九年级数学圆的基本性质

合集下载

人教版九年级数学上第24章24.1圆的基本性质教案

人教版九年级数学上第24章24.1圆的基本性质教案

圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。

九年级数学圆的基本性质

九年级数学圆的基本性质

一、基础知识(一)圆的有关概念:圆:在同一平面内,到定点的距离等于定长的点的集合。

其中,定点为圆心,定长为半径。

弦:连接圆上任意两点的线段。

经过圆心的弦是直径。

弧:圆上任意两点间的部分叫弧。

圆上任一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。

大于半圆的弧角做优弧,小于半圆的弧叫劣弧。

(二)圆的性质:1.同圆或等圆中:半径、直径都相等。

2.圆有无数条弦,其中最长的弦为直径。

3.圆是轴对称图形,对称轴为直径所在的直线,有无数条。

圆是中心对称图形,并且无论绕圆心旋转多少度,都可以和原图形重合。

二、重难点分析本课教学重点:弦和弧的概念、弧的表示方法和点与圆的位置关系.本课教学难点:点和圆的位置关系及判定。

通过日常生活在生产中的实例引导学生对学习圆的兴趣。

三、典例精析:例1:(2014•长春二模)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°∴∠DAO=∠AOC=70°例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。

四、感悟中考1、(2013•温州)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作BAC ,如图所示.若AB =4,AC =2,S 1-S 2=4π,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π2、如图,已知同心圆O ,大圆的半径AO 、BO 分别交小圆于C 、D ,试判断四边形ABDC 的形状.并说明理由.∠A五、专项训练。

(一)基础练习1、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.2、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.【点评】本题考查圆的基本性质、全等三角形判定。

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

3、以O为圆心,OB为半径
作圆。
所以⊙O就是所求作的
圆。
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗?
方法: 寻求圆弧所在圆的圆心,
在圆弧上任取三点,作其 连线段的垂直平分线,其 交点即为圆心.
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
A
O C
B
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条
边的垂直平分线的交点
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
BC (图三)
1、比较这三个三角形外心的位置, 你有何发现?
练一练
1.下列命题不正确的是 A.过一点有无数个圆. B.过两点有无数个圆. C.弦是圆的一部分. D.过同一直线上三点不能画 圆. 2.三角形的外心具有的性质是 A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形外. D.外心在三角形内.
某市要建一个圆形公园,要求公园刚好把动 物园A,植物园B和人工湖C包括在内,又要使 这个圆形的面积最小,请你给出这个公园的施 工图.(A、B、C不在同一直线上)
问题: 车间工人要将一个
如图所示的破损的圆盘复 原,你有办法吗?
1、过一点可以作几条直线? 2、过几点可确定一条直线?

沪科版数学九年级下册24.2《圆的基本性质》教学设计1

沪科版数学九年级下册24.2《圆的基本性质》教学设计1

沪科版数学九年级下册24.2《圆的基本性质》教学设计1一. 教材分析《圆的基本性质》是沪科版数学九年级下册第24章第2节的内容。

本节课主要学习了圆的性质,包括圆的直径、半径、圆心角、弧、弦等。

这些性质对于学生理解和掌握圆的相关知识至关重要,也为后续学习圆的方程和应用打下了基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于圆的特殊性质和特点,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,逐步理解和掌握圆的基本性质。

三. 教学目标1.知识与技能:使学生理解和掌握圆的直径、半径、圆心角、弧、弦等基本性质,并能够运用这些性质解决实际问题。

2.过程与方法:通过观察、思考、实践等方式,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:圆的直径、半径、圆心角、弧、弦等基本性质。

2.难点:圆的性质在实际问题中的应用。

五. 教学方法1.引导发现法:通过提问、引导等方式,激发学生的思考,引导学生发现圆的基本性质。

2.实践操作法:通过观察、测量、画图等方式,让学生亲身体验和实践圆的性质。

3.案例分析法:通过分析实际问题,让学生学会运用圆的性质解决问题。

六. 教学准备1.教具:圆规、直尺、多媒体设备等。

2.学具:学生用书、练习本、铅笔、橡皮等。

七. 教学过程1.导入(5分钟)教师通过向学生展示一些与圆相关的实际问题,引导学生思考圆的性质,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和展示,向学生介绍圆的直径、半径、圆心角、弧、弦等基本性质,并解释这些性质的含义和作用。

3.操练(10分钟)教师提出一些关于圆的性质的问题,让学生用圆规和直尺进行测量和画图,亲身实践和体验圆的性质。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成,巩固对圆的性质的理解和掌握。

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

精品 九年级数学上册 圆的基本性质讲义+同步练习题

精品 九年级数学上册 圆的基本性质讲义+同步练习题

圆的基本性质知识点圆的定义几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。

其中,O为圆心,OA为半径。

集合定义:到定点等于定长的所有点的集合。

其中,定点为圆心,定长为半径。

圆的书写格式:圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

与圆有关的线段半径:圆上一点与圆心的连线段。

确定一个圆的要素是圆心和半径。

弦:连结圆上任意两点的线段叫做弦。

直径:经过圆心的弦叫做直径。

弦心距:圆心到弦的垂线段的长。

弧:圆上任意两点间的部分叫做圆弧,简称弧。

劣弧:小于半圆周的圆弧叫做劣弧。

表示方法:优弧:大于半圆周的圆弧叫做优弧。

表示方法:在同圆或等圆中,能够互相重合的弧叫做等弧。

注意:同弧或等弧对应的弦相等。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

注意:定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论.注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。

(2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。

例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.例2.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10cm,CD=8cm,求AE的长。

九年级数学《圆的基本性质复习课》评课稿

九年级数学《圆的基本性质复习课》评课稿

九年级数学《圆的基本性质复习课》评课稿
池老师展示的是《圆的基本性质复习课》,课上,池老师以“转”和“折”两个角度引出圆的旋转不变性和轴对称性。

并以圆的旋转性为出发点将弦与圆周角的问题抛出,让学生思考多种求解方法,从而简单的复习圆心角、弧、弦心距、圆周角、弦等知识点的联系以及垂径定理的运用。

在老师的引导下,进一步加深了对圆的基本性质的了解和认识。

本节课,池老师设计的综合型较强的圆与动点问题,是本节课的亮点所在,在给定的条件下,老师先让学生尝试性的出题,然后学生自己解决,课堂效果较好,学生乐学其中。

最后老师出手,将难题抛出,学生独立思考并分析解决。

整堂课,思路清晰,内容循序渐进,符合学生的认知水平。

另外,池老师的将圆的知识结构化,问题设计又充分体现着综合性,结合富有新意的板书,使人印象深刻。

沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计

沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
4.通过对圆的性质的学习,使学生感受到几何图形的美,培养他们的审美情趣。
二、学情分析
九年级学生在学习圆的基本性质这一章节之前,已经掌握了平面几何中直线、三角形、四边形等基本图形的性质和计算方法。他们对几何图形有一定的认识,具备了一定的观察、分析、推理能力。但在圆的性质这一部分,学生可能会遇到以下问题:对圆的基本概念理解不够深入,对圆的性质掌握不够熟练,对圆的相关计算方法不够熟悉。因此,在教学过程中,教师需要关注以下几点:
四、教学内容与过程
(一)导入新课
1.教师出示一枚硬币,让学生观察硬币的形状,并提问:“这个形状是什么?它有什么特点?”
2.学生回答:“这个形状是圆形,它的特点是边缘线条流畅,各点到中心点的距离相等。”
3.教师总结:“今天我们要学习一种新的几何图形——圆,它具有很多独特的性质。接下来,让我们一起来探索圆的世界。”
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
一、教学目标
(一)知识与技能
1.让学生理解圆的基本概念,掌握圆的各个基本性质,如圆的半径、直径、圆周率等,并能运用这些性质解决实际问题。
2.培养学生运用圆的相关性质进行计算和推理的能力,如求圆的周长、面积,判断点与圆的位置关系等。
3.使学生掌握圆的对称性质,并能运用对称性质解决一些几何问题,如求圆的切线、弦的性质等。
(二)过程与方法
1.通过直观演示、实际操作和小组讨论等教学活动,引导学生探索圆的基本性质,培养学生观察、分析、归纳的能力。
2.设计丰富的例题和练习题,让学生在解决实际问题的过程中,掌握圆的性质和计算方法,提高学生的解决问题的能力。
3.引导学生运用数形结合的思想,将圆的性质与几何图形相结合,培养学生的空间想象力和几何直观。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆的基本性质
九年级数学:圆的基本性质及其应用
圆的性质是九年级数学中的一个重要内容,它在实际生活和后续数学知识中都具有重要的地位。

本文将详细介绍圆的基本性质,并通过实例阐述其应用。

一、圆的基本定义
圆是一种几何图形,由一条固定长度的线段(称为半径)围绕一个定点(称为圆心)旋转一周所形成的封闭曲线。

圆具有如下基本元素:
1、圆心:定义圆的中心点,用符号“O”表示。

2、半径:连接圆心与圆上任意一点的线段,用符号“r”表示。

3、直径:通过圆心的线段,其长度为半径的两倍,用符号“d”表示。

4、周长:圆的所有边界点组成的封闭曲线长度,用符号“C”表示。

5、面积:圆所占平面的大小,用符号“S”表示。

二、圆的基本性质
1、圆的确定:到一个定点距离等于定长的所有点组成的图形是一个圆。

2、圆心与半径的关系:在同圆或等圆中,半径等于直径的一半。

3、圆的基本性质:圆是轴对称图形,其对称轴有无数条,任何一条直径所在的直线都是其对称轴。

4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

5、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

6、圆周角定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。

7、弦切角定理:在圆中,与圆相交的直线被圆截得的线段相等。

三、圆的性质的应用
1、日食和月食:当月球绕地球运动时,太阳、地球和月球在同一直线上,太阳照射在月球的背面,地球上的观察者会看到月偏食或月全食。

这是由于太阳照射在月球的背面,使得月球背面的影子投射在地球上,形成了月食。

2、汽车轮胎:汽车轮胎的设计考虑了圆的性质。

因为车轮是由一个圆柱体和两个半圆形组成的,所以当车轮转动时,可以平稳地行驶。

3、计算圆的周长和面积:圆的周长和面积是圆的两个基本量,可以
用于计算圆的周长和面积,也可以用于计算球体、圆柱、圆锥等几何形体的体积和表面积。

4、工程设计:在工程设计中,经常需要用到圆的性质。

例如,在设计桥梁时,需要考虑桥墩之间的距离以及桥墩的形状;在设计房屋时,需要考虑窗户和门的形状和大小。

5、装饰设计:在装饰设计中,经常需要用到圆的性质。

例如,在设计项链时,需要考虑珠子的大小和排列方式;在设计餐具时,需要考虑碗和盘子的形状和大小。

总之,圆的性质在日常生活和数学学习中都具有重要的应用价值。

通过深入理解圆的性质,我们可以更好地解决实际问题,提高我们的数学素养。

相关文档
最新文档