多功能信号发生器课程设计

合集下载

多功能信号发生器设计

多功能信号发生器设计

目录1、主要功能 (1)2、功能模块的划分 (1)3、主要功能的实现 (1)3.1信号的产生模块 (1)3.2 信号选择模块 (3)3.3系统的细化框图 (3)3.4多功能信号发生器的RTL图 (4)4 程序的调试分析与仿真 (5)5 总结 (9)6 附录 (10)6.1主程序 (10)6.2递增锯齿波形源程序 (11)6.3正弦波形源程序 (12)6.4三角波形源程序 (14)6.5方波源程序 (15)6.6波形选择模块源程序 (16)7 参考文献 (17)1、主要功能用VHDL语言设计一个多功能信号发生器,根据输入信号的选择可以输出递增锯齿波、正弦波、三角波、方波和以上四种波形的任意线性叠加等15种信号。

2、功能模块的划分根据设计要求,信号发生器的结构框图如图2.1所示。

图2.1 信号发生器的结构框图其中信号产生模块将产生所需的各种信号,信号发生器的控制模块可以用数据选择器实现,用多选1数据选择器实现对15种信号的选择。

最后将波形数据送入D/A转换器,将数字信号转换为模拟信号输出。

用示波器测试D/A 转换器的输出,可以观测到5种信号的输出。

3、主要功能的实现3.1信号的产生模块信号的产生可以利用计数器直接产生信号输出,当系统时钟输入后,通过复位开关选择是否产生波形(1) 递增锯齿波INCR的模块图如图3.1.1所示,其中CLK是输入时钟端口,RESET为输入复位端口,DOUT[7..0]为信号输出端口。

CLK RESET DOUT[7..0]INCRinst图3.1.1 递增锯齿波INCR的模块图(2) 正弦波SINE的模块图如图3.1.2所示,其中CLK是输入时钟端口,RESET 为输入复位端口,DOUT[7..0]为信号输出端口。

CLK RESET DOUT[7..0]SINEinst图3.1.2 正弦波SINE的模块图(3) 三角波TRIA的模块图如图3.1.3所示,其中CLK是输入时钟端口,RESET 为输入复位端口,DOUT[7..0]为信号输出端口。

多功能信号发生器课件设计

多功能信号发生器课件设计

《电子技术课程设计》题目:多功能信号发生器院系:电子信息工程专业:xxxxxxxx班级:xxxxxx学号:xxxxxxxx姓名:xxx指导教师:xxx时间:xxxx-xx-xx电子电路设计——多功能信号发生器目录一..课程设计的目的二课程设计任务书(包括技术指标要求)三时间进度安排(10周~15周)a.方案选择及电路工作原理;b.单元电路设计计算、电路图及软件仿真;c.安装、调试并解决遇到的问题;d.电路性能指标测试;e.写出课程设计报告书;四、总体方案五、电路设计(1)8038原理, LM318原理,(2)性能\特点及引脚(3)电路设计,要说明原理(4)振动频率及参数计算六电路调试要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试七收获和体会一、课程设计的目的通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。

在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。

这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。

它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。

不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。

因此,多功能信号发生器制作的集成电路收到了广泛的应用。

二、课程设计任务书(包括技术指标要求)任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。

要求:1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。

2.输出幅度为5V的单脉冲信号。

3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤5%。

多功能信号发生器课程设计要点

多功能信号发生器课程设计要点

课题:多功能信号发生器专业:电子信息工程班级:1班学号:姓名:指导教师:汪鑫设计日期:成绩:重庆大学城市科技学院电气学院多功能信号发生器设计报告一、设计目的作用1.掌握简易信号发生器的设计、组装与调试方法。

2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。

3.加深对模拟电子技术相关知识的理解及应用。

二、设计要求1.设计任务设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下:(1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波;(2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%;(3)输出三角波幅度V=0-5V可调。

(4)输出方波幅度可在V=0-12V之间可调。

2.设计要求(1)设计电路,计算电路元件参数,拟定测试方案和步骤;(2)测量技术指标参数;(3)写出设计报告。

三、设计的具体实现1、系统概述1.1正弦波发生电路的工作原理:产生正弦振荡的条件:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。

正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。

其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。

因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。

正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。

(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。

(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。

判断电路是否振荡。

方法是:(1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产生振荡。

多功能函数信号发生器设计

多功能函数信号发生器设计

模拟电子技术课程设计多功能函数信号发生器设计班级:姓名:完成日期:内容摘要:工作原理:假设t=0时电容C上的电压Uc=0,而只会比较器的输出端为高电平,即Uo=+Uz。

则集成运放同向输入端的电压为输出电压在电阻R1,R2上的分压结果,即U+=Uz*R1/R1+R2.此时输出电压+Uz将通过电阻R向电容C充电,使电容两端的电压Uc 升高,而此电容上的电压接到集成运放的反向输入端,即U-=Uc。

当电容上的电压升到U-=U+时,滞回比较器的输出端将发生跳变,由高电平跳变为低电平,使Uo=-Uz,于是集成运放同相输入端的电压也立即变为U+=-Uz*R1/R1+R2.输出电压变为低电平后,电容C将通过R 放电,使Uc逐渐降低。

当电容上的电压下降到U-=U+时,滞回比较器的输出端将再次发生跳变,由低电平跳变为高电平,即Uo=+U。

以后重复上述过程。

如此反复的进行冲放电,滞回比较器的输出端反复的在高电平和低电平之间跳变,于是产生了正负交替的矩形波。

目录:一、课程名称:多功能函数信号发生器设计。

二、课程设计的内容及要求:利用自己所学过个科学文化知识,设计并制作多功能函数信号发生器,完成设计说明书。

三、比较和选写设计的系统方案,画出系统框图。

四、单元电路的设计、参数的计算和器件的选择。

五、电路的组装和调试。

六、电路设计的一些总结。

七、元器件列表。

八、课程设计评分标准。

九、参考文献。

十、收获和体会。

一课程名称:多功能函数信号发生器二设计要求掌握正弦波、方波、三角波的波形产生原理,给出波形产生电路总体方案。

确定各单元电路中各元器件具体参数。

焊接电路板,进行调试。

方波峰-峰值UP-P>=6V三角波峰-峰值UP-P>=10V正弦波输出波形稳定、平滑编写设计说明书,要求:给出设计总体方案;设计电路图,附件中列出元器件清单;论述电路原理;各单元电路功能;计算出各级信号频率、幅值;给出信号输出的波形图;格式见摸电实验指导书。

多用信号发生器课程设计

多用信号发生器课程设计

多用信号发生器课程设计一、教学目标本课程旨在让学生了解和掌握信号发生器的基本原理、使用方法和应用场景。

通过本课程的学习,学生应达到以下目标:1.知识目标:–了解信号发生器的基本原理和结构;–掌握信号发生器的操作方法和使用技巧;–理解信号发生器在不同领域的应用。

2.技能目标:–能够正确使用信号发生器进行实验和测试;–能够根据实验需求选择合适的信号发生器参数;–能够对信号发生器进行简单的故障排除和维护。

3.情感态度价值观目标:–培养学生的实验操作能力和团队合作精神;–增强学生对电子技术的兴趣和好奇心;–培养学生对科学实验的严谨态度和安全意识。

二、教学内容本课程的教学内容主要包括以下几个部分:1.信号发生器的基本原理和结构:介绍信号发生器的工作原理、组成部分及其功能。

2.信号发生器的操作方法和使用技巧:讲解如何正确操作信号发生器,包括仪器的启动、设置、调节等步骤。

3.信号发生器在不同领域的应用:介绍信号发生器在通信、电子工程、物理实验等领域的具体应用。

4.实验操作和技能训练:安排实验室实践环节,让学生亲自动手操作信号发生器,进行实际应用和技能训练。

三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:教师讲解信号发生器的基本原理、结构和操作方法。

2.讨论法:学生进行小组讨论,分享对信号发生器应用的理解和经验。

3.案例分析法:分析具体的信号发生器应用案例,让学生了解信号发生器在不同领域的实际应用。

4.实验法:安排实验室实践环节,让学生亲自动手操作信号发生器,提高实验操作能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用合适的信号发生器教材,为学生提供理论学习的参考。

2.参考书:提供相关的电子技术书籍,丰富学生的知识体系。

3.多媒体资料:制作课件和教学视频,帮助学生更好地理解信号发生器的原理和操作。

4.实验设备:准备足够的信号发生器设备,确保每个学生都能在实验环节亲自动手操作。

多功能信号发生器课程设计报告

多功能信号发生器课程设计报告

河南理工大学《单片机应用与仿真训练》设计报告多功能信号发生器设计姓名:张冬波张立中学号:310808010425 310808010426专业班级:电气08-4指导老师:刘巍所在学院:电气工程与自动化学院2011年6月28 日摘要本设计采用基于AT89S52的单片机最小系统为核心,成功产生出幅值和频率都可调的正弦波、梯形波、方波、三角波等波形。

频率范围是0-2000Hz,幅值调节范围-10V到+10V。

本系统主要由四大模块组成:液晶显示模块、波形发生模块及稳幅输出模块,幅频调节模块、及外部电源模块。

各个模块的实现方法如下:一、液晶显示模块:本系统采用应用较广泛的1602液晶作为显示模块。

其显示与控制机理是单片机通过与液晶按照一定的规定相连接,然后再程序中在对液晶进行初始化后,就可以向其写字符或读字符。

二、波形发生模块及稳幅输出模块:产生指定波形可以通过DAC芯片来实现,不同波形产生实质上是对输出的二进制数字量进行相应改变来实现的。

本系统采用的是经典的DAC0832 8位数/模转换器。

稳幅输出则通过两个LM324集成运放来实现对DAC0832输出电流信号到电压信号的转变。

三、幅频调节模块:通过按键与两个门电路74ls00和74ls04的组合来实现通过产生中断来实现对波形的选择和频率的调节。

而幅值调节通过一个10K的电位器来实现参考电压Vref的改变来改变幅值。

四、外部电源模块:变压器将220V交流电降成16V交流后在通过整流桥经过7812和7912滤波后即产生正负12V直流电用作LM324的电源。

本系统软件主要通过C语言开发,硬件电路设计具有典型性。

同时,本系统中任何一部分电路模块均可移植于其它实用开发系统的设计中,电路设计实用性很强。

目录1、概述 (4)1.1 信号发生器现状 (4)1.2 单片机在波形发生器中的应用 (4)2、系统总体方案及硬件设计 (5)2.1 系统分析 (5)2.2 总体方案设计 (6)2.2.1系统总体结构框图设计 (6)2.3 总体硬件设计 (6)2.4系统各模块设计 (7)2.4.1 资源分配 (7)2.4.2显示器接口设计 (7)2.4.3 复位与时钟电路设计 (8)2.4.4 按键中断电路设计 (10)2.4.5 D/A转换电路设计 (10)3、软件设计 (15)3.1软件总体设计 (15)3.2 软件功能设计 (16)3.2.1系统初始化程序设计 (16)3.2.2 按键检测及中断处理程序 (16)3.2.3 液晶显示程序 (17)3.2.4 正弦波发生程序设计 (19)3.2.5方波产生程序 (20)3.2.6三角波产生程序 (20)3.2.7梯形波产生程序 (21)4、实验仿真 (22)4.1 protues软件仿真步骤 (22)4.2 仿真结果 (23)4.3仿真结论 (25)5、课程设计体会 (26)参考文献 (27)附1:源程序代码 (28)附2:系统原理图 (35)1、概述1.1 信号发生器现状. 目前,市场上的信号发生器多种多样,一般按频带分为超高频、高频、低频、超低频、超高频信号发生器。

多功能信号发生器设计概要

多功能信号发生器设计概要

单片机与接口技术课程设计(论文)多功能信号发生器设计院(系)名称电子与信息工程学院专业班级通信122学号120学生姓名指导教师起止时间:2015.7.4—2015.7.13课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:通信工程摘要信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。

目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。

所以本设计使用的是AT89c51单片机构成的发生器,可产生三角波、方波、锯齿波等多种特殊波形和任意波形,波形的频率可用程序控制改变。

在单片机上加外围器件直接式键盘,通过键盘控制波形频率的增减以及波形的选择。

在单片机的输出端口接DAC0832进行D/A转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。

关键词:信号发生器;单片机;波形调整目录第1章概论 .......................................................................... 错误!未定义书签。

1.1 课题背景 ................................ 错误!未定义书签。

1.2 课题意义 ................................ 错误!未定义书签。

第2章信号发生器的设计 (2)2.1 设计原理 (2)2.2 设计思路 (2)2.3 功能原理框图 (2)第3章信号发生器电路及仿真 (4)3.1 D/A转换电路 (4)3.2 键盘显示模块设计 (4)3.3 信号发生器总电路图 (5)第4章 Proteus仿真结果 (7)第5章总结 (9)参考文献 (10)附录I 原理图 ........................................................................ 错误!未定义书签。

基于labview多功能函数信号发生器课程设计报告

基于labview多功能函数信号发生器课程设计报告

课程设计报告(2010//2011学年第二学期)课题名称:基于Labview的虚拟信号源的设计指导教师:设计地点:起迄日期:2011年2月23日-2011年3月1日学院:自动化学院专业:测控技术与仪器班级:学生姓名:学生学号:索引一、虚拟仪器简介 (1)二、设计要求 (2)三、设计与实现 (3)四、测试结果 (13)五、性能分析 (17)六、个人心得与体会 (18)七、参考资料 (19)基于Labview的虚拟信号源的设计一:虚拟仪器简介虚拟仪器是依靠VXI、PXI等标准总线采用驱动器使计算机有控制物理仪器设备的能力。

虚拟仪器代表着从传统硬件为主的测试系统到以软件为中心的测试系统的根本性转变。

也许大家对驱动器这个概念不怎么陌生吧,在这里我稍作解释。

计算机在测试和自动化领域中的应用,导致了仪器“驱动器”概念的诞生,驱动器又称驱动程序。

仪器驱动器是介于计算机与仪器硬件设备之间的软件中间层,由函数库、实用程序、工具套件等组成,是一系列软件代码模块的统称。

它驻留在计算机中,是连接计算机和仪器的桥梁和纽带。

虚拟仪器技术是在PC技术的基础上发展起来的,所以完全“继承”了以现成即用的PC技术为主导的最新商业技术的优点,包括功能超卓的处理器和文件I/O,使您在数据高速导入磁盘的同时就能实时地进行复杂的分析。

此外,不断发展的因特网和越来越快的计算机网络使得虚拟仪器技术展现其更强大的优势。

NI的软硬件工具使得工程师和科学家们不再圈囿于当前的技术中。

得益于NI软件的灵活性,只需更新您的计算机或测量硬件,就能以最少的硬件投资和极少的、甚至无需软件上的升级即可改进您的整个系统。

在利用最新科技的时候,您可以把它们集成到现有的测量设备,最终以较少的成本加速产品上市的时间。

在驱动和应用两个层面上,NI高效的软件构架能与计算机、仪器仪表和通讯方面的最新技术结合在一起。

NI设计这一软件构架的初衷就是为了方便用户的操作,同时还提供了灵活性和强大的功能,使您轻松地配置、创建、发布、维护和修改高性能、低成本的测量和控制解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:多功能信号发生器专业:电子信息工程
班级:1班
学号:
姓名:
指导教师:**
设计日期:
成绩:
重庆大学城市科技学院电气学院
多功能信号发生器设计报告
一、设计目的作用
1.掌握简易信号发生器的设计、组装与调试方法。

2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。

3.加深对模拟电子技术相关知识的理解及应用。

二、设计要求
1.设计任务
设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下:
(1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波;
(2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%;
(3)输出三角波幅度V=0-5V可调。

(4)输出方波幅度可在V=0-12V之间可调。

2.设计要求
(1)设计电路,计算电路元件参数,拟定测试方案和步骤;
(2)测量技术指标参数;
(3)写出设计报告。

三、设计的具体实现
1、系统概述
1.1正弦波发生电路的工作原理:
产生正弦振荡的条件:
正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。

正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。

其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。

因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。

正弦波振荡电路的组成判断及分类:
(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。

(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。

(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。

判断电路是否振荡。

方法是:
(1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产
生振荡。

(2)放大电路的结构是否合理,有无放大能力,静态工作是否合适;
(3)是否满足幅度条件。

正弦波振荡电路检验,若:
(1)则不可能振荡;
(2)振荡,但输出波形明显失真;
(3)产生振荡。

振荡稳定后。

此种情况起振容易,振荡稳定,输出波形的失真小
常见的RC正弦波振荡电路是RC串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。

串并联网络在此作为选频和反馈网络。

它的电路图如下所
示:它的起振条件为:。

它的振荡频率为:它主要用于低频振荡。

要想产生更高频率的正弦信号,一般采用LC正弦波振荡电路。

它的
振荡频率为:。

石英振荡器的特点是其振荡频率特别稳定,它常用于振荡频率高度稳定的的场合。

RC正弦振荡电路
1.2 正弦波转换方波电路的工作原理:
在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。

因此,虽然单限比较器很灵敏,但是抗干扰能力差。

而滞回比较器具有滞回特性,即具有惯性,因此也就具有一定的抗干扰能力。

从反向输入端输人的滞回比较器电路如图a 所示,滞回比较器电路中引人了正反馈。

从集成运放输出端的限幅电路可以看出,
UO=±UZ。

集成运放反相输人端电位UP=UI同相输入端电位
令UN=UP求出的UI就是阀值电压,因此得出
输出电压在输人电压u,等于阀值电压时是如何变化的呢?假设UI<-UT,那么UN一定小于up,因而UO=+UZ,所以UP=+UYO。

只有当输人电压UI增大到+UT,再增大一个无穷小量时,输出电压UO才会从+UT跃变为-UT。

同理,假设UI>+UT,那么UN一定大于UP,因而UO=-UZ,所以UP=-UT。

只有当输人电压UI减小到-UT,再减小一个无穷小量时,输出电压UO才会从-UT跃变为+UT。

可见,UO从+UT跃变为-UT和从-UT跃变为+UT的阀值电压是不同的,电压传输特性如图b)所不。

从电压传输特性上可以看出,当-UT<UI<+UT时,UO可能是-UT,也可能是+UT。

如果UI是从小于-UT,的值逐渐增大到-UT<UI<+UT,那么UO应为+UT;如果UI从大于+UT的值逐渐减小到-UT<UI<+UT,那么应为-UT。

曲线具有方向性,如图b)所示。

实际上,由于集成运放的开环差模增益不是无穷大,只有当它的差模输人电压足够大时,输出电压UO才为±UZ。

UO在从+UT变为-UT或从-UT变为+UT的过程中,随着UI的变化,将经过线性区,并需要一定的时间。

滞回比较器中引人
了正反馈,加快了UO的转换速度。

例如,当UO=+UZ、UP=+UT时,只要UI略大于+UT足以引起UO的下降,即会产生如下的正反馈过程:UO的下降导致UP下降,而UP的下降又使得UO进一步下降,反馈的结果使UO迅速变为-UT,从而获得较为理想的电压传输特性。

本电路中该电路的作用是将正弦信号转变成方波信号,其传输特性曲线如下图所示:
正弦波传输特性
1.3 方波转换成三角波电路的工作原理:
当输入信号为方波时,其输出信号为三角波,电路波形图如下:
2、单元电路设计与分析
2.1 正弦波发生电路的设计
本电路中采用RC桥式正弦波振荡电路产生正弦波,其电路图如下所示
RC桥式正弦振荡电路
回路串联两个并联的二极管,如上图所示串联了两个并联的该电路R
f
1BH62,这样利用电流增大时二极管动态电阻减小、电流减小时动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。

此时输出电压系数为
A
u =1+(R
f
+r
d
)/R
1
RC振荡的频率为:f
=1/(2∏RC)
该电路中,C=1uF
f
=1/(2*3.14*R*10-6)≈20Hz——〉R=8000欧
f
=1/(2*3.14*R*10-6)≈5000Hz——〉R=30欧≈0 所以可变电阻的范围是0-8k欧。

用Multisim10.0对电路进行仿真得到下图
仿真波形
从图中可得出产生的正弦波U=3.9V;
T=1.9×4≈7.6ms.
F
=1/T=131Hz.
仿真得出的数据在理论值范围之内,电路正确。

2.2 正弦波转换方波电路的设计
本电路中采用滞回电压比较器将正弦波转成方波,其电路原理如下图所示
滞回电压比较器电路原理图
滞回电压比较器原理前面有描述,此处不赘述。

本电路中用到的稳压管,其稳压电压为24V
电路中阈值电压为:
U
T1=
R2
R1
R2
+
U REF-
2
R
1
R
1
R
+
U
Z
U
T2=
R2
R1
R2
+
U REF+
2
R
1
R
1
R
+
U
Z
本电路中U REF=0,所以
U
T1=-
2
R
1
R
1
R
+
U
Z
U T2=
2
R
1
R
1
R
+
U
Z
用Multisim10.0对其进行仿真得到如下波形图
波形仿真:
从波形中可以得到方波电压为±12.7V,与理论误差不大,可得出电路是正确的。

2.3 方波转换成三角波电路的设计
本电路中方波转成三角波采用积分电路,其电路原理如下图所示
积分电路图
积分电路U 0=- 2
1
)(RC 1
t t dt t u +u 0(t 1) 电路仿真如下图所示
电仿真中三角波,Umax=5.4V
2.4仿真电路。

相关文档
最新文档