七年级数学期末压轴题
初中七年级下册期末压轴题数学附答案(一)

初中七年级下册期末压轴题数学附答案(一)一、解答题1.如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t=秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当点P 运动到CD 上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.2.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠= ,140PAB ∠= ,求PEH ∠的度数.3.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.4.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直线AB 与CD 的位置关系是;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由.5.如图1,已AB ∥CD ,∠C =∠A .(1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°,①直接写出∠AED 与∠FDC 的数量关系:.②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数6.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷ 个(a≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___;(2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___;5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷338.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于;9.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作a ⓝ,读作“a 的圈n 次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a (a≠0)的圈n (n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧10.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106();111();400();2015().(2)在所有的四位数中,最大的“本位数”是,最小的“本位数”是.(3)在所有三位数中,“本位数”一共有多少个?11.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:={5}=;(2)若=1,写出所有满足题意的整数x 的值:.(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=],y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0=,n =.12.阅读下列材料:小明为了计算22019202012222+++++ 的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++= ________;(2)220333+++= _________;(3)求231n a a a a ++++ 的和(1a >,n 是正整数,请写出计算过程).13.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.14.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.15.在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F 与点B 重合时,m 的值为______;②当点F 与点A 重合时,m 的值为______.(2)请用含m 的式子表示S ,并直接写出m 的取值范围.16.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?17.对于平面直角坐标系xOy 中的图形G 和图形G 上的任意点P (x ,y ),给出如下定义:将点P (x ,y )平移到P '(x +t ,y ﹣t )称为将点P 进行“t 型平移”,点P '称为将点P 进行“t 型平移”的对应点;将图形G 上的所有点进行“t 型平移”称为将图形G 进行“t 型平移”.例如,将点P (x ,y )平移到P '(x +1,y ﹣1)称为将点P 进行“l 型平移”,将点P (x ,y )平移到P '(x ﹣1,y +1)称为将点P 进行“﹣l 型平移”.已知点A (2,1)和点B (4,1).(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为.(2)①将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中,在线段A ′B ′上的点是.②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是.(3)已知点C (6,1),D (8,﹣1),点M 是线段CD 上的一个动点,将点B 进行“t 型平移”后得到的对应点为B ',当t 的取值范围是时,B 'M 的最小值保持不变.18.如图1,以直角AOC △的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 80b -=.(1)直接写出点A ,点C 的坐标;(2)如图1,坐标轴上有两动点P ,Q 同时出发,点P 从点C 出发沿x 轴负方向以每秒2个单位长度的速度匀速运动,点Q 从点O 出发沿y 轴正方向以每秒1个单位长度的速度匀速运动,当点P 到达点O 整个运动随之结束;线段AC 的中点D 的坐标是()4,3D ,设运动时间为t 秒.是否存在t ,使得DOP △与DOQ △的面积相等?若存在,求出t 的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若DOC DCO ∠=∠,点G 是第二象限中一点,并且OA 平分DOG ∠,点E 是线段OA 上一动点,连接CE 交OD 于点H ,当点E 在OA 上运动的过程中,探究DOG ∠,OHC ∠,ACE ∠之间的数量关系,直接写出结论.19.题目:满足方程组3512332x y kx y k+=+⎧⎨+=-⎩的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y=15,3x+y=2,∴x=95∴k=3×95=275把x=95,y=15代入方程②得k=﹣35所以k的值为275或﹣35.请诊断分析并评价“小勇同学的解答”.20.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.21.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为25347+=+=,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.22.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”.(1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.23.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.24.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()28212a b -+-=,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点,①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.25.阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得1112x <<.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2235x ≥-+>-;(3)已知532x -≤<-,求35x +的整数值.26.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x ].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x =[x ]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x ]=3,那么x 的取值范围是;(3)如果[5x -2]=3x +1,那么x 的值是;(4)如果x =[x ]+a ,其中0≤a <1,且4a =[x ]+1,求x 的值.27.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2,在数轴上找出|x ﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x ﹣1|=2的解为x =﹣1或x =3,因此不等式|x ﹣1|>2的解集为x <﹣1或x >3.参考阅读材料,解答下列问题:(1)方程|x ﹣2|=3的解为;(2)解不等式:|x ﹣2|≤1.(3)解不等式:|x ﹣4|+|x +2|>8.(4)对于任意数x ,若不等式|x +2|+|x ﹣4|>a 恒成立,求a 的取值范围.28.如图①,在平直角坐标系中,△ABO 的三个顶点为A (a ,b ),B (﹣a ,3b ),O(0,0|b ﹣2|=0,线段AB 与y 轴交于点C .(1)求出A ,B 两点的坐标;(2)求出△ABO 的面积;(3)如图②,将线段AB 平移至B 点的对应点B '落在x 轴的正半轴上时,此时A 点的对应点为A ',记△A B C ''的面积为S ,若24<S <32,求点A '的横坐标的取值范围.29.已知关于x 、y 的二元一次方程23,3 3.x y a x y a +=-⎧⎨-=-⎩①②(1)若方程组的解x 、y 满足0,1x y ≤<,求a 的取值范围;(2)求代数式638x y +-的值.30.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.(1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(-2,0);(2)①t=2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,z=x+y.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.【详解】解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【点睛】本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键.2.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠FEG,∠GEH=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC ,∴∠APC =β-α;(3)如图3,过点P ,Q 分别作PE ∥AB ,QF ∥AB ,∵AB ∥CD ,∴AB ∥QF ∥PE ∥CD ,∴∠BAP =∠APE ,∠PCD =∠EPC ,∵∠APC =116°,∴∠BAP +∠PCD =116°,∵AQ 平分∠BAP ,CQ 平分∠PCD ,∴∠BAQ =12∠BAP ,∠DCQ =12∠PCD ,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,∴∠AQC =58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.4.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ;(2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠.【详解】解:(1)2(402)|20|0αβ-+-= ,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠ ,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒ ,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠;理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠ ,12PFQ PFN =∠,PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠.【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.5.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=514∠DEB,求出∠AED=50°,即可得出∠EPD的度数.【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.6.(1)70°;(2)EAF AED EDG∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠= ,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒ ,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒ ,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.7.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a -;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12(12)⑤=11111822222÷÷÷÷=(2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误;B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误;C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确;D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=2135⑥=5÷5÷5÷5÷5÷5=415(-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.8.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12,111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2;5⑥=5÷5÷5÷5÷5÷5=(15)4;同理可得:(﹣12)⑩=82;(2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.9.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7-(﹣12)9×(-2)6=-3-(-12)3=-3+1 8=7 -2 8.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.10.(1)×,√,×,×;(2)3332;1000;(3)36(个).【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【详解】解:(1)106107108321++=有进位;111112113336++=没有进位;4004014021203++=有进位;2015201620176048++=有进位;故答案为:×,√,×,×.(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,故答案为:3332,1000.(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.11.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=.故答案为:2;3.(2)1= ,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0= ,即0=-=,∴2t ,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.12.(1)1021-;(2)21332-;(3)111n a a +--【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案;(3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++ ①,∴2s=29102222++++ ②,②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++ ①,∴3s=22021333+++ ②,②-①得:2s=2133-,∴21332s -=,故答案为:21332-;(3)设s=231n a a a a ++++ ①,∴as=231n n a a a a a +++++ ②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--.【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.13.(1)4-;3-;6;(2)证明见解析;(3)2BEC BCO ∠=∠,理由见解析.【详解】分析:(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE ,推出∠DCE=2∠ACD ,再证明∠ACD=∠BCO ,∠BEC=∠DCE=2∠ACD 即可解决问题;【解答】(1)解:如图1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵点C(0,-4),D(-3,-4),∴CD=3,且CD∥x轴,∴△BCD的面积=12×4×3=6;故答案为-4,-3,6.(2)如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如图3中,结论:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB 平分∠ECF ,∴∠ECB=∠BCF ,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE ,∴∠DCE=2∠ACD ,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO ,∵C (0,-4),D (-3,-4),∴CD ∥AB ,∠BEC=∠DCE=2∠ACD ,∴∠BEC=2∠BCO ,点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.14.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠,180BCE BCD ∠+∠=︒ ,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒;(2)CM CN ⊥ ,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒ ,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,。
初一数学期末压轴题汇编

初一期末压轴题汇编1.在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.已知点O为数轴原点,点C,D为数轴上的动点.(1)d1(点O,线段AB)=,d2(点O,线段AB)=;(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t 可以等于0)2.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=(AB+CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是﹣3,﹣1,3,5,则线段EF,OT的相对离散度是,线段FG,EH的相对离散度是;(2)设数轴上点O右侧的点S表示的数是s,若线段OS,OT的相对离散度为e=,求s的值;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.3.定义:对于一个有理数x,我们把{x}称作x的相伴数;若x≥0,则{x}=x﹣1;若x<0,则{x}=﹣x+1.例:{1}=×1﹣1=﹣.(1)求{},{﹣1}的值;(2)当a>0,b<0时,有{a}={b},试求代数式(a+b)2﹣2a﹣2b的值.4.阅读下列材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为1,则点B表示的数为;(3)点A表示的数为﹣5,点C,D表示的数分别是﹣3,﹣1,点O为数轴原点,点B为线段CD上一点.①设点M表示的数为m,若点M可以为点A与点B的“平衡点”,则m的取值范围是;②当点A以每秒1个单位长度的速度向正半轴方向移动时,点C同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,求t的取值范围,使得点O可以为点A与点B的“平衡点”.5.对于数轴上给定的两点M,N(M在N的左侧),若数轴上存在点P,使得MP+2NP=k,则称点P为点M,N 的“k和点”.例如,如图1,点M,N表示的数分别为0,2,点P表示的数为1,因为MP+2NP=3,所以点P 是点M,N的“3和点”.(1)如图2,已知点A表示的数为﹣2,点B表示的数为2.①若点C在线段AB上,且点C是点A,B的“5和点”,则点C表示的数为;②若点D是点A,B的“k和点”,且AD=2BD,则k的值为;(2)数轴上点E表示的数为a,点F在点E的右侧,EF=4,点T是点E,F的“6和点”,请求出点T表示的数t的值(用含a的代数式表示).6.对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是﹣1,点C表示的数是5,点B1,B2,B3,依次表示﹣4,,7各数,其中是点A,C的“3倍和谐点”的是;(2)点A表示的数是﹣20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;②若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.7.小兵喜欢研究数学问题,在学习一元一次方程后,他给出一个新定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=100,则称关于y的方程为关于x的一元一次方程的“友好方程”.例如:一元一次方程3x﹣2x﹣99=0的解是x0=99,方程y2+1=2的所有解是y=1或y=﹣1,当y0=1时,x0+y0=100,所以y2+1=2为一元一次方程3x﹣2x﹣99=0的“友好方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,以上哪个方程是一元一次方程3x﹣2x﹣102=0的“友好方程”?请直接写出正确的序号是.(2)若关于y的方程|2y﹣2|+3=5是关于x的一元一次方程x﹣=a+1的“友好方程”,请求出a的值.(3)如关于y的方程2m|y﹣49|+=m+n是关于x的一元一次方程mx+45n=54m的“友好方程”,请直接写出的值.8.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如2÷2÷2,记作2③,读作“2的圈3次方”;再例如(﹣3)÷(﹣3)÷(﹣3)÷(﹣3),记作(﹣3)④,读作“﹣3的圈4次方”;一般地,把(a≠0,n为大于等于2的整数)记作aⓝ,读作“a的圈n次方”.【初步探究】(1)直接写出计算结果:7③=;()⑤=;(2)关于除方,下列说法错误的是;A.任何非零数的圈2次方都等于1;B.对于任何大于等于2的整数c,1©=1;C.8⑨=9⑧;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方→2④=2÷2÷2÷2=2×××=()2→乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(﹣5)⑥=;()⑨=;(2)将一个非零有理数a的圈n次方写成幂的形式为;(3)将()ⓜ•()ⓝ(m为大于等于2的整数)写成幂的形式为.9.阅读下面材料,回答问题.已知点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示AB.(一)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(二)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|.②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下几个问题:(1)数轴上点A表示的数是1,点B表示的数是x,且点B与点A在原点的同侧,AB=3,则x=.(2)数轴上点A到原点的距离是1,点B表示的数绝对值是3,则AB=.(3)若点A、B在数轴上表示的数分别是﹣4、2,设P在数轴上表示的数是x,当|P A|+|PB|=8时,直接写x的值.10.阅读材料:小兰在学习数轴时发现:若点M、N表示的数分别为﹣1、3,则线段MN的长度可以这样计算:|﹣1﹣3|=4或|3﹣(﹣1)|=4,那么当点M、N表示的数分别为m、n时,线段MN的长度可以表示为|m﹣n|或|n ﹣m|.请你参考小兰的发现,解决下面的问题.在数轴上,点A、B、C分别表示数a、b、c.给出如下定义:若|a﹣b|=2|a﹣c|,则称点B为点A、C的双倍绝对点.(1)如图1,a=﹣1.①若c=2,点D、E、F在数轴上分别表示数﹣3、5、7,在这三个点中,点是点A、C的双倍绝对点;②若|a﹣c|=2,则b=;(2)若a=3,|b﹣c|=5,B为点A、C的双倍绝对点,则c的最小值为;(3)线段PQ在数轴上,点P、Q分别表示数﹣4、﹣2,a=3,|a﹣c|=2,线段PQ与点A、C同时沿数轴正方向移动,点A、C的速度是每秒1个单位长度,线段PQ的速度是每秒3个单位长度.设移动的时间为t(t>0),当线段PQ上存在点A、C的双倍绝对点时,求t的取值范围.11.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n秒,得到点P′.称这样的操作为点P的“m速移”,点P′称为点P的“m速移”点.(1)当m=1,n=3时,①如果点A表示的数为﹣5,那么点A的“m速移”点A′表示的数为;②点B的“m速移”点B'表示的数为4,那么点B表示的数为;③数轴上的点M表示的数为1,如果CM=2C′M,那么点C表示的数为;(2)数轴上E,F两点间的距离为2,且点E在点F的左侧,点E,F通过“2速移”分别向右平移t1,t2秒,得到点E',F',如果E'F'=2EF,请直接用等式表示t1,t2的数量关系.12.点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.13.我们把称为二阶行列式,且=ad﹣bc.如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;=;(2)小明观察(1)中两个行列式的结构特点及结果,归纳总结,猜想:若行列式中的某一行(列)的所有数都乘以同一个数k,等于用数k乘以此行列式.即====k,你认为小明的猜想正确吗?若正确请说明理由,若错误请举出反例.(3)若k≠1,且=,求x的值.14.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为;②若点B与O重合,则其关于点A的联动点C表示的数为;③若点B关于点A存在联动点,则点B表示的数x的取值范围是.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为﹣1,点C表示的数为1,则a的取值范围是.15.如图1,点C把线段AB分成两条线段AC和BC,如果AC=2BC时,则称点C是线段AB的内二倍分割点;如图2,如果BC=2AC时,则称点C是线段BA的内二倍分割点.例如:如图3,数轴上,点A、B、C、D分别表示数﹣1、2、1、0,则点C是线段AB的内二倍分割点;点D是线段BA内二倍分割点.(1)如图4,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为7.MN的内二倍分割点表示的数是;NM的内二倍分割点表示的数是.(2)如图5,数轴上,点A所表示的数为﹣30,点B所表示的数为20.点P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t(t>0)秒.①线段BP的长为;(用含t的式子表示)②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.16.对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,如果M,P两点间的距离有最小值,那么称这个最小值为点M,线段AB的“近距”,记作d1(点M,线段AB);如果M,P两点间的距离有最大值,那么称这个最大值为点M,线段AB的“远距”,记作d2(点M,线段AB).特别的,若点M与点P重合,则M,P两点间的距离为0.已知点A表示的数为﹣2,点B表示的数为3.例如,如图,若点C表示的数为5,则d1(点C,线段AB)=2,d2(点C,线段AB)=7.(1)若点D表示的数为﹣3,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点E表示的数为x,点F表示的数为x+1.d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.17.我们规定:若有理数a,b满足a+b=ab,则称a,b互为“等和积数”,其中a叫做b的“等和积数”,b也叫a 的“等和积数”.例如:因为+(﹣1)=﹣,×(﹣1)=﹣,所以+(﹣1)=×(﹣1),则与﹣1互为“等和积数”.请根据上述规定解答下列问题:(1)有理数2的“等和积数”是;(2)有理数1(填“有”或“没有”)“等和积数”;(3)若m的“等和积数”是,n的“等和积数”是,求3m+4n的值.18.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为,M2(58)+M2(9653)的值为;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有个.19.阅读材料,并回答问题钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然10+4=14,但在表盘上看到的是2点钟,如果用符号“⊕”表示钟表上的加法,则10⊕4=2.若问2点钟之前4小时几点钟,就得到钟表上的减法概念,用符号“㊀”表示钟表上的减法.(注:我用0点钟代替12点钟)由上述材料可知:(1)9⊕6=;2㊀4=.(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立.(3)规定在钟表运算中也有0<1<2<3<4<5<6<7<8<9<10<11,对于钟表上的任意数字a,b,c,若a <b,判断a⊕c<b⊕c是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,并结合反例加以说明.20.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为;若2*3=2*x,则x的值为;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.21.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.22.已知直线AB∥直线CD,直线EF分别交直线AB,CD于点E,F,∠EFD=60°,过点E的直线l从与直线AB重合开始,以2°/秒的速度绕点E逆时针旋转,设旋转时间为t(0<t<90°),直线l与直线CD交于点G.(1)如图1,当t=20时,请直接写出∠FEG的度数.(2)已知∠MFN=90°,射线FM与射线FD重合,射线FN在直线CD的上方,∠MFN以1°/秒的速度绕点F逆时针旋转,设旋转时间为t(0<t<90°),射线FN交直线AB于点P.①如图2,猜想∠APN与∠CGE之间的数量关系,并证明.②在旋转过程中,直线EG交直线NF于点H,Q为直线EG上且位于点E上方的一点,射线EK为∠QEF的角平分线,若2∠EHF=∠AEK+48°,请直接写出此时t的值.23.如图:点O为直线上一点,过点O作射线OP,使∠AOP=60°,将一直角三角板的直角顶角放在点O处.(1)如图1,一边OM为射线OB上,另一边ON在直线AB的下方,那么钝角∠PON的度数为多少.(2)如图2,将图1中三角板绕点O逆时针旋转,使边OM在∠BOP的内部,且OM恰好平分∠BOP,此时∠BON的度数.(3)如图3,继续将图2中的三角板绕点O逆时针旋转α度,使得ON在∠AOP内部,且满足∠AOM=3∠NOP 时,求α的度数.24.如图1,在平面内,已知点O在直线AB上,射线OC、OE均在直线AB的上方,∠AOC=α(0°<α<30°),∠COE=2α,OD平分∠COE,∠DOF与∠AOC互余.(1)若∠AOE:∠BOE=1:5,则∠α=°;(2)当OF在∠BOC内部时,①若α=20°,请在图2中补全图形,求∠EOF的度数;②判断射线OF是否平分∠BOD,并说明理由;(3)若∠EOF=4∠AOC,请直接写出α的值.25.对于同一平面内以O为端点的射线与∠MON,其中∠MON=60°,给出如下定义:OP1,OP2,…,OP n﹣1,OP n是∠MON内或与射线OM,ON重合的n条不同的射线(n≥3),这些射线与射线l形成的小于平角的角的大小分别为α1,α2,…αn﹣1,αn,若这n条射线满足α1+α2+…+αn﹣1=αn,则称这n条射线为∠MON关于射线l 的一个基准射线族,其中αn为该基准射线族的基准角度.(1)如图1,当射线OA与射线l恰为∠MON的两条三等分线时,判断射线OM,OA,ON是否为∠MON关于射线l的一个基准射线族?如果是,求出它的基准角度;如果不是,请说明理由;(2)如图2,∠MON的边ON与射线l重合,固定射线l的位置不动,将∠MON以每秒5°的速度绕着点O逆时针转动一周.当转动时间为t秒时,OP1,OP2,…,OP n﹣1,OP n是∠MON关于射线l的一个基准射线族.①若t=8,求该基准射线族的基准角度αn的最大值;②若n的最大值等于6,直接写出t的取值范围.26.已知:点A在直线DE上,点B、C都在PQ上(点B在点C的左侧),连接AB,AC,AB平分∠CAD,且∠ABC=∠BAC.(1)如图1,求证:DE∥PQ;(2)如图2,点K为AB上一点,连接CK,若∠EAC=2∠ACK,求∠AKC的度数;(3)在(2)的条件下,点F在直线DE上,连接FK,且∠DAB=∠AFK+∠KCB,若∠FKA=∠AKC,求∠ACB的度数.(要求:在备用图中画出图形后,再计算)27.已知,点O在直线AB上,在直线AB外取一点C,画射线OC,OD平分∠BOC.射线OE在直线AB上方,且OE⊥OD于O.(1)如图1,如果点C在直线AB上方,且∠BOC=30°,①依题意补全图1;②求∠AOE的度数(0°<∠AOE<180°);(2)如果点C在直线AB外,且∠BOC=α,请直接写出∠AOE的度数.(用含α的代数式表示,且0°<∠AOE <180°)28.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT 落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.29.已知∠AOB=120°,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC 靠近OB的三等分线.(1)若OC平分∠AOB,①依题意补全图1;②∠MON的度数为.(2)当射线OC绕点O在∠AOB的内部旋转时,∠MON的度数是否改变?若不变,求∠MON的度数;若改变,说明理由.30.对于同一平面内的∠AOB及内部的射线OC,给出如下定义:若组成的3个角:∠AOB,∠AOC和∠BOC中,一个角的度数是另一个角度数的两倍时,则称射线OC是∠AOB的“牛线”.(1)图1中,OC平分∠AOB,则射线OC∠AOB的一条“牛线”.(填“是”或“不是”)(2)当射线OC是∠AOB的“牛线”时,直接写出所有满足条件的∠AOB与∠BOC的关系.(3)已知:如图2,在平面内,∠AOB=60°,若射线OC绕点O从射线OB的位置开始,以每秒5°的速度逆时针方向旋转.同时射线OA绕点O以每秒1°的速度逆时针方向旋转,当射线OC与射线OA碰撞后,射线OA 的速度发生变化,以每秒5°的速度继续旋转,此时的射线OC则以每秒1°的速度继续旋转,当射线OA与射线OB的反向延长线重合时,所有旋转皆停止,若旋转的时间记为t秒,当射线OC是∠AOB的“牛线”时,直接写出所有满足条件的t的值.初一期末压轴题汇编参考答案1.在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.已知点O为数轴原点,点C,D为数轴上的动点.(1)d1(点O,线段AB)=1,d2(点O,线段AB)=3;(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t 可以等于0)解:(1)d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,故答案为:1,3;(2)∵点C,D表示的数分别为m,m+2,∴点D在点C的右侧,CD=2,当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,解得:m=﹣3,当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,解得:m=5,综上所述,m的值为﹣3或5;(3)当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣2t﹣2,则d2=3﹣(﹣2﹣2t)≤6,解得:t≤,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,解得:t≥,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,解得:t≤,当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),∴0≤BD≤9,7≤AC≤9,∴d2>6,不符合题意,综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.2.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=(AB+CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是﹣3,﹣1,3,5,则线段EF,OT的相对离散度是,线段FG,EH的相对离散度是0;(2)设数轴上点O右侧的点S表示的数是s,若线段OS,OT的相对离散度为e=,求s的值;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.解:(1)∵点E,F表示的数分别是﹣3,﹣1,∴EF=2,EF的中点M对应的数为﹣2.∵数轴上点O表示的数为0,点T表示的数为2,∴OT=2,OT的中点N所对应的数为1.∴MN=3.∵MN=(EF+OT),∴3=(2+2).∴e=;∵数轴上点E,F,G,H表示的数分别是﹣3,﹣1,3,5,∴FG=4,FG的中点J对应的数为1,EH=8,EH的中点K对应的数为1,∴JK=0,∴e=0.故答案为:;0;(2)设线段OS,OT的中点为L,K,∵数轴上点O右侧的点S表示的数是s,点T表示的数为2,∴OS=s,OT=2.∴点L,K在数轴上表示的数为,1,∴LK=|1﹣|.∵线段OS,OT的相对离散度为e=,∴|1﹣|=×(s+2).∴s+2=|4﹣2s|.解得:s=或s=6.答:s的值为或6.(3)r≥2.理由:数轴上点P,Q在数轴上对应的数为m,n,∵数轴上点P,Q都在点O的右侧(其中点P,Q不重合),∴m>0,n>0,且m≠n.∵点R是线段PQ的中点,∴点R所表示的数r=.设线段OP,OT的中点为M,N,则M对应的数为,N点对应的数为1,∵线段OP,OT的相对离散度为e1,∴|﹣1|=(m+2).∴e1=.同理可得:e2=.∵e1=e2,∴.①当m﹣2>0,n﹣2>0时,解得:m=n,∵点P,Q不重合,∴m≠n,舍去;②当m﹣2<0,n﹣2<0时,解得:m=n,同样,不合题意舍去;③当m﹣2>0,n﹣2<0时,解得:mn=4.④当m﹣2<0,n﹣2>0时,解得:mn=4.综上,mn=4.∵m2﹣2mn+n2=(m﹣n)2≥0,∴(m﹣n)2+4mn≥4mn.∴(m+n)2≥16.∴≥4.即≥4.∴≥2.即r≥2.3.定义:对于一个有理数x,我们把{x}称作x的相伴数;若x≥0,则{x}=x﹣1;若x<0,则{x}=﹣x+1.例:{1}=×1﹣1=﹣.(1)求{},{﹣1}的值;(2)当a>0,b<0时,有{a}={b},试求代数式(a+b)2﹣2a﹣2b的值.解:(1){}=﹣1=﹣,{﹣1}==;(2)a>0,b<0,{a}={b},即a﹣1=﹣+1,解得:a+b=4,故(a+b)2﹣2a﹣2b=(a+b)2﹣2(a+b)=42﹣8=8.4.阅读下列材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为﹣1;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为1,则点B表示的数为5;(3)点A表示的数为﹣5,点C,D表示的数分别是﹣3,﹣1,点O为数轴原点,点B为线段CD上一点.①设点M表示的数为m,若点M可以为点A与点B的“平衡点”,则m的取值范围是﹣4≤m≤﹣3;②当点A以每秒1个单位长度的速度向正半轴方向移动时,点C同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,求t的取值范围,使得点O可以为点A与点B的“平衡点”.解:(1)点M表示的数==﹣1;故答案为:﹣1;(2)点B表示的数=1×2﹣(﹣3)=5;故答案为:5;(3)①点B表示的数范围﹣3≤B≤﹣1,m的取值范围﹣4≤m≤﹣3;故答案为:﹣4≤m≤﹣3;②点A表示的数为t﹣5;点C表示的数为3t﹣3,根据题意可知,点O为点A与点B的平衡点,∴点B表示的数为5﹣t,∵点B在线段CD上,当点B与点C相遇时,t=2,当点B与点D相遇时,t=6,∴2≤t≤6,且t≠5,综上所述,当2≤t≤6且t≠5时,点O可以为点A与点B的“平衡点”.5.对于数轴上给定的两点M,N(M在N的左侧),若数轴上存在点P,使得MP+2NP=k,则称点P为点M,N 的“k和点”.例如,如图1,点M,N表示的数分别为0,2,点P表示的数为1,因为MP+2NP=3,所以点P 是点M,N的“3和点”.(1)如图2,已知点A表示的数为﹣2,点B表示的数为2.①若点C在线段AB上,且点C是点A,B的“5和点”,则点C表示的数为1;②若点D是点A,B的“k和点”,且AD=2BD,则k的值为或16;(2)数轴上点E表示的数为a,点F在点E的右侧,EF=4,点T是点E,F的“6和点”,请求出点T表示的数t的值(用含a的代数式表示).解:(1)AB=2﹣(﹣2)=4,①点C表示的数为2﹣{5﹣[2﹣(﹣2)]}=1.故答案为:1;②点D在AB之间,∵AD=2BD,∴BD=4×=,∴k=4+=;点D位于点B右侧,∵AD=2BD,∴BD=4×=4,∴AD=2×4=8,∴k=8+2×4=16.故k的值为或16;(2)①当点T位于点E左侧,即t<a时,显然不满足条件.②当点T在线段EF上,即a<t<a+4时,∵EF=4,∴ET+TF=4.又∵点T是点E,F的“6和点”,∴ET+2FT=6,∴ET=FT=2,即点T是线段EF的中点,∴t=a+2.③当点T位于点F右侧,即t>a+4时,∵EF=4,∴ET﹣FT=4,又∵点T是点E,F的“6和点”,∴ET+2FT=6,∴FT=,∴t=a+4+=a+.综上,t的值为a+2或a+.6.对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是﹣1,点C表示的数是5,点B1,B2,B3,依次表示﹣4,,7各数,其中是点A,C的“3倍和谐点”的是B1,B2;(2)点A表示的数是﹣20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;②若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.解:(1)∵[5﹣(﹣4)]÷[﹣1﹣(﹣4)]=3,∴B1是点A,C的“3倍和谐点”,∵(5﹣)÷[﹣(﹣1)]=3,∴B2是点A,C的“3倍和谐点”,∵[7﹣(﹣1)]÷(7﹣5)]=4,。
(完整版)人教版七年级数学下册期末复习压轴题 解答题试卷及答案

(完整版)人教版七年级数学下册期末复习压轴题 解答题试卷及答案一、解答题1.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 2.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.3.已知1502x x +-=,求值; (1)221x x +(2)1x x- 4.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2;(3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1).5.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.6.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是.7.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅8.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.9.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.10.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.11.因式分解:(1)249x - (2) 22344ab a b b --12.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.13.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 14.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.15.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P的个数有 个(点P 异于A )16.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 17.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 0 222132 2222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.18.计算:(1)(y 3)3÷y 6;(2)2021()(3)2π--+-.19.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.20.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)A ;(2)2;(3)20214040【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.2.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】0=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.3.(1)174;(2)32±【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10. 【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=312⎛⎫- ⎪⎝⎭18=-; (2)m 2•m 4+(﹣m 3)2=m 6+m 6=2m 6;(3)(x +y )(2x ﹣3y )=2x 2﹣3xy +2xy ﹣3y 2=2x 2﹣xy ﹣3y 2;(4)(x +3)2﹣(x +1)(x ﹣1)=x 2+6x +9﹣x 2+1=6x +10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.5.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.6.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.7.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.8.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.9.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.10.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC ∠=∠,根据平行线的判定得出//AB CF ,根据平行线的性质得出C EBC ∠=∠,求出A EBC ∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB ∠=∠,根据平行线的性质得出FDA C ∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,求出EBC DBC ∠=∠即可.【详解】()12180BDC ∠+∠=,12180∠+∠=,1BDC ∴∠=∠,//AB CF ∴,C EBC ∴∠=∠,A C ∠=∠,A EBC ∴∠=∠,//AD BC ∴;()2AD 平分BDF ∠,FDA ADB ∴∠=∠,//AD BC ,FDA C ∴∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,EBC DBC ∴∠=∠,BC ∴平分DBE ∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.11.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.12.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF∥AC,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.13.(1)7;(2)55a.【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2;=4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.14.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.15.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.16.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;17.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.18.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.19.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =;(3)∵25,2x y xy +==,∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键. 20.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.。
期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
人教版七7年级下册数学期末解答题压轴题题(含答案)

人教版七7年级下册数学期末解答题压轴题题(含答案)一、解答题1.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 2.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?3.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?4.如图,用两个边长为152的小正方形拼成一个大的正方形, (1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm 25.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二、解答题6.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.7.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.8.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.9.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °; (2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.10.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数; 解:过点P 作直线PH ∥AB , 所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB , 所以PH ∥CD ,依据是 ; 所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点): ①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.三、解答题11.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).12.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .(1)如图1,若点D 在边BC 上, ①补全图形; ②求证:A EDF ∠=∠.(2)点G 是线段AC 上的一点,连接FG ,DG .①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系. 13.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .14.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.15.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系.四、解答题16.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 17.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 18.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .19.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.20.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示).【参考答案】一、解答题1.符合,理由见解析 【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】解:符合,理由如下:设宽为b 米,则长为1.5b 米,由题意得, 1.5b×b解析:符合,理由见解析 【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】解:符合,理由如下:设宽为b 米,则长为1.5b 米,由题意得, 1.5b×b=7350,∴b=70,或b=-70(舍去), 即宽为70米,长为1.5×70=105米, ∵100≤105≤110,64≤70≤75, ∴符合国际标准球场的长宽标准. 【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.2.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析 【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形. 【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形, ∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形. 【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.3.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x yx y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米, ∴米,∵∴他不能剪出符合要求的桌布. 【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.4.(1)30;(2)不能. 【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】2⨯解:(1)∵大正方形的面积是:(2∴=30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x•3x=720,解得:x,4x>30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.5.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二、解答题6.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.7.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.8.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A =∠APH ,∠C =∠CQG ,∠HPQ +∠GQP =180°,∴∠APQ +∠PQC =∠APH +∠HPQ +∠GQP +∠CQG =∠A +∠C +180°.∴∠APQ +∠PQC =∠A +∠C +180°成立;②如图3,过点P 作直线PH ∥AB ,QG ∥AB ,MN ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PH ∥QG ∥MN ,∴∠A =∠APH ,∠C =∠CQG ,∠HPQ +∠GQP =180°,∠HPM =∠PMN ,∠GQM =∠QMN ,∴∠PMQ =∠HPM +∠GQM ,∵∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠PMQ +∠MPQ +∠PQM =180°,∴∠APM +∠CQM =∠A +∠C +∠PMQ =2∠MPQ +2∠MQP =2(180°﹣∠PMQ ), ∴3∠PMQ +∠A +∠C =360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.三、解答题11.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒, ∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.12.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF ;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG +∠EDG =∠DGF ;②∠AFG -∠EDG =∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF +∠AFD =180°,∠A +∠AFD =180°,进而得出∠EDF =∠A ;(2)①过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG +∠EDG =∠FGH +∠DGH =∠DGF ;②过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG -∠EDG =∠FGH -∠DGH =∠DGF .【详解】解:(1)①如图,②∵DE ∥AB ,DF ∥AC ,∴∠EDF +∠AFD =180°,∠A +∠AFD =180°,∴∠EDF =∠A ;(2)①∠AFG +∠EDG =∠DGF .如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.13.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.14.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.15.(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,,再根据角平分线性质可得;(3)由(2)结论可得:.【详解】(1)证明:如图1,过解析:(1)见解析;(2)2360EPF EQF ∠+∠=︒;见解析;(3)360EPF n EGF ∠+∠=︒【分析】(1)过点P 作//PG AB ,根据平行线性质可得;(2)由(1)结论可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,再根据角平分线性质可得EQF BEQ DFQ ∠=∠+∠()13602EPF =︒-∠; (3)由(2)结论可得:()1EGF BEG DFG BEP DFP n ∠=∠+∠=∠+∠()1360EPF n =︒-∠. 【详解】(1)证明:如图1,过点P 作//PG AB ,∵//AB CD ,∴//PG CD ,∴1AEP ∠=∠,2CFP ∠=∠,又∵12EPF ∠+∠=∠,∴AEP CFP EPF ∠+∠=∠;(2)如图2,由(1)可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,∵BEP ∠的平分线与DFP ∠的平分线相交于点Q , ∴1()2EQF BEQ DFQ BEP DFP ∠=∠+∠=∠+∠ []()11360()36022AEP CFP EPF =︒-∠+∠=︒-∠, ∴2360EPF EQF ∠+∠=︒;(3)由(2)可得:EPF AEP CFP ∠=∠+,EGF BEG DFG ∠=∠+∠,∵1BEG BEP n ∠=∠,1DFG DFP n∠=∠, ∴1()EGF BEG DF nG BEP DFP ∠=∠+∠=∠+∠ []()11360()360AEP CFP EPF n n=︒-∠+∠=︒-∠, ∴360EPF n EGF ∠+∠=︒;【点睛】考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.四、解答题16.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 17.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=12CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 18.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO .则可得到△BOD 的面积=△BOC 的面积,△AOC 的面积=△AOD 的面积,△EOC 的面积=△BOC 的面积的一半, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,求出a 、b 的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.19.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,。
人教七年级下册数学期末解答题压轴题卷(附答案)

人教七年级下册数学期末解答题压轴题卷(附答案)一、解答题1.有一块面积为100cm2的正方形纸片.(1)该正方形纸片的边长为cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?2.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.3.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)4.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?5.求下图44的方格中阴影部分正方形面积与边长.二、解答题6.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.7.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数8.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.9.已知//AB CD,点E在AB与CD之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.10.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.三、解答题11.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 12.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.13.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠. 14.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.15.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ;(2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .四、解答题16.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________(3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.17.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 18.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .19.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.20.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、解答题1.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm,则宽为3xcm,则4x•3x=90,∴12x2=90,∴x2=30,4解得:x或x=∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.【点睛】本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.2.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片3.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.4.不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.5.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】×2×2=8;解:正方形面积=4×4-4×12正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二、解答题6.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.7.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.8.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB ∥CD ,所以∠BED =∠ABE +∠CDE ,∠BFD =∠ABF +∠CDF ,所以∠BED =2∠BFD .(3)∠BED =360°-2∠BFD .图3中,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,所以∠BEG +∠DEG =360°-(∠ABE +∠CDE ),即∠BED =360°-(∠ABE +∠CDE ),因为BF 平分∠ABE ,所以∠ABE =2∠ABF ,因为DF 平分∠CDE ,所以∠CDE =2∠CDF ,∠BED =360°-2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.10.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.三、解答题11.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ; (2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.12.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP 或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN =90°,然后根据同角的余角相等可得∠KAN=∠KCF ,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G 作GH ∥EF ,结合角平分线的定义和平行线的判定及性质求解;(3)分CP 交射线AQ 及射线AQ 的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB ⊥AK∴∠BAC=90°∴∠MAB+∠KAN =90°∵∠MAB+∠KCF =90°∴∠KAN=∠KCF∴EF ∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG 平分∠NAB ,CG 平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G 作GH ∥EF∴∠HGC=∠FCG=90°+12α又∵MN ∥EF∴MN ∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠ ∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠ ∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.13.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得,最 解析:(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(120)1n AOE n -+∠=︒. 【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒, ∴1302COD BOC ∠=∠=︒, ∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=, ∴260403BOD ∠=︒⨯=︒, ∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=, ∴6060()11n n BOD n n ∠=︒⨯=︒++, ∴60()1n EOC BOD n ∠=∠=︒+, ∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+, ∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+. 【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.14.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.15.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果;(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.四、解答题16.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.17.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,。
2022-2023人教版七上数学期末考试压轴题集训(四)(解析版)

期末考试压轴题训练(四)1.已知m 为非负整数,若关于x 的方程mx =2-x 的解为整数,则m 的值为________.2.如图,点C 是射线OA 上一点,过C 作CD OB ⊥,垂足为D ,作CE OA ⊥,垂足为C ,交OB 于点E .给出下列结论:①1∠是DCE ∠的余角;②AOB DCE ∠=∠;③图中互余的角共有3对;④ACD BEC ∠=∠.其中正确结论有______.【答案】①②④【详解】解:由CD OB ⊥,CE OA ⊥, 可得∠ODC =∠EDC =∠ECO =∠ECA =90°,所以∠1+∠DCE =∠ECO =90°,∠1+∠AOB =180°-∠ODC =90°, 即∠1是DCE ∠的余角,AOB DCE ∠=∠, 故①②正确;又因为∠CED +∠DCE =180°-∠EDC =90°,∠1+∠DCE =90°, 所以∠1=∠CED ,所以ACD BEC ∠=∠(等角的补角相等) 故④正确;∠1与∠DCE 互余,∠1与∠AOB 互余,∠CED 与∠DCE 互余,∠AOB 与∠CEO 互余, 所以互余的角不止3对,故③错误, 故答案为①②④3.一个长方体包装盒展开后如图所示(单位:cm ),则其容积为 _____cm 3.【答案】6600【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm ),宽为:32﹣10=22(cm ),长为:(70﹣10)÷2=30(cm ),故其容积为:30×10×22=6600(cm 3), 故答案为:6600.4.已知a 、b 为有理数,下列说法: ①若a 、b 互为相反数,则1ab; ②若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ; ③若|a ﹣b |+a ﹣b =0,则b >a ;④若|a |>|b |,则(a +b )•(a ﹣b )是负数. 其中错误的是_____(填写序号).故答案为:①③④.5.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤: 第一步,A 同学拿出三张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 【答案】9【详解】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +; 第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -); ∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=. 故答案为:9.6.“转化”是一种解决问题的常用策略,有时画图可以帮助我们找到转化的方法.例如借助图①,可以把算式1+3+5+7+9+11转化为62=36,请你观察图②,可以把算式1111111248163264128++++++转化为_______.7.如图,已知点A 、点B 是直线上的两点,14AB =厘米,点C 在线段AB 上,且5BC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B同时出发在直线上运动,则经过______秒时线段PQ的长为8厘米.【详解】解:9AC AB BC(厘米)(1)点P、Q都向右运动时,(2)点P、Q都向左运动时,(3)点P向左运动,点Q8.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.【答案】7【详解】一个正方体已知1,4,6,第二个正方体已知1,2,3,第三个正方体已知2,5,6,且不同的面上写的数字各不相同,可求得1的对面数字为5,6的对面数字为3,2的对面数字为4∴a+b=7故答案为:7.9.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条.如图所示:这样捏合到第七次后可拉出_______根面条.【答案】72【详解】解:第一次捏合后有122222⨯=根面条,第三次捏合后有=根面条,第二次捏合后有23⨯⨯=根面条,…,第7次捏合后有72根面条,2222故答案为:72. 10.如果方程34217123x x -+-=- 的解与方程 ()431621x a x a -+=+- 的解相同,求式子 21a a -+ 的值.11.已知关于x 的多项式||43252a A ax bx x +=+-+,5334B x x x =-+. (1)若整式+A B 不含5x 项和不含3x 项,求a 、b 的值; (2)若整式A B -是一个五次四项式,求出a 、b 满足的条件. 【答案】(1)=3b ,1a =-(2)=0=1=3=3a ab b ---⎧⎧⎨⎨⎩⎩或【详解】(1)因为||432535234a A B ax bx x x x x ++=+-++-+, 当+A B 不含5x 项和不含3x 项时有3330bx x -=和||450a ax x ++=, 因为3(3)0b x -=,30b -=, 所以=3b .因为||45a +=,||1a =,所以1a =-或=1a (不符合题意). 所以1a =-. (2)①∵|a |+4≥4, ∴a =0,b +3=0时, 即a =0,b =-3,②当|a|+4=5(a-1)x5+(b+3)x3是一项,∴a-1≠0,b+3=0,∴a=-1,b=3,∴=0=1 =3=3a ab b---⎧⎧⎨⎨⎩⎩或12.某水果超市最近新进了一批百香果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周百香果的售价情况和售出情况:(1)这一周超市售出的百香果单价单价最高的是星期.(2)这一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果,决定从下周一起推出两种促销方式;方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.①顾客买(5)a a>斤百香果,则按照方式一购买需要元,按照方式二购买需要元(请用含a的代数式表示)②如果某顾客决定买35斤百香果,通过计算说明用哪种方式购买更省钱.【答案】(1)六(2)135元(3)①9.6a+12,10a;②选择方式一购买更省钱【详解】(1)这一周超市售出的百香果单价最高的是星期六,故答案为:六;(2)1×20-2×35+3×10-1×30+2×15+5×5-4×50=-195(元),(10-8)×(20+35+10+30+15+5+50)=2×165=330(元),-195+330=135(元);所以这一周超市出售此种百香果盈利135元;(3)①方式一:(a-5)×12×0.8+12×5=(9.6a+12)元;方式二:10a(元);故答案为:9.6a +12,10a ;②方式一:(35-5)×12×0.8+12×5=348(元), 方式二:35×10=350(元), ∵348<350,∴选择方式一购买更省钱.13.如图,O 为数轴原点,点A 原点左侧,点B 在原点右侧,且2OB OA =,18AB =.(1)求A 、B 两点所表示的数各是多少;(2)P 、Q 为线段AB 上两点,且2QB PA =,设PA m =,请用含m 的式子表示线段PQ 的长; (3)在(2)的条件下,M 为线段PQ 的中点,若1OM =,请直接写出m 的值. 【答案】(1)A 、B 两点所表示的数各是-6,12 (2)线段PQ 的长是18-3m 或3m -18 (3)m 的值是4或8【详解】(1)解:∵OB =2OA ,AB =18,AB =OA +OB , ∴18=OA +2OA , 解得:OA =6, ∴OB =12,∵点A 原点左侧,点B 在原点右侧, ∴点A 表示的数为﹣6,点B 表示的数为12. (2)解:∵QB =2P A ,设P A =m , ∴QB =2m ,∴①当点P 在点Q 的左侧时,如图,PQ =AB ﹣P A ﹣BQ =18﹣3m ; ②当点P 在点Q 的右侧时,如图,14.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了?【答案】(1)8;(2)14,22;(3)15岁【详解】解:解:(1)观察数轴可知三根木棒长为30−6=24(cm),则这根木棒的长为24÷3=8(cm);故答案为8.(2)6+8=14,14+8=22.所以图中A点所表示的数为14,B点所表示的数为22.故答案为:14,22.-岁,(3)当奶奶像妙妙这样大时,妙妙为(35)--÷=(岁),所以奶奶与妙妙的年龄差为[115(35)]350--=(岁).所以妙妙现在的年龄为11550501515.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA⊥MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD 平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON 的度数.即:180°-∠CON=2(∠CON-∠DON),则:180-4t=2(4t-70-2t).解得:t=40.∴∠CON=4°×40=160°.当∠COD=2∠COM时,如图,即:∠CON-∠DON=2(180°-∠CON).则:4t-(70+2t)=2(180-4t).解得:t=43.∴∠CON=4°×43=172°.综上,当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,∠CON的度数为160°或172°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.三角形的两条边长分别是3cm 和4cm ,一个内角为40,那么满足条件,且彼此不全等的三角形共有个2.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE的外部时,则∠A 与∠1、∠2之间的数量关系是( ) A .∠A =∠1-∠2 B .2∠A =∠1-∠2 C .3∠A =2∠1-∠2 D .3∠A =2(∠1-∠2)3.CD 经过B C A ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下面的问题:①如图1,若90BCA ∠=,90α∠=,则BE CF ;EF |BE -AF |(填“>”,“<”或“=”);②如图2,将(1)中的已知条件改成∠BCA=60°,∠α=120°,其它条件不变,(1)中的结论__________。
(填“成立”、“不成立”)③若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明)____________________.10.数学课上,老师让同学们按要求折叠长方形纸片.第一步:先将长方形的四个顶点标上字母A ,B ,C ,D (如图12); 第二步:折叠纸片,使AB 与CD 重合,折出纸痕MN ,然后打开铺平;第三步:过点D 折叠纸片,使A 点落在折痕MN 上的A ’处,折痕是DL .这时,老师说:“A ’L 的长度一定等于LD 的一半.”同学们经过测量果然如此.为了解开其中的奥秘,老师设置了几个思考题,请同学们完成:(1)△ALD 与△A ’LD 关于LD 对称吗?(2)AD =A ’D 吗?∠ADL =∠A ’DL 吗?∠LA ’D 是直角吗? (3)连接AA ’,△A ’AN 与△A ’DN 对称吗? (4)A ’A =A ’D 吗?△A ’AD 是什么三角形?(5)请同学们完整地说明A ’L =21LD 的理由.1(EDCBA 2(第2题) A BC E FDDABCE F ADFC EB(图1)(图2)(图3)BC M DAA′L 图12 N11.如图2,在等边△ABC 中,取BD =CE =AF ,且D ,E ,F 非所在边中点,由图中找出3个全等三角形组成一组,这样的全等三角形的组数有( ). A.2B.3C.4D.512.若227()38x,则x = .13.图10-1是一个长为2m 、宽为2n 的长方形, 沿图中虚线用剪刀均 分成四块小长方形, 然后按图7的形状拼成一个正方形. (1)你认为图10-2中的阴影部分的正方形的边长等于多少? (2)请用两种不同的方法求图6中阴影部分的面积. (3)观察图10-2你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m -n )2,mn .(4)根据(3)题中的等量关系,解决如下问题:若a +b =7,ab =5,则(a -b )2= .14.如图11,已知在Rt △ABC 中,∠A =90°,BD 是∠B 的平分线,DE 是BC 的垂直平分线. 求∠C 的度数。
15.如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小;(2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.图10-1图10-2BADCE 图11O 图12-1A图12-217. 如图所示, 第1个图中有1个三角形, 第2个图中共有5个三角形, 第3个图中共有9个三角形, 依次类推, 则第6个图中共有三角形 个.……18.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A = 50°,∠D =10°,则∠P 的度数为( ) A.15° B.20° C.25° D.30°19.下列图案是用长度相等的火柴按一定规律构成的图形,依此规律第6个图形中,共用火柴的根数是 .20.如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E.⑴若∠B=35°,∠ACB=85°,求∠E 的度数;⑵当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系.写出结论无需证明.23.如图1,△ABC 的边BC 直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP .(1)在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连接AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.AA CB BC ABCAA CB BCAB C 图1 图2 图3 PDCBA…图① 图② 图③ 图④PEDC BA24. 已知543zy x ==, 且10254=+-z y x ,则z y x +-52的值等于________. 25.如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA=CB 且∠BEC=∠CFA=∠α.(1)如图1,若∠BCA=90°,∠α=90°,问EF=BE -AF ,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA=60°,∠α=120°(如图2),问EF=BE -AF 仍成立吗?说明理由. (3)若0°<∠BCA<90°,请你添加一个关于∠α与∠BCA 关系的条件,使结论EF=BE -AF 仍然成立.你添加的条件是 .(直接写出结论)26、已知一个等腰三角形的三边长分别为x 、2x 、5x -3,求这个三角形的周长.27.已知如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1) 在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: (2)仔细观察,在图2中“8字形”的个数: 个; (3)在图2中,若∠D=400,∠B=360,试求∠P 的度数;(4)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系.(直接写出结论即可)l图②C 图3图2图1EB C C 28. 如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l .(1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接29. 如图,△ABC 和△ADC 都是每边长相等的等边三角形,点E 、F 同时分别从点B 、A 出发,各自沿BA 、AD 方向运动到点A 、D 停止,运动的速度相同,连接EC 、FC . (1)在点E 、F 运动过程中∠ECF 的大小是否随之变化?请说明理由;(2)在点E 、F 运动过程中,以点A 、E 、C 、F 为顶点的四边形的面积变化了吗?请说明理由. (3)连接EF ,在图中找出和∠ACE 相等的所有角,并说明理由. (4)若点E 、F 在射线BA 、射线AD 上继续运动下去,(1)小题中的结论还成立吗?(直接写出结论,不必说明理由)31、P 点是∠ABC 和外角∠ACE 的角平分线的交点,如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点.分别指出每个图中∠BPC 和∠A 的关系,并选择其中一个加以证明.A EBCDF32.如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l , 垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系? 试对这种关系说明理由;(2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l , 垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系? 试对这种关系说明理由.34.如图为由边长为1的正方形组成的矩形, △ABC 的顶点落在小正方形的顶点上。
(1)求△ABC 的面积 。
(2)你能在图中找到顶点落在小正方形的顶点 上且与△ABC 全等的三角形(除△ABC 外)共 个35.已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
A EB 图1 D CG FABD C GF图236.如图,在ABC ∆中,40,2=∠==B AC AB ,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40=∠ADE ,DE 交线段AC 于E .(1)当115=∠BDA 时,=∠EDC °,=∠DEC °;点D 从B 向C 运动时,BDA ∠逐渐变 (填“大”或“小”);(本小题3分)(2)当DC 等于多少时,ABD ∆≌DCE ∆,请说明理由;(本小题4分)(3)在点D 的运动过程中,ADE ∆的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数.若不可以,请说明理由。
(本小题3分)37.已知,x ∶y ∶z =2∶3∶4,且xy +yz +xz =104,求2x 2+12y 2-9z 2的值.38.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒。