§ 3.3 轴对称与坐标变化

合集下载

初中八年级数学北师大版上册《轴对称与坐标变化》ppt课件

初中八年级数学北师大版上册《轴对称与坐标变化》ppt课件
§ 3.3 轴对称与坐标变化
Axisymmetric and coordinate changes
目录
CONTENTS
1
课前热身
3
巩固提升
2
课堂探究
4
学后反思
课前热身
请独立完成课前热身1~2,时间为两分钟
1
课前热身
++
-+
横坐标 纵坐标
--
+-
课堂探究
四个探究问题
1
探究一:关于坐标轴对称的两点坐标
请写出右边两面小旗各个点 的坐标.
A(2,6), B(5,4),
C(2,4), D(2,0)
A1(2,6) B1(5,4) C1(2,4) D1(2,0)
1
探究一:关于坐标轴对称的两点坐标
如右图所示的平面直角坐标系中, 第一、二象限内各有一面小旗.
(-2,6)
(2,6)
(1)两面小旗之间有怎样的位置图形的坐标关系
y
5 与原图形关于x轴对称
图中的鱼是将坐 标为:(0,0)
4
(5,4) (3,0)
(5,1) (5,-1)
3
(3,0) (4,-2)
2
(0,0)的点用线段
依次连接而成的
1
将各坐标的纵坐
0 12345678
x 标都乘以-1,横
–1
坐标保持不变,则
–2
图形怎么变化?
B(5,4),
3
探究三:图形的平移
“牵一发而动全身”
“牵一点而动全图”
4
探y 究四:两个关于坐标轴对称的图形的坐标关系
5
两个图形关于y轴对称 4
在平面直角坐标系中 依次连接下列各点:

3.3轴对称与坐标变化

3.3轴对称与坐标变化
4 3 2 1
5
在平面直角坐标系中 依次连接下列各点: (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0),你得到一个什 么图案? 将各坐标的纵坐 标保持不变,横坐 x 标都乘以-1 ,则 图形怎么变化?
-5
-4
-3
-2
-1
0 –1 –2 –3 –4
1
“顶点”的坐标与原来的点的坐标
有什么关系?
横坐标相等,纵坐标互为相反数
C2 A2
B2
(2,-6)
思考:
• 关于x轴对称的两个点的横纵坐标 之间有什么关系? • 关于y轴对称的两个点的横纵坐标 之间有什么关系?
结论一
图形变化后坐标的变化:
关于x轴对称的两个点的坐标, 横坐标相同,纵坐标互为相反数。
12
(-1,-2) (-6, 5) (0,1.6)
(4,0)
(-2, -3) (1, 2)
(6, -5) (0, -1.6) (-4,0)
2、已知点P(a,- 1)和点P’(2,b) 2 1 若点P与点P ’关于x轴对称,则a=_____ b=_______. -2 -1 若点p与点p ’关于y轴对称,则a=_____ b=_______. 3、点(4,3)与点(4,- 3)的关系是( B ) . A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系
2
3
4
5
坐标变化为:
(5,1) (-5,1) (5,-1) (-5,-1) (3,0) (-3,0) (4,-2) (0,0)
(x,y) (-x,y)
(0,0) (0,0)
(5,4) –5 (3,0) (-5,4) (-3,0)

3.3轴对称与坐标变化

3.3轴对称与坐标变化
,
P2
1、说出图中各点的坐标
y
P1
P 1 (3, 4)
P2 (3, 4)
1
P3 (3, 4) P4 (3, 4)
O
1
x
P3
P4
2、在以上各点中,哪些点关于y轴对称,哪些点关于x轴对称 ,哪些点关于原点对称? 3、若点M(x,4)到y轴的距离是3,则x= 若点N(-3,y)到x轴的距离是4,则y=
利用本节课的知识设 计完成下列两幅作品
y
O 1
x
必做题:课本P69 习题3.5 1 ,2,3 选作题:4 拓展题: 1. 已知A、B两点的坐标分别是(-2,3)和(2,3),则下 面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 *2.一束光线从点A(3,3)出发,经过y轴上点C反射后经 过点B(1,0)则光线从A点到B点经过的路线长是 ( )。 A.4 B.5 C.6 D.7
(x,y) (-x,y)
(0,0)
(5,4)
–5
(0,0) (-5,4)
y
5
4
3 2 1 0 –1 –2 –3 1 2 3 4 5 6 7 8
与 原 图 形 关 于 轴 对 称
3、如果图案的各 个顶点的横坐标保 持不变,纵坐标分 别变为原来的-1倍, 顺次连接所得的点, 你会得到怎样的图 案? 这个图案与原图 x 案有怎样的位置关 系呢?
3、尝试归纳: 关于y轴对称的两点,他们横坐标 ______, 相反 纵坐标_____ 相同
p,
p
p ( x, y) 即点 p ( x, y )关于y轴的对称点_____

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。

通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。

二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。

但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。

2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。

3.培养学生的观察能力、操作能力和思维能力。

四. 教学重难点1.轴对称的概念和性质。

2.坐标变化的应用。

五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。

2.准备坐标纸,以便学生进行坐标操作。

3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。

2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。

引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。

3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。

然后,让学生将对称轴沿坐标轴移动,观察图形的变化。

通过操作,让学生理解坐标变化对轴对称图形的影响。

4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。

通过解决问题,巩固学生对轴对称和坐标变化的理解。

5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,

轴对称与坐标变化

轴对称与坐标变化

y
5
不变,横坐标都乘以 -1,
4
则图形怎么变化?
3
2
两个图形关于 y 轴对称
1
–5 –4 –3 –2 –1 0 –1
1 2 34
5x
坐标变化为:
–2
–3
(x,y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
(-x,y) (0,0) (-5,4) (-3,0) (-5,1) (-5,-1) (-3,0) (-4,-2) (0,0)
分别过点 A、B1 作 x 轴、y 轴的垂 线,交点为 C,得到 Rt△AB1C.
显然 AC = 3,B1C = 4,根据勾股定理可得 AB1 = 5. 于是,AP + PB 的最小值为 5.
A.4
B.5
C.6
D.7
课堂小结
关于坐标轴对称
轴对称与 坐标变换
作图 —— 关于轴对 称变化
点到坐标轴的距离
拓展提升
已知:A,B 两个村庄在如图所示的直角坐标系中,那么: (1)点 A 的坐标为 ( 1,1 ) ,点 B 的坐标为 ( 5,2 ) ; (2)在 x 轴上有一条河,现准备在 河流边上建一个抽水站 P,使得抽 水站 P 到 A、B 两个村庄的距离之 和最小,请作出点 P 的位置,并求 此时距离之和的最小值.
关于x轴对称的两个点 的坐标,横坐标相同, 纵坐标互为相反数;
关于 y 轴对称的两个点的 坐标,横坐标互为相反数, 纵坐标相同.
关于横轴对称的点, 横坐标相同;
关于纵轴对称的点, 纵坐标相同.
练一练
1. 平面直角坐标系中,点 P( 2,3)关于 x 轴对称的 点的坐标为 (2, 3) .

3.3轴对称与坐标变化课件 2024-2025学年北师大版八年级数学上册

3.3轴对称与坐标变化课件 2024-2025学年北师大版八年级数学上册
互为相反数,纵坐标相同
(3)在这个坐标系里画出小旗ABCD关于x
(2,6)
轴的对称图形,它的各个“顶点”的坐标
与原来的点的坐标有什么关系?
先做出对称图形:
对应点横坐标相同,
纵坐标互为相反数.
步骤:①找各对应点位置;②连线
A (2,6)
A2 ( 2 , -6 )
B (5,4)
C (2,4)
B2 ( 5 , -4 ) C2 ( 2 , -4 )
2.各顶点关于原点对称,则构成的图形关于原点对称
课堂小结
点P(a,b)
(2,6)
点P(a,b)
关于y轴对称
关于x轴对称
点P(a,b) 关于原点对称
点坐标(-a,b)
点坐标(a,-b)
点坐标(-a,-b)
关于y轴对称的图形:各顶点关于y轴对称;
关于x轴对称的图形:各顶点关于x轴对称
B3
C3
A3
C2
A2
D. (3,-4)
12.如图,在平面直角坐标系中,直线l过点A且平行于x轴,交y轴于点
(0,1),△ABC关于直线l对称,点B的坐标为(-1,-1),则点C的坐标为
(-1,3)
.

13. 如图,在平面直角坐标系中,直线l∥y轴且过点(1,0),依次作
△ABC关于x轴对称的△A1B1C1,作△A1B1C1关于直线l对称的△A2B2C2,
2.各顶点关于x轴对称,则构成的图形关于x轴对称
(3)将各坐标的横,纵坐标都乘以
-1,那么图形会怎么变化呢?
坐标变化为:
(x,y)
(5,4)
(3,0)
(5,1)
(x,-y) (-5,-4) (-3,0) (-5,-1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省灵璧中学集体备课课时教案(试行)
年级:八学科:数学第周
章节与课题§3.3 轴对称与坐标变化课时安排 1 第1课时主备人张松辅助备课人马云单永娣
授课人使用日期
本课时学习目标或学习任务【知识目标】:
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:
1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】
1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

本课时重点难点或学习建议重点:1.能在平面直角坐标系中,根据坐标找出点,由点求出坐标.
2.平行于坐标轴的直线上的点的坐标关系及坐标轴上点的坐标的确定.
难点:1.在平面直角坐标系中,根据坐标找出点,由点求出坐标.
2.熟练掌握平行于坐标轴的直线上的点的坐标关系及坐标轴上点的坐标的确定.
本课时教学资源的使用教学重点:
经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:
由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学过程
学习要求或学
法指导
教师二次备课栏
教学过程:
第一环节创设问题情境,引入新课
『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

1. 探索两个关于坐标轴对称的图形的坐标关系
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什
么特点?其它对应的点也有这个特点吗?
2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,
看看两个点的坐标有什么样的位置关系,说说其中的道理。

2.变式。

发展
3.如果关于x轴对称呢?
在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各
个顶点的坐标与原来的点的坐标有什么关系?
4.关于x轴对称的两点,它们的横坐标,纵坐标;
关于y轴对称的两点,它们的横坐标,纵坐标。

3.运用。

巩固
5.已知点P(2a-3,3),点A(-1,3b+2),
(1)如果点P与点A关于x轴对称,那么a+b= ;
(2)如果点P与点A关于y轴对称,那么a+b= 。

练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。

坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

『师』:你们画出的图形和我这里的图形(挂图)是否相同?
『生』:相同。

引导发现法
本节课学生通过“坐标与轴对称”这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想”的认识
-4
-3-2-1
O 1
4321x y
23456756
7
-1-2-3-4-5 『师』:观察所得的图形,你们觉得它像什么? 『生』:像“鱼”。

『师』:鱼是营养价值极高的食物,大家肯定愿意吃鱼,下面我们把坐标适当地作些变化,鱼会不会“游起来”? 第二环节 探究新知:
例1 将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0), (4,-2),(0,0)做以下变化:
(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
『师』:先根据题意把变化前后的坐标作一对比。

如下: (1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0) (0,0),(-5,4),(-3,0),(-5,1),(-5,-1),(-3,0),(-4,-2),(0,0)
(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0) (0,0),(5,-4),(3,0),(5,-1),(5,+1),(3,0),
(4,+2),(0,0)根据变化后的坐标,把变化后的图形
在自己准备的方格纸上画出来。

你们画出的图形与下面的图形相同吗? 『生』:相同。

『师』:这个图形与原来的图形相比有什么变化呢? 『师』:图形应变成什么图形? 『生』:图形和原来图形相比,好像鱼沿y 轴翻了个身。

『师』:是的,所得的图案与原图案关于纵轴成轴对称。

(指导学生做第(2)题,方法同上) 『师』:图形应变成什么图形? 『生』:图形和原来图形相比,好像鱼沿x 轴翻了个身。

『师』:是的,所得的图案与原图案关于横轴成轴对称。

图略
(3)横坐标、纵坐标都分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化? 第三环节:议一议
关于X 轴对称的两个点的 坐标之间有什么关系?关于Y 轴呢? 关于X 轴对称的两个点的 坐标,横坐标相同,纵坐标互为相反数。

关于Y 轴对称的两个点的 坐标,纵坐标相同,横坐标互为相反数。

让学生总结发现,讨论得出结论,教师补充
第四环节 拓展练习:
1.点 A (2,- 3)关 于 x 轴 对 称 的 点 的 坐 标 是( ).
2.点 B ( - 2,1)关 于 y 轴 对 称 的 点 的 坐 标 是( ).
3.点(4,3)与点(4,- 3)的关系是( ) . A.关于原点对称 B.关于 x 轴对称 C.关于 y 轴对称 D.不能构成对称关系
4.点(m ,- 1)和点(2,n )关于 x 轴对称,则 mn 等于( ) A.- 2 B.2 C.1 D.- 1
5.(1)若 mn = 0,则点 P (m ,n )必定在 上.
(2)已知点 P ( a ,b ),Q (3,6),且 PQ ∥ x 轴,则b 的值为 .
6.点 A 在第一象限,当 m 为 时,点 A ( m + 1,3m - 5)到 x 轴的距离是它到y 轴距离的一半 .
坐标具有这样关系的 点,关于坐标轴对称吗?
第五环节课堂小结
1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)
2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)
3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y) 第六环节布置作业
习题3.5 1,2,3
备注:。

相关文档
最新文档