测定四单元组、五单元组甚至更高单元组的分布情况。

聚氯乙烯的
13C NMR谱图
聚丙烯的等规度:工业上和实验室中测定最常用的方法是
X X X X X
M M M M
M
氢键、静电键合、电子X X X X X
转移相互作用、疏水键。

《材化高分子化学》第7章 配位聚合

《材化高分子化学》第7章 配位聚合

(1)α-烯烃
H C* R
由于连接C*两端的分子链不等长,或端基不同, C*应当是手性碳原子,但这种手性碳原子并不 显示旋光性,原因是紧邻C*的原子差别极小, 故称为“ 假手性中心”。
根据手性C*的构型不同,聚合物分为三种结构:
RR R R HHHH
全同立构 Isotactic
RH RH HRHR
C O OCH2CH3
聚丙烯酸乙酯
[NH( CH2 )6NHOC ( CH2 )4CO ]n
尼龙-66
结构单元间的连接方式不同,又会产生序列异构。
例如首尾相接和首首相接的异构现象。其首尾相接、 首首相接和无规序列相接的聚合物,其化学组成相 同,连接方式不同,性能也是不一样的。
(2)聚合物的立体异构体
什么是同分异构? 化学组成相同,聚合物分子中原子或原子团相互连接
的次序不同而引起的异构叫做同分异构,又称结构 异构。
例如:通过相同单体和不同单体可以合成化学组 成相同、结构不同的聚合物。
如结构单元为-[ C2H4O-] n的聚合物可 以是聚乙烯醇、聚环氧乙烷等。
[ CH2 CH ] n OH
聚乙烯醇
7.1 引言
乙烯、丙烯在热力学上均具有聚合倾 向,但在很长一段时间内,用上述聚合方 法,却无法得到高分子量的聚合物。
为什么?
乙烯的自由基聚合必须在高温高压下进行,由 于较易向高分子的链转移,得到支化高分子,即 LDPE。
丙烯利用自由基聚合或离子聚合,由于其自阻聚 作用,都不能获得高分子量的聚合产物。
插入反应是配位阴离子机理 由于单体电子的作用,使原来的Ti-C键活化,极化 的Ti+-C -键断裂,完成单体的插入反应。
立构规整性成因 单体如果在空位(5)和空位(1)交替增长,所得聚合物 将是间同立构,实际上得到的是全同立构。

配位聚合

配位聚合
高 分 子 化 学
19
7.2 聚合物的立构规整性
立构规整性与性能的关系
有规立构与非立构规整性聚合物间的性质差别很大。 性能的差异主要起源于分子链的立构规整性对聚合物结晶 的影响。 有规聚合物的有序链结构容易结晶,无规聚合物的无 序链结构则不易形成结晶,而结晶导致聚合物具有高的物 理强度和良好的耐热性和抗溶剂性,因此有规立构聚合物 更具有实际应用意义。
高 分 子 化 学
23
7.3 引发剂
Zieglar-Natta引发剂
广义 Ziegler-Natta 引发剂指的是由 IV~VIII 族过渡金 属化合物与I~III族金属元素的金属烷基化合物所组成的一 类引发剂。其通式可写为:
MtIV-VIIIX + MtI-IIIR 主引发剂 助引发剂 常用过渡金属化合物 :Ti、V、Cr、Co、Ni 的卤化 物(MtXn),氧卤化合物(MtOXn),乙酰丙酮基化合 物[Mt(acac)n],环戊二烯基卤化物(Cp2MtX2)。
高 分 子 化 学
22
7.3 引发剂
引发剂的类型和作用
类型: Zieglar-Natta 型。用于α-烯烃、二烯烃、环烯 烃的定向聚合; 烷基锂。在均相溶液体系中引发二烯烃和极性 单体,形成立构规整聚合物 π-烯丙基镍(π-C3H5NiX)。专供引发丁二烯的 顺式-1,4和反式-1,4聚合 茂金属引发剂。 作用: 提供活性中心; 引发剂残余部分(金属反离子)紧邻引发剂中 心,使单体分子按照一定的构型进入增长链, 使单体定位,起连续定向的模板作用。
目前,聚乙烯和聚丙烯已经成为生产量最大、用途最广 的合成材料。
高 分 子 化 学
3
7.1 配位聚合概述
配位聚合:烯类单体的碳-碳双键首先在过渡金属

高分子化学7-配位聚合-续

高分子化学7-配位聚合-续

7.5 丙烯的配位阴离子聚合机理
配位引发剂的类型、作用、 2. 配位引发剂的类型、作用、定向能力
定向能力: 引发剂的要求随着单体种类的 定向能力:对引发剂的要求随着单体种类的 不同有很大的差别。 不同有很大的差别。 (1)非极性单体(如乙烯、α-烯烃等)的配 非极性单体( 乙烯、 烯烃等 位能力很差,需要很强的立体定向能力的引 位能力很差, 发剂进行等规立构的聚合反应。( 等规立构的聚合反应。(基本上要 发剂进行等规立构的聚合反应。(基本上要 求非均相引发剂) 求非均相引发剂)
Cl Cl
Cl Cl
7.5 丙烯的配位阴离子聚合机理
6.单金属活性中心模型( 6.单金属活性中心模型(例,TiCl3—Al(C2H5)3) 单金属活性中心模型 Al(C 链引发过程
Cl Cl R Cl Ti Cl + CH 3 H CH 3 H β C α C H H Cl Ti Cl Cl Cl R Ti Cl H Cl C β C α H R βC αC H Cl Cl H CH 3
7.5 丙烯的配位阴离子聚合机理
5.双金属活性中心模型( Cl) 5.双金属活性中心模型(例,TiCl3—Al(C2H5)2Cl) 双金属活性中心模型 Al(C
单体插入Al Al六元环瓦解, (3)单体插入Al-C键,六元环瓦解,并恢复原来的 四元环桥形结构,于是就增长了一个链节; 四元环桥形结构,于是就增长了一个链节;重复上 述步骤使分子链不断增长。 述步骤使分子链不断增长。
7.5 丙烯的配位阴离子聚合机理
1. 配位阴离子聚合的特征
反应时单体、 (3) 反应时单体、增长链和引发剂片段形 四元过渡态,随后插入“过渡金属—碳 成四元过渡态,随后插入“过渡金属 碳” 键中。插入时为顺式加成,且大都是β 键中。插入时为顺式加成,且大都是β-碳和 增长的烷基链键合 键合; 增长的烷基链键合; (4) 非均相引发剂常显示高活性。 非均相引发剂常显示高活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均相引发剂,立构规整化能力弱 极性单体: 全同 -烯烃:无规
配位引发剂的作用
提供引发聚合的活性种 提供独特的配位能力 主要是引发剂中过渡金属反离子,与单体和增长链配位,促 使单体分子按照一定的构型进入增长链。 即单体通过配位而“ 定位”,引发剂起着连续定向的模型作 用 一般说来,配位阴离子聚合的立构规整化能力取决于引发
R
R
δ-
δ+
CH CH2 CH CH2 Mt
R
R
不带取代基的一端带负电荷,与过渡金属相连接,称为一级插入
二级插入
δ-
δ+
CH2 CH Mt + CH2 CH
R
R
δ-
δ+
CH2 CH CH2 CH Mt
R
R
带有取代基一端带负电荷并与反离子相连,称为二级插入
两种插入所形成的聚合物的结构完全相同
但研究发现: 丙烯的全同聚合是一级插入, 丙烯的间同聚合却为二级插入
Natta (1903 ~ 1979)小传
Natta发现 将TiCl4 改为 TiCl3,用于丙烯的聚合,得到高分子量、高结晶度、 高熔点的聚丙烯
G. Natta
意大利人,21岁获化学工程博士学位 1938年任米兰工业大学教授,工业化学 研究所所长 50年代以前,从事甲醇、甲醛、丁醛等 应用化学研究,取得许多重大成果 1952年, 在德 Frankford 参加Ziegler的报 告会,被其研究工作深深打动 1954年,发现丙烯聚合催化剂 1963年,获Nobel化学奖
Ziegler (1898-1973)小传
Ziegler发现(具有划时代重大意义)
使用四氯化钛和三乙基铝,可在常压下得到PE(低压PE),
K. Ziegler
未满22岁获得博士学位 曾在Frankfort, Heideberg大学任教 1936年任Halle大学化学系主任,后任校长 1943年任Mak Planck研究院院长 1946年兼任联邦德国化学会会长 主要贡献是发明了Ziegler催化剂 1963年荣获Nobel化学奖 治学严谨,实验技巧娴熟,一生发表论文200 余篇
根据手性C*的构型不同,聚合物分为三种结构:
RR R R HHHH RH RH HRHR RH R R HRHH
全同立构 Isotactic
间同立构 Syndiotactic
无规立构 Atactic
全同和间同立构聚合物统称为有规立构聚合物 如每个结构单元上含有两个立体异构中心,则异构现象就更加复杂
第7章 配 位 聚 合
主讲教师 张小博
1953年,Ziegler发现了乙烯低压聚合引发剂 1954年Natta发现了丙烯聚合引发剂
7.1 配位聚合的基本概念
1. 配位聚合的定义: 指烯类单体的碳-碳双键首先在过渡金属引发剂 活性中心上进行配位、活化,随后单体分子相继 插入过渡金属-碳键中进行链增长的过程。
链增长反应可表示如下
过渡金属
δ-
δ+
CH CH2 Mt
δ-
CH CH2
空位
CH CH2
¦Ä¦Ä¦Ä
CH
环状过
R
渡状态 R
δ+
Mt
CH2
δ-
δ+
CH CH2 CH CH2 Mt
R
R
链增长过程的本质是单体对增长链端络合物的插入反应
2. 配位聚合的特点
单体首先在过渡金属上配位形成络合物 证据:乙烯和Pt、Pd生成络合物后仍可分离 制得了4-甲基-1-戊烯-VCl3的络合物
增长反应是经过四元环的插入过程
δ-
增长链端阴离子
CH CH2
对烯烃双键碳
原子的亲核进攻 ¦Ä¦Ä¦Ä
δ+CH
R
δ+
Mt
过渡金属阳离子
Mt+ 对 烯 烃 双 键
CH2δ- 碳原子的亲电进攻
插入反应包括两个同时进行的化学过程:
单体的插入反应有两种可能的途径
一级插入
δ-
δ+
CH CH2 Mt + CH CH2
光学异构体
光学异构体(也称对映异构体),是由手征性碳原子产生构型分为R (右)型和S(左)型两种 对于 -烯烃聚合物,分子链中与R基连接的碳原子具有下述结构:
H C* R
由于连接C*两端的分子链不等长,或端基不同,C*应当是手征性碳原子 但这种手征性碳原子并不显示旋光性,原因是紧邻C*的原子差别极小,故 称为“ 假手性中心”
3. 配位聚合引发剂与单体
引发剂和单体类型
Ziegler-Natta引发剂
-烯烃:有规立构聚合
二烯烃 环烯烃
有规立构聚合
-烯丙基镍型引发剂:专供丁二烯的顺、反1,4聚合
烷基锂引发剂(均相) 极性单体 二烯烃
有规立构聚合
引发剂的相态和单体的极性
非均相引发剂,立构规整化能力强
极性单体: 失活 -烯烃:全同
反应是阴离子性质 间接证据: -烯烃的聚合速率随双键上烷基的增大而降低
CH2=CH2 > CH2=CH-CH3 > CH2=CH-CH2-CH3 直接证据: 用标记元素的终止剂终止增长链
14CH3OH 14CH3O- + H+
得到的聚合物无14C放射性,表明加上的是H+,而链端是阴离子 因此,配位聚合属于配位阴离子聚合
剂的类型、特定的组合与配比、单体种类、聚合条件
7.2 聚合物的立构规整性
1. 聚合物的立体异构体 结构异构:化学组成相同,原子和原子团的排列不同
头-尾和头-头、尾-尾连接的结构异构 两种单体在共聚物分子链上不同排列的序列异构
立体异构:
由于分子中的原子或基团的空间构型和构象不同而产生 光学异构
构型异构 几何异构 构象异构
几何异构体
因聚合物分子链中双键或环形结构上取代基的构型不同引起的 如异戊二烯聚合,1,4-聚合产物有:
CH3 CH2 C CH CH2 n
聚异戊二烯
CH3
H
CC
CH2
CH2
顺式构型
CH3 C CH2
CCBiblioteka 2 H反式构型2. 光学活性聚合物
指聚合物不仅含有手性碳原子,而且能使偏振光的偏振面 旋转,真正具有旋光性,这种聚合物称为光学活性聚合物。 采取两种措施:
几种聚合概念含义区别
配位聚合、络合聚合 在含意上是一样的,可互用 一般认为,配位比络合表达的意义更明确 配位聚合的结果: 可以形成有规立构聚合物 也可以是无规聚合物
定向聚合、有规立构聚合 这两者是同意语,是以产物的结构定义的 都是指以形成有规立构聚合物为主的聚合过程 乙丙橡胶的制备采用Z-N催化剂,属配位聚合, 但结 构是无规的,不是定向聚合
相关文档
最新文档