高中物理法拉第电磁感应定律难点突破汇总

合集下载

高考物理法拉第电磁感应定律压轴难题知识归纳总结word

高考物理法拉第电磁感应定律压轴难题知识归纳总结word

高考物理法拉第电磁感应定律压轴难题知识归纳总结word一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ3R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg3.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案一、法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

高中物理法拉第电磁感应定律难点突破汇总

高中物理法拉第电磁感应定律难点突破汇总

难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式tn E ∆∆=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t ∆∆φ的关系容易混淆不清。

2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破1、φ、φ∆、t ∆∆φ同v 、△v 、tv ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

磁通量φ 磁通量变化量φ∆ 磁通量变化率t ∆∆φ 物理意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小计算⊥=BS φ,⊥S 为与B 垂直的面积12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φ t S B t ∆∆=∆∆φ 或t B S t ∆∆=∆∆φ注意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。

高考电磁学知识点与难点突破

高考电磁学知识点与难点突破

高考电磁学知识点与难点突破在高考物理中,电磁学是一个重要且具有一定难度的部分。

掌握好电磁学的知识点和突破难点,对于在高考中取得优异成绩至关重要。

一、电磁学的基础知识点1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。

这个定律是电学的基础,为我们理解电荷之间的相互作用提供了关键的依据。

2、电场强度电场强度是用来描述电场强弱和方向的物理量。

它等于单位正电荷在电场中所受到的力。

通过电场强度,我们可以计算出电场中不同位置的电场力,进而分析电荷在电场中的运动情况。

3、电势和电势差电势是描述电场能的性质的物理量。

某点的电势等于单位正电荷在该点所具有的电势能。

而电势差则是两点之间电势的差值,也称为电压。

4、电容电容是表征电容器容纳电荷本领的物理量。

它与电容器的极板面积、极板间距离以及电介质的介电常数有关。

5、电流电流是电荷的定向移动形成的。

电流的大小等于单位时间内通过导体横截面的电荷量。

6、电阻和电阻率电阻反映了导体对电流的阻碍作用。

而电阻率则是材料本身的电学性质,与材料的种类、温度等因素有关。

7、欧姆定律欧姆定律指出,通过一段导体的电流与导体两端的电压成正比,与导体的电阻成反比。

8、电功和电功率电功是指电流做功的多少,电功率则表示电流做功的快慢。

二、电磁学中的重要定律1、法拉第电磁感应定律当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。

其大小与磁通量的变化率成正比。

2、楞次定律楞次定律用于判断感应电流的方向。

感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

3、安培定则(右手螺旋定则)用于判断直线电流、环形电流和通电螺线管产生的磁场方向。

三、电磁学中的难点1、电场和磁场的综合问题在很多题目中,电场和磁场会同时存在,电荷或导体在这样的复合场中运动。

这需要我们综合运用电场和磁场的知识,分析受力情况和运动状态。

例如,带电粒子在电场和磁场中的偏转问题,需要分别考虑电场力和洛伦兹力的作用,运用牛顿运动定律和动能定理来求解。

法拉第电磁感应定律压轴难题知识归纳总结word

法拉第电磁感应定律压轴难题知识归纳总结word

法拉第电磁感应定律压轴难题知识归纳总结word一、高中物理解题方法:法拉第电磁感应定律1.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ;0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

高中物理10大难点之七 法拉第电磁感应定律

高中物理10大难点之七 法拉第电磁感应定律

难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式t nE ∆∆=φ此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t ∆∆φ的关系容易混淆不清。

2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破1、φ、φ∆、t ∆∆φ同v 、△v 、t v∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。

有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。

处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。

此公式也可计算平均感应电动势,只要将v 代入平均速度即可。

⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω221Bl E =。

⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V【解析】【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s B t ∆=∆ 则磁通量的变化率为:0.04Wb/s B S t t∆Φ∆==∆∆ 根据E n t∆Φ=∆可知回路中的感应电动势为: 4V B E n nS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t ∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++4.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。

法拉第电磁感应定律重难点分析

法拉第电磁感应定律重难点分析

第二节法拉第电磁感应定律重难点分析1.在闭合电路中,电流产生于电动势。

影响电流的大小有两个因素:一个是电路的电阻;一个是电源电动势。

电源电动势是更本质的因素。

在电磁感应现象中,能够将其它形式的能量转化为电能的部分是电源,描写电源的转化能力的物理量是感应电动势。

产生感应电流是由于闭合电路的磁通量发生变化,问题的实质应该是闭合电路的磁通量发生变化时,产生了感应电动势,在闭合电路里就有了感应电流。

因此,研究磁通量的变化与感应电动势的关系是研究电磁感应现象的本质的问题。

2.本节是通过观察实验得出法拉第电磁感应定律。

可以取上一节课所做的任意一个实验,或是全部实验。

演示切割速度不同时所产生的感应电流的大小;演示磁通量变化率(磁通量变化率是指磁通量变化的快慢或是磁通量变化的量值与所用时间的比值)不同时所产生的感应电流的大小。

在这里,要说明在电阻一定时,感应电流大小的变化反映的是感应电动势大小的变化。

通过实验得出,感应电动势的大小跟磁通量的变化率有关。

由精确的实验表明(课堂上并没有做):电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

这就是法拉第电磁感应定律。

3.得出法拉第电磁感应定律后,再推导切割磁感线时的感应电动势的大小计算。

首先推导在磁场中导线垂直切割磁感线时,导线和线框所组成的电路中,引起磁通量发生变化的是面积的变化,即可以将△φ=B△S=B(Lv△t S可以认为是导线所扫过的面积。

则法拉第电磁感应定律可以写成E=∆∆φt=BLv用这个公式可以计算切割磁感线时感应电动势的大小。

如果导线切割磁感线不是垂直切割,而是速度与磁场有夹角θ,可以利用矢量的分解合成的知识,将速度分解成与磁场平行和垂直两个分量。

平行分量不切割磁感线,不产生感应电动势,垂直分量大小是v sinθ,产生的电源电动势为E=BLv sinθ。

4.联系上节课,从能量的观点认识电磁感应现象,是一种能量的转化和守恒。

而电磁感应现象的定量关系依然存在着能量的转化和守恒的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式tnE ∆∆=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。

2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破1、φ、φ∆、t ∆∆φ同v 、△v 、tv ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理 意义磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值表述磁场中穿过某个面的磁通量变化快慢的物理量大小 计算⊥=BS φ,⊥S 为与B 垂直的面积12φφφ-=∆,SB ∆=∆φ或B S ∆=∆φ t SB t ∆∆=∆∆φ 或tBS t ∆∆=∆∆φ 注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。

有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。

处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。

此公式也可计算平均感应电动势,只要将v 代入平均速度即可。

⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω22Bl E =。

⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。

其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。

当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBs ω。

这样,线圈从中性面开始计时感应电动势按E=nBs ωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBs ωcos θ规律变化。

并且用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t ,不少同学没有这种意识。

推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。

另外,tnE ∆∆=φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时感应电动势。

当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。

但三种特殊情况中的公式通常用来求感应电动势的瞬时值。

4、典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大【审题】题目考查内容非常明确,主要考查感应电动势E 与磁通量φ、磁通量变化量φ∆、磁通量变化率t∆∆φ之间的关系。

【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。

A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。

B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。

D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。

答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。

例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。

【审题】磁通量的变化率t∆∆φ与匝数N 无关,因为磁通量表示穿过某一面积的磁感线条数,穿过一匝线圈和穿过N 匝线圈的磁感线条数是一样的。

这样,一段时间内磁通量的变化一匝线圈和N 匝线圈是一样的,所以t∆∆φ不受匝数N 的影响。

而感应电动势除与t∆有关外还与匝数N 有关,因为产生感应电动势的过程中,每一匝线圈都相当于一个电源,线圈匝数越多,意味着串联的电源越多,说明E 与N 有关。

【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。

同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。

例3:如图7-1所示,两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面。

两导轨间距为L ,左端接一电阻R ,其余电阻不计。

长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过电阻R 的电荷量是 。

【审题】求通过电阻R 的电荷量首先须求出通过电阻R 的平均电流,由于电阻R 已知,因此根据法拉第电磁感应定律求出这一过程的平均感应电动势是解题关键。

【解析】tBL t L L L B t S B t E ∆=∆-∙=∆∆=∆∆=23421222φ tR 2BL 3R E I 2∆== ∴R BL t I q 232=∆=答案:RBL 232【总结】用E=N △φ/△t 求的是平均感应电动势,由平均感应电动势求闭合回路的平均电流。

而电路中通过的电荷量等于平均电流与时间的乘积,即RN t tR Nt I q φφ∆=∆∆∆=∆=,注意这个式子在不同情况下的应用。

例4:如图7-2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度V 0抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是( )A .越来越大B .越来越小C .保持不变D .无法判断【审题】金属棒运动过程中速度越来越大,但产生感应电动势的有效切割速度仅仅是速度的水平分量V 0,而在金属棒运动过程中V 0是不变的。

【解析】导体切割磁感线产生的感应电动势E=Blv ,金属棒运动过程中B 、l 和v 的有效分量均不变,所以感应电动势E 不变,故选C 。

答案:C图7-1图7-2【总结】应用感应电动势的计算公式E=Blv 时,一定要注意B 、l 、v 必须两两垂直,若不垂直要取两两垂直的有效分量进行计算。

例5:如图7-3所示,长为L 的金属棒ab ,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B ,求ab 两端的电势差。

【审题】ab 两端的电势差等于金属棒切割磁感线产生的感应电动势,因此,只要求出感应电动势即可。

本题是导体棒转动切割磁感线产生感应电动势的情况,棒上各点的速率不相等,由v=ωr 知,棒上各点的线速度跟半径成正比,故可用棒的中点的速率作为平均切割速率代入公式E=Blv 求解。

本题也可以设△t 时间ab 棒扫过的扇形面积为△S ,根据E=n △φ/△t 求解。

【解析】解法一:E=Blv=BL ωL/2=BL 2ω/2 解法二:E=n △φ/△t= B △S/△t=t t L B ∆∆∙/212ω= BL 2ω/2 ∴22ωBL E U ab==答案:BL 2ω/2【总结】若用E=Blv 求E ,则必须先求出平均切割速率;若用E=n △φ/△t 求E ,则必须先求出金属棒ab 在△t 时间扫过的扇形面积,从而求出磁通量的变化率。

例6:如图7-4所示,矩形线圈abcd 共有n 匝,总电阻为R ,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B 。

让线圈从图示位置开始以ab 边为轴磁场外部分为2L 52,则 匀速转动,角速度为ω。

若线圈ab 边长为L 1,ad 边长为L 2,在⑴线圈从图示位置转过530时的感应电动势的大小为 。

⑵线圈从图示位置转过1800的过程中,线圈中的平均感应电流为 。

⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势的大小为 ,磁通量的变化率为 。

【审题】磁场有边界时,线圈abcd 从图示位置转过530的过程中,穿过线圈的磁通量始终没有变化,所以此过程感应电动势始终为零;在线圈abcd 从图示位置转过1800的过程中,初末状态磁通量大小不变,但方向改变,所以2121L BL 56L 53BL 2=∙=φ∆。

磁场没有边界时,线圈abcd 从图示位置转动产生的感应电动势按E=nBs ωsin θ规律变化,即E=nBL 1L 2ωsin ωt ,t 时刻磁通量的变化率△φ/△t=E/n=BL 1L 2ωsin ωt 。

【解析】⑴线圈从图示位置转过530时的感应电动势的大小为零。

⑵线圈从图示位置转过1800的过程中,πωωπφ56562121L nBL L BL n t n E ==∆∆= ∴RL nBL R E I πω5621==⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势 E=nBL 1L 2ωsin ωt=ω21L nBL 22图7-3图7-4此时磁通量的变化率2221ωφL BL n Et ==∆∆答案:0;R 5L nBL 621πω;ω21L nBL 22,2221ωL BL 【总结】本题考查了三个知识点:①感应电动势的产生由△φ决定,△φ=0则感应电动势等于零;②磁通量的变化量的求法,开始和转过1800时平面都与磁场垂直,△φ=2 BS ,而不是零;③线圈在匀强磁场中绕垂直于磁场的轴转动产生感应电动势的表达式及此过程中任一时刻磁通量的变化率的求法。

相关文档
最新文档