河北省2018年中考数学总复习第一编教材知识梳理篇第1章数与式第1节实数的有关概念精讲试题
2018年中考数学总复习知识点总结(最新版)

中考数学复习资料第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2018年中考数学总复习知识点总结(最新版)

中考数学复习资料第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a= - b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
2018年中考数学总复习知识点总结(最新版)

WORD格式可以编辑中考数学复习资料第一章实数类考点一、实数的概念及分类1、实数的分正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数类有四:“无限不循环”这一时之,归纳起来在理解无理数时,要抓住(1)开方开不尽的数,如7,等;3232π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3 (3)有特定结构的数,如0.1010010001⋯等;o(4)某些三角函数,如sin60 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
2、绝对值可|a|≥。
0零的绝对值时它本身,也一个数的绝对值就是表示这个数的点与原点的距离,a≤0。
正数大于零,负数小于零,正数大于一看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
1考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“a”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a0)a0a 2;注意a的双重非负性:a-a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
3a3a,这说明三次根号内的负号可以移到根号外面。
注意:考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2018年中考数学总复习知识点总结(最新版)

WORD格式可以编辑中考数学复习资料第一章实数类考点一、实数的概念及分类1、实数的分正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数类有四:“无限不循环”这一时之,归纳起来在理解无理数时,要抓住(1)开方开不尽的数,如7,等;3232π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3 (3)有特定结构的数,如0.1010010001⋯等;o(4)某些三角函数,如sin60 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
2、绝对值可|a|≥。
0零的绝对值时它本身,也一个数的绝对值就是表示这个数的点与原点的距离,a≤0。
正数大于零,负数小于零,正数大于一看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
1考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“a”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a0)a0a 2;注意a的双重非负性:a-a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
3a3a,这说明三次根号内的负号可以移到根号外面。
注意:考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
(通用)2018中考数学总复习第一章数与式第1节实数的有关概念及运算课件新人教版

◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
◆突破考点(考点一 考点二 考点三 考点四 考点五 考点六)
◆教材回顾
河北省中考数学总复习第一编知识梳理篇第1章数与式第1节实数的有关概念(精讲)试题(2021学年)

河北省2018年中考数学总复习第一编教材知识梳理篇第1章数与式第1节实数的有关概念(精讲)试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省2018年中考数学总复习第一编教材知识梳理篇第1章数与式第1节实数的有关概念(精讲)试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省2018年中考数学总复习第一编教材知识梳理篇第1章数与式第1节实数的有关概念(精讲)试题的全部内容。
第一章数与式第一节实数的有关概念年份题号考查点考查内容分值总分20172科学记数法科学记数法的定义317 4乘方的定义乘方的定义和加法简便运算的综合考查36实数的有关概念考查绝对值、相反数、倒数、立方根、平均数的有关概念320数轴关于数轴的纯数学问题,原点取的位置不同,其他点表示的位置不同820167实数的概念对含根号的实数的认识3320152实数的有关概念考查相反数、倒数、立方根、无理数的有关概念317绝对值已知一个数的绝对值求原数3620141相反数负整数的相反数220科学记数法以规律探索为背景考查小数的科学记数法3520132科学记数法以某市人口总数为背景考查大数的科学记数法25绝对值去绝对值符号24命题规律纵观河北近五年中考,实数的有关概念每年必考,以选择、填空为主,在选择、填空中属基础题.从命题次数看,绝对值考查了3次、数轴考查了1次、倒数考查了2次、相反数考查了3次、科学记数法考查了3次.预计2018年河北中考,倒数、绝对值、相反数、科学记数法应是考查的重点,仍然会命基础题,应加强练习.实数的概念及分类1.(2016河北中考)关于12的叙述,错误的是( A )A。
(完整)2018中考数学知识点总结(精简版),推荐文档
3 2a a a a 中考数学复习资料 第一章 实数考点一、实数的概念及分类 (3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 7, 等;π(2) 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001…等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 (3 分) 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则 a≥0;若|a|=-a ,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10 分)1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0a 2a a a如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
2018年中考数学总复习知识点总结(最新版)
中考数学复习资料第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:( 1)开方开不尽的数,如7,3 2等;( 2)有特定意义的数,如圆周率π,或化简后含有π的数,如π +8 等;3(3)有特定结构的数,如 0.1010010001⋯等;(4)某些三角函数,如 sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有a+b=0,a= - b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。
零的绝对值时它本身,也可看成它的相反数,若 |a|=a,则 a≥0;若|a|=-a,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是 1 和 -1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a 0) a 0a 2 a ;注意 a 的双重非负性:- a ( a <0) a 03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
(完整word)2018年中考数学总复习知识点总结(最新版),推荐文档
中考数学复习资第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
(完整版)2018年中考数学总复习知识点总结(最新版)
中考数学复习资料第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章数与式第一节实数的有关概念题,原点取的位置不4纵观河北近五年中考,实数的有关概念每年必考,以选择、填实数的概念及分类1.(2016河北中考)关于12的叙述,错误的是( A ) A .12是有理数B .面积为12的正方形边长是12C .12=2 3D .在数轴上可以找到表示12的点2.(2016保定八中模拟)下列各数中,3.141 59,-38,0.131 131 113…,-π,25,-17,无理数有( B )A .1个B .2个C .3个D .4个数轴3.(2017河北中考)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示.设点A ,B ,C 所对应数的和是p.(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =28,求p. 解:(1)若以B 为原点,则C 表示1,A 表示-2, ∴p =1+0-2=-1;若以C 为原点,则A 表示-3,B 表示-1, ∴p =-3-1+0=-4;(2)若原点O 在图中数轴上点C 的右边,且CO =28,则C 表示-28,B 表示-29,A 表示-31, ∴p =-31-29-28=-88.绝对值、相反数、倒数4.(2017河北中考)如图为张小亮的答卷,他的得分应是( B )姓名__张小亮__ 得分__?__填空(每小题20分,共100分) ①-1的绝对值是__1__; ②2的倒数是__-2__; ③-2的相反数是__2__; ④1的立方根是__1__;⑤-1和7的平均数是__3__.A .100分B .80分C .60分D .40分 5.(2015河北中考)下列说法正确的是( A ) A .1的相反数是-1 B .1的倒数是-1 C .1的立方根是±1 D .-1是无理数 6.(2014河北中考)-2是2的( B ) A .倒数 B .相反数 C .绝对值 D .平方根7.(2015河北中考)若|a|=2 0150,则a =__±1__.科学记数法8.(2017石家庄40中模拟)-12的倒数为( C )A .12B .2C .-2D .-19.(2017唐山中考模拟)-2的绝对值是( A )A .2B .-2C .12D .-1210.(2017河北中考)把0.081 3写成a×10n(1≤a<10,n 为整数)的形式,则a 为( D ) A .1 B .-2C .0.813D .8.1311.(2013河北中考)截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为( B )A .0.423×107B .4.23×106C .42.3×105D .423×10412.(2014河北中考)如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,……,M 99; 再将线段OM 1分成100等份,其分点由左向右依次为N 1,N 2,……,N 99; 继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2,……,P 99.则点P 37所表示的数用科学记数法表示为__3.7×10-6__.,中考考点清单实数的有关概念及分类1.整数和__分数__统称为有理数;__无限不循环小数__叫无理数;有理数和无理数统称为__实数__.【易错警示】(1)任何分数都是有理数,如23,-45等;(2)常见的几种无理数:①根号型,如5,8等开方开不尽的数;②构造型,如0.101 001 000 1…;③π及含π的数,如π,π+4等.2.分类:(1)按定义分类实数⎩⎪⎪⎨⎪⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数负分数有限小数和 无限循环 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环 小数 (2)按正负分类实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧ 正有理数 ⎩⎪⎨⎪⎧正整数正分数正无理数零 负实数 ⎩⎪⎨⎪⎧负有理数⎩⎪⎨⎪⎧负整数负分数负无理数3.数轴:数轴的三要素是:__原点__、__正方向__、__单位长度__;数轴上的点和__实数__是一一对应的. 4.相反数:(1)实数a 的相反数是__-a__(a 与b 互为相反数⇔a +b =__0__);(2)相反数的几何意义:在数轴上,表示相反数的两个点位于原点的__两侧__,且到原点的距离__相等__. 5.绝对值:(1)在数轴上表示一个数的点离原点的__距离__叫做这个数的绝对值;(2)|a|=⎩⎪⎨⎪⎧ a (a≥0), -a (a<0),即正数的绝对值是__它本身__,0的绝对值是__0__,负数的绝对值是它的__相反数__;(3)一个数的绝对值是__非负__数,即|a|__≥__0. 6.倒数:(1)若两个非零实数a ,b 的积为1,即__ab =1__,则a 与b 互为倒数,反之亦然;(2)非零实数a 的倒数为__1a__;__0__没有倒数.近似数和科学记数法7.科学记数法:把一个数写成__a ×10n__的形式(其中__1__≤|a|<__10__,n 为整数),这种记数法称为科学记数法.例如574 000记作__5.74×105__,-0.000 737记作__-7.37×10-4__.8.精确度与近似数:近似数与准确数的接近程度通常用__精确度__表示;近似数一般由__四舍五入__取得,__四舍五入__到哪一位,就说这个近似数精确到哪一位,如 5.374 6精确到0.001或精确到千分位是__5.375__.4.46万是精确到__百__位.【方法点拨】用科学记数法表示一个数时,需要从两个方面入手,关键是确定a 和n 的值. (1)a 值的确定:1≤|a|<10; (2)n 值的确定:①当原数大于或等于10时,n 等于原数的整数位数减1;②当原数大于0且小于1时,n 是负整数,它的绝对值等于原数左起第一位非零数字前所有零的个数(含小数点前的零);③有计数(量)单位的科学记数法,先把数字单位转化为纯数字表示,再用科学记数法表示.常用的计数单位有:1亿=108,1万=104,计量单位有:1 mm =10-3 m ,1 nm =10-9m等.,中考重难点突破无理数的识别【例1】(2017烟台中考)下列实数中的无理数是( D )A .9B .πC .0D .13【解析】9,0,13都是有理数,π是无理数.【答案】B1.(2016保定十七中二模)下列实数中,有理数是( D )A .8B .34C .π2D .0.101 001 001实数的相关概念【例2】(2017安顺中考)-2 017的绝对值是( D ) A .2 017 B .-2 017C .±2 017D .-12 017【解析】-2 017的绝对值是2 017. 【答案】A2.(2017河北中考改编)下面是欧阳夏天同学做的5道题,他做对了几个( C )(1)-16的倒数是__-6__;(2)3-8=__-2__;(3)-6的相反数是__6__; (4)-6的绝对值是__6__; (5)-2的平方是__-4__. A .2个 B .3个 C .4个 D .5个3.(宜昌中考)如果“盈利5%”记作“+5%”,那么-3%表示( A ) A .亏损3% B .亏损8% C .盈利2% D .少赚3%科学记数法【例3】(2017徐州中考)肥皂泡的泡壁厚度大约是0.000 000 71 m ,数字0.000 000 71用科学记数法表示为( A )A .7.1×107B .0.71×10-6C .7.1×10-7D .71×10-8【解析】数字0.000 000 71用科学记数法表示为7.1×10-7.【答案】C4.把-0.071 7写成a×10n(1≤a<10,n 为整数)的形式,则a 为( D ) A .7 B .7.17 C .-7 D .-7.175.(绍兴中考)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( A )A .3.386×108B .0.338 6×109C .33.86×107D .3.386×109数轴的相关知识【例4】(2017石家庄40中模拟)如图所示,数轴上点P 所表示的数可能是( B )A . 6B .10C .15D .31【解析】数轴和无理数的综合考查,估计10与15在数轴上哪个离3更近些. 【答案】B6.(2017河北中考改编)在一条不完整的数轴上,从左到右有A,B,C三点,其中AB=3,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以C为原点,则A表示__-4__,B表示__-1__,P的值__-5__;(2)若原点O在图中数轴点A的左边,且BO=20,则P的值__58__.。