初三数学 圆

合集下载

初三数学圆的知识点

初三数学圆的知识点

初三数学圆的知识点1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。

直径等于半径的2倍。

(3)弧:圆上任意两点间的部分叫做圆弧。

(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半;③同弧或等弧所对的圆周角相等;④半圆(或直径)所对的圆周角相等;⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

初三数学圆的笔记整理

初三数学圆的笔记整理

初三数学圆的笔记整理
圆的概念
1、圆(circle)是端点连续的无限线段的集合,它的所有点与其中的一点的距离都是相等的,该一点叫做圆心(中心),距离叫做半径(radius);
2、圆的方程:一般式:x2+ y2 = r2;标准形式:(x-a)2+(y-b)2 = r2;
3、圆的参数方程:x = a + r cosα;y = b + r sinα;
圆的性质
1、圆的周长为2 πr ;
2、圆的面积为:πr2;
3、圆的对称性:沿任意直线 g 移动到点 a 后,不改变圆的特征,两点 a 和 b 均存在符合方程 y2 = r2 - x2 的线:
4、锐角三角形里外角相加等于360°;
5、圆面积与半径平方成正比;
6、圆周长与半径成正比。

弧与圆心角
1、弧(arc)是圆上的部分曲线,以圆心O为中心,半径为r的有限线段,它的端点A和B叫做弧的端点(end-points);
2、圆心角(central angle)是以圆心O为顶点,以半径OA 和OB 作边的扇形,叫做圆 O 的圆心角。

圆意义
1、圆的形状中没有直角,也没有不同大小,也没有不同形状,代表和谐、统一,是几何及美学领域最重要的重要概念;
2、古时以圆形建造螺旋楼,即圆楼,以象征着吉祥、美好的开始,哲学家也把它当做一种哲学思想,以及为某些重要仪式的符号;
3、今天,圆仍是许多文化符号的重要部分,例如圆形的圆盘符号,被国家办公室授予最高级荣誉,圆桌警告人民和睦相处;
4、此外,圆也可以定义出多种几何图形,如圆环、圆弧等,用于应用于多种领域,具有极大的科学价值。

初中数学圆的知识点

初中数学圆的知识点

初中数学圆的知识点初中数学圆的知识点概述一、圆的基本概念1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆的中心点,通常用字母O表示。

3. 半径(r):圆心到圆上任意一点的距离,用r表示。

4. 直径(d):通过圆心的圆上两点之间的线段,是半径的两倍长,用d表示。

5. 弦(c):圆上任意两点之间的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定。

10. 切线(t):与圆只有一个交点的直线。

二、圆的基本性质1. 半径性质:圆上任意两点间的所有线段中,直径是最长的。

2. 圆周角定理:圆周上同弧所对的圆周角等于该弧所对的圆心角的一半。

3. 切线性质:圆的切线垂直于过切点的半径。

4. 弦切角定理:从圆外一点引两条切线,这两切线与过该点的直径所成的角相等。

5. 圆内接四边形性质:圆内接四边形的对角互补。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(S):S = πr²3. 扇形面积:S = (θ/360)πr²,其中θ是扇形的中心角,单位为度。

4. 弓形面积:S = (θ/360)πr² - (θ/360)rθ/2,适用于扇形减去三角形的部分。

5. 圆环面积:S = π(R² - r²),其中R是大圆的半径,r是小圆的半径。

四、圆的应用问题1. 圆与直线的关系:通过圆心作直线的垂线,可以判断直线与圆的位置关系(相离、相切、相交)。

2. 圆与圆的位置关系:两圆的圆心距与半径之和、差相比较,判断两圆的位置关系(外离、外切、相交、内含、内切、同心)。

3. 圆的切线问题:求作圆的切线,以及切线与圆的交点问题。

4. 圆的滚动问题:解决圆在直线或曲线上滚动时的周长、直径、面积的变化问题。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,固定圆规的宽度,绕圆心旋转一周即可画出圆。

初三数学圆知识点总结完整版

初三数学圆知识点总结完整版

初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

初三下册数学第三章圆知识点要点

初三下册数学第三章圆知识点要点

初三下册数学第三章圆知识点要点一. 正切:正切.. 即的邻边的对边A A A ∠∠=tan ; 正弦,即斜边的对边A A ∠=sin ;余弦,即斜边的邻边A A ∠=cos ;①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=sin 2A+cos 2A=1第三章 圆一. 点与圆的位置关系及其数量特征:如果圆的半径为r ,点到圆心的距离为d ,则 ①点在圆上 <===> d____r; ②点在圆内 <===> d____r; ③点在圆外 <===> d____r. 二. 圆的对称性:※1. 与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

⑦圆心角:顶点在圆心的角叫做圆心角.... 2. 圆即是轴对称图形,又是___________。

3. 垂径定理:_________________________,并且平分弦所对的两条弧。

垂径定理的逆定理:平分弦(不是直径)的直径_______,并且平分弦______________。

推论1: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等. 推论2: 同弧或等弧所对的________相等;推论3: 半圆或直径所对的圆周角是_____;90°的圆周角所对的弦是_____.三. 圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且_____________,叫做圆周角.2. 圆周角定理: 一条弧所对的圆周角等于____________________. 四. 确定圆的条件:1.定理: 不在同一直线上的______确定一个圆.2. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心. (3)三角形的外心的性质:三角形外心到__________ 相等.五. 直线与圆的位置关系1. 设⊙O 的半径为r ,圆心O 到直线的距离为d ;①d<r <===> 直线L 和⊙O_____. ②d=r <===> 直线L 和⊙O______. ③d>r <===> 直线L 和⊙O______.2. 切线的判定定理: 经过________________________________的直线是圆的切线.3. 切线的性质定理:圆的切线垂直于______________.4. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的_______,内切圆的圆心叫做____________.5. 三角形内心的性质:三角形的内心到___________相等.六.切线长定理:过圆外一点所画的圆的两条___________.性质:圆心和这一点的连线平分两条切线的夹角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆
1、圆的概念:①在同一平面内,线段OP绕它固定的一个端点O旋转一周,另一端点P所经过的封闭曲线叫做圆,固定的端点O叫做圆心,线段OP(不论转到什么位置)叫做圆的半径.以点O为圆心的圆,记做“⊙O”,读作“圆O”.
②以O为圆心,r为半径的圆,可以看成所有到定点O的距离等于定长r的点组成的集合.确定圆的条件是圆心和半径两个因素.
注意:以已知点O为圆心,可以画无数个圆,以已知线段R为半径画圆可以画无数个,以已知点O为圆心,已知线段R为半径画圆,可以画且只能画一个圆.
2、与圆有关的概念
弦:连接圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径.直径等于半径的2倍.
弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.小于半圆的弧叫做劣弧.以B、C为端点的弧记作,读作弧BC;大于半圆的弧叫做优弧,半圆和优弧用符号“”和三个字母表示(弧两端的字母和弧中间的字母),如图中以B、C为端点的优弧记作,读作“弧BAC”.
等圆:能够重合的两个圆或半径相等的两个圆叫做等圆.
等弧:同圆或等圆中,能够互相重合的弧叫做等弧.
3、点与圆的位置关系:一般地,若⊙O的半径为r,点P到圆心O的距离OP=d,
则有.
4、圆的确定(1)经过已知点A可以作无数个圆;经过两个已知点A、B可以作无数个圆,它们的圆心在线段AB的垂直平分线上;经过不在同一直线上的三个点确定一个圆.
(2)三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,这个三角形叫做圆的内接三角形.三角形外接圆的圆心是三角形三条边垂直平分线的交点,这个交点叫做这个三角形的外心.作三角形的外接圆关键在于确定圆的圆心即三角形的外心,只需作三角形两边垂直平分线即可.
(3)三角形外心的性质①三角形外心到三个顶点的距离相等;
②锐角三角形的外心在三角形内部,直角三角形的外心在斜边的中点上,钝角三角形的外心在三角形的外部;
③三角形的外心与一边中点的连线必垂直于这条边;
④经过三角形的外心与一边垂直的直线必平分这条边.
例1、填空题
(1)平面上有两点A、B,若线段AB的长为3cm,则以A为圆心,经过点B的圆的面积为________.
(2)如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10cm,则
OD=________cm.
例2、选择题
(1)下列说法正确的有( )A.1个 B.2个C.3个 D.4个
①直径不是弦;②直径是圆中最长的弦;③圆心是圆中任意一条直径的中点;④半圆不是弧.
(2)下列判断中,正确的个数是( )A.2个 B.3个C.4个 D.5个
①正方形的四个顶点在同一圆上②菱形的四个顶点在同一圆上③菱形四边中点在同一圆上④矩形的四个顶点在同一圆上⑤矩形四边中点在同一圆上.
一、圆心角:我们把顶点在圆心的角叫做圆心角.
二、圆的特性:①圆是中心对称图形,对称中心是圆心;②把圆绕着它的圆心旋转一个任意角度,都与原来的图形重合,这说明圆具有旋转不变性的特性;
利用以上特性,可以得到以下定理
三、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
四、推论:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量也相等
例1、如图,已知D、E两点分别为⊙O的半径OA、OB的中点,C为的中点.求证:
CD=CE.
1、如下左图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定
2、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如上中图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()
A.第①块B.第②块C.第③块D.第④块
3、有一个矩形ABCD的长为4cm,宽为3cm,以D点为圆心作圆,使A、B、C三点其中有两点在圆内,一点在圆外,则⊙D的半径r的取值范围为()
A.3<r<4 B.3<r<5C.4<r<5 D.4≤r≤5
4、如上右图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()
A.a>b>c B.a=b=cC.c>a>b D.b>c>a
5、如下图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为( ) A.60° B.90° C.120° D.150°
6、如上中图,在⊙O中,,则下列结论正确的是( )
A.AB>2CD B.AB=2CDC.AB<2CD D.以上都不正确
7、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是( ) A.AB=AC B.C.AD⊥BC D.AB=BC
8、如上右图,点A是半圆上一个三等分点,点B是的中点,P是直径MN上的一动点,⊙O的半径为1,则PA+PB的最小值为( )
9、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E,已知AB=2DE,∠E=18°,试求∠AOC的度数.
10、如图所示,要把残破的轮片复制完整,已知弧上的三点A、B、C.用尺规作图法找出
所在圆的圆心(保留作图痕迹,不写作法).
11、如图,在⊙O中,弦AB、CD相交于点P,且AB=CD,求证:AC=BD.
12、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.。

相关文档
最新文档