开关电源的电压波形及其参数分析

合集下载

开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。

计算公式为AP=AwAe式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。

根据计算出的AP值,即可查表找出所需磁心型号。

下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。

1 高频变压器电路的波形参数分析开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。

高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。

1)波形系数Kf为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。

根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。

正弦波的电压有效值为在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。

2)波形因数kf为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。

在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式以正弦波为例,这表明,Kf=4kf,二者相差4倍。

开关电源6种常见波形的参数见表1。

因方波和梯形波的平均值为零,故改用电压均绝值来代替。

对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

2 用AP法( 面积乘积法)选择磁心的公式推导令一次绕组的有效值电压为U1,一次绕组的匝数为NP,所选磁心的交流磁通密度为BAC,磁通量为Φ,开关周期为T,开关频率为f,一次侧电流的波形系数为Kf,磁心有效截面积为Ae(单位是cm2),有关系式考虑Kf=4kf关系式之后,可推导出同理,设二次绕组的有效值电压为US,二次绕组的匝数为NS,可得设绕组的电流密度为(单位是A/cm2),导线的截面积为S=I/J。

非对称llc半桥开关电源上下管vds波形

非对称llc半桥开关电源上下管vds波形

非对称LLC半桥开关电源上下管VDS波形一、概述在非对称LLC半桥开关电源中,上下管VDS波形是一个至关重要的参数。

VDS波形直接反映了开关管在工作过程中的电压变化情况,对于电源的稳定性和效率有着重要的影响。

本文将对非对称LLC半桥开关电源上下管VDS波形进行深入探讨,以帮助读者更好地理解和应用这一主题。

二、非对称LLC半桥开关电源1. 非对称LLC半桥开关电源的工作原理非对称LLC半桥开关电源是一种高效、稳定的电源结构,通常应用于工业和通信等领域。

其工作原理是利用开关管开关周期性地将输入电压转换成高频脉冲信号,经过变压器和整流电路后输出稳定的直流电压。

2. 非对称LLC半桥开关电源的特点与传统的开关电源相比,非对称LLC半桥开关电源具有更高的效率和更好的稳定性。

其采用LLC谐振电路,能够减小开关损耗、输出电压波动和电磁干扰,从而提高整个电源系统的性能。

三、上下管VDS波形的重要性1. VDS波形的含义上下管VDS波形指的是开关管的漏极-源极电压波形。

通过观察VDS波形,可以判断开关管的工作状态、损耗情况和电压稳定性。

2. VDS波形对电源的影响优秀的VDS波形能够降低开关管的损耗、提高电源的效率,并且保证输出电压的稳定性。

对于非对称LLC半桥开关电源来说,优化VDS 波形是提高电源整体性能的关键之一。

四、优化上下管VDS波形的方法1. 优化开关管的驱动方式通过改进开关管的驱动方式,可以减小开关过渡过程中的电压变化,从而改善VDS波形。

2. 优化电路结构合理设计电源的电路结构,例如加入磁性元件和滤波电容等,能够降低电压的峰-峰值,减小VDS波形的波动幅度。

3. 选用高性能的开关管选择具有低导通电阻和低开关损耗的高性能开关管,能够改善VDS 波形并提高电源的效率。

五、我的观点和理解非对称LLC半桥开关电源上下管VDS波形的优化是提高电源性能的关键之一。

通过合理的设计和优化手段,可以改善VDS波形,减小开关损耗,提高电源的效率和稳定性。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

反激式开关电源设计波形分析应力计算回路布局

反激式开关电源设计波形分析应力计算回路布局

反激式开关电源设计波形分析应力计算回路布局
一、反激式开关电源设计波形分析
1.开关信号波形:
反激式开关电源的主要工作是利用开关控制器的输出,控制MOSFET 的开启和关闭,从而实现交流波的改变。

MOSFET的开启和关闭状态,只受开关控制器输出信号的影响。

因此,开关控制器输出的波形是反激开关电源设计的重要参数。

一般情况下,开关控制器输出的波形有脉冲宽度调制波形(PWM)和恒定周期调制波形(FPWM)两种。

PWM波形由正弦波组成,经过两个对称的截止点,形成周期性正方形波,控制MOSFET的端极变化产生脉冲宽度调制波形,以控制交流波形。

而FPWM波形,在它的正弦波上增加了一个脉冲,形成了一个在宽度上恒定的正弦波,控制MOSFET的端极变化产生恒定周期调制波形,来控制交流波形。

2.交流波形:
当MOSFET开启和关闭时,变压器的交流波形会随之发生变化,其形式可以用下式表示:
Vac(t)=Vm*sin(ωt+θm)
其中Vm为交流波形的最大电压,ω为开关控制器输出信号的频率,θm为交流相位角。

单片开关电源的波形测试及分析

单片开关电源的波形测试及分析

例, 介绍单片开关 电源的波形测试及分析方法。
开机时可限制 c 的充电电流。 原边箝位保护电路
由瞬 态 电 压 抑 制 器 (V , D T SV )和 阻 塞 二 极 管
1 被测单片 开关 电源 的典型 电路
被 测 单 片 开关 电源 的典 型 电路 如 图 1所 示 , 其输 出为 + 2 /A, 定 输 出功 率 为 6 它属 1 5 额 V 0w。 于光耦 反馈 式精 密 开关 电源 ,电路 中共使 用 三 片 集 成 电路 : T P2 Y型 单 片 开 关 电源 集 成 I 为 O 27 C
中图分 类 号 :N 6 T 8
文献标 识码 : A
文章编号 :2 92 1(0 70 — 09 0 0 1— 732 0 )60 5— 4
O 引言
单片 开关 电源 的波 形测 试技 术对 于 深入 了解 其 工作原 理 、 高性 能指标 具有 重要 意义 。 提 本文 以 T P 2 Y构 成 的 由 1 6 O 27 2V、0w 开 关 电 源 模 块 为
单 片开关电源 的波形测试及分析
沙 占友 , 马 洪涛 , 王彦 朋
( 河北科技 大学 信 息科 学与 工程 学 院 , 河北 摘 石 家庄 00 5 ) 5型 电路 为例 , 细 阐述其 波形测 试 方法并 对 实测波 形作 了深入 分析 , 详
重点研 究 了单 片开关 电源的 启动特 性 、 一次侧 和二 次侧 的 电压波形及 电流 波形 。所得 出的结论 对
实现单片开关电源的优化设计具有重要参考价值。
关 键词 : 关 电源 ; 形测 试 ;启动 ;尖峰 电流 开 波
W a e  ̄ m si g a d An l sso e v fI Te t n a y i ft r n h S n l i wic i g Po r S p l i g e Ch p S t h n we u p y

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。

开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。

下⾯将以反激电源为例进⾏讲解。

1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。

基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。

根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。

根据控制⽅式可分为PFM 和PWM 型反激电源。

根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。

我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。

1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。

此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。

此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。

2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。

提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。

开关电源电路分析

开关电源电路工作原理分析通信设备中经常会使用到开关电源。

现就公司入职培训时,设备所柴富起师兄《通信电源技术》课件中开关电源的电路作简要分析。

一、开关电源组成开关电源电路主要由:输入电磁干扰滤波(EMI)电路、整流电路、软启动电路、DC-DC 变换电路和次级滤波电路构成。

电路图如图1.1所示:图1.1二、开关电源各部分电路的工作原理2.1EMI滤波电路的工作原理该电路中C116是一个高压滤波电容,当有电压过高的交流电通过时,能通过C116形成回路,从而对后级电路没有影响;L102电感的作用是滤掉频率过高的交流电;C117和C118是两个去耦电容,和外壳(大地)连接在一起,起着保护的作用。

经过EMI滤波电路后得到一个频率适中电压稳定的交流电。

如图2.1 图2.1 所示。

2.2整流电路的工作原理整流电路是由四个二极管组合而成的整流桥,整流桥工作原理是:交流电的正、负半周期分别通过整流桥上的两对二极管,无论是哪对二极管导通,输出的都是正半周的交流电,因此得到从整流桥输出的电压波形如图2.2所示。

图2.22.3软启动电路的工作原理软启动电路工作原理是:当开关K101闭合时,R129、N10和R126被短路,N10光耦中的发光二极管不亮,从而控制Soft start电路检测端为高电平,Soft start电路开始工作,为DC-DC提供控制电压;当K101断开时,电流流经光耦中发光二极管使可控硅开启,Soft start电图2.3路检测端为低电平,Soft start电路停止工作。

C113和C114是两个极性电容,起的作用是滤波,通过C113和C114是两个极性电容后电压变为如图2.3所示。

2.4DC-DC变换电路的工作原理该电路左半部分是由四个相同的组合电路构成,每个组合电路中都有一个N沟道增强型MOS管、一个二极管、一个电容和一个电阻,其中二极管起续流保护,电容和电阻串联构成一个防浪涌保护。

每个MOS管的栅极分别接了V1、V2、Q3、Q4 四个控制电压,当栅极控制电压为高电平时MOS管导通,因此要保证电流流过该组合电路就必须保图2.4证V1、Q3同时为高电平或者同时为低电平,V2、Q3也得同时为低电平或者同时为高电平,既是V1、Q3和V2、Q3是不一样的电平,通过调节V1、Q3和V2、Q3间高低电平转换频率,就调节了输出电压的占空比,从而调节其电压的大小,也就是PMW调制。

反激式开关电源的设计计算

反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。

2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。

3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。

4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。

设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。

同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。

2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。

选择时需要考虑开关速度、导通和截止损耗等因素。

3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。

变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。

4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。

同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。

5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。

常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。

6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。

以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。

设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。

浅谈开关电源上的电压波形曲线

浅谈开关电源上的电压波形曲线
课程介绍对于一个很好的开关电源需要具备两个功能,第一个是占空比可调,第二个就是电压反馈,这个我们在第七部时已经用分立元器件讲到了这两点,第六步里面我们用的是一个电源芯片来做的。

它们都是占空比可调,而且也都是电压反馈的。

我们可以把一样的技术和方式应用到我们现在的电路中来,这样同样可以实现电压可调带电压反馈的电路。

变压器输入为300V,下方为三极管。

考虑到高压三极管虽然也很多,但也要考虑到电流和耐高压的问题。

这种情况下,MOS管是可以完全满足的。

这样原先三极管之前的电阻我们就可以从10kΩ改为10Ω或者100Ω左右,从而使得充电放电都比较快。

但MOSFET 还是需要加入一个下拉电阻。

假设我们加入的是一个高压管,那我们来分析一下高压管上面的一个电压波形曲线。

学习获得:
学习隔离式反激开关电源设计
1、反激开关电源的设计思路,拓扑结构及原理框图讲解
2、驱动电路设计
3、经典驱动芯片UC3842 内部结构讲解
4、频率设计讲解
5、吸收电路设计及作用讲解
6、功率开关管MOSFET的开关速度,发热因素及选型讲解
7、输出电路设计
8、MOSFET选型,吸收电路器件选型,输出二极管选型,输入输出电容等重要器件参数计算。

9、电流环设计
10、电压环设计
11、经典基准电压源TL431 内部结构讲解。

开关电源的主要性能指标及其分析

开关电源的主要性能指标及其分析开关电源主要性能指标分为输入参数、输出参数、电磁兼容性能指标和其他标准等4类,它们是开关电源选择和设计制造的依据。

1、输入参数(1)输入电压国内应用的民用交流三相电源电压为380V,单相为220V。

目前,开关电源多采用国际通用电压范围,即单相交流85~265V,这一范围覆盖了全球各种民用电源标准所限定的电压。

直流输入电压情况较复杂,从24~600V均有可能。

由于输入电压变化范围过宽,在设计开关电源过程中就必须留下较大裕量而造成浪费,因此,变化范围应在满足实际要求的前提下尽可能小。

(2)输入频率我国市电频率为50Hz。

航空、航天及船舶用电源常采用400Hz,它们的输入电压通常为单相或三相115V,整流后的脉动频率远高于工频,因而整流后所接滤波电容的电容量可减小很多。

(3)输入相数三相输入的情况下,整流后直流电压约为单相输入时的1.7倍,当开关电源功率大于5kW时,应选三相输入,以避免引起电网三相间的不平衡,同时可减小主电路的电流,以降低损耗。

功率为3~5kW时可选单相输入,以降低主电路电压等级,以降低成本。

(4)输入谐波电流和功率因数为保护电网环境、降低谐波污染、提高电能效率,许多国家和地区已出台相应的更高的标准要求(IEC61000-3系列),对用电装置的输入谐波电流和功率因数做出较严格的规定,因而,输入谐波和功率因数成为开关电源的一个重要指标,也成为设计、应用开关电源产品的一个重点。

但减小谐波电流和提高功率因数会增大电路的复杂程度,增加成本,可靠性也会随着元器件的增加而下降。

因此,应根据实际需要和有关标准来制定指标。

目前单相有源功率因数校正(PFC)技术已基本成熟,附加成本也较低,可很容易使输入功率因数达到0.99以上,输入总谐波电流小于5%。

三相PFC技术还不成熟,若要使功率因数达到较高值(如高于0.99),则需要6开关PWM整流电路,其成本很可能会高于后级DC/DC变换器成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1000-582X(2003)02-0022-03
开关电源的电压波形及其参数分析*
仲元昌 .
(重庆大学通信工程学院,重庆 400044)
摘 要:开关电源已是当今二次电源的主要发展方向,在开关电源的分析与设计中,对开关工作时所形成的电压波形及其参数的分析是致关重要的。

为了分析开关电源的工作特性,研究了开关电源的电路模型及电压波形的形成过程,针对分析开关电源的电压波形及其参数,提出了一套“辅助补偿”算法。

基于这套算法,对开关电源的电压波形及其参数进行了理论分析和计算机仿真。

仿真结果表明了这套算法的可行性和先进性。

关键词:开关电源;相对电压平均值;相对电压有效值;波形系数;相对脉动系数 中图分类号:TN772.7 文献标识码:A
Analysis to On-off Voltage Wave and Its Parameter of Switched Power
ZHONG Yuan-chang
(College of Communication Engineering Chongqing University, Chongqing 400044, China)
Abstract: To analyse the working parameter of switched power, this article introduces the circuit model of switched power and
 ̄  ̄the shaping process of its on-off voltage wave. Aiming at analyzing to the voltage wave and parameter, an assistant
compensation" method is put forward. Based on this method, the voltage wave and parameter of switched power are
theoretically analyzed and imitated. The imitation results indicate that the method is afeasible and advance one.
Key words: switched power; average value; effective value; wave coefficient; pulse-move coefficient。

相关文档
最新文档