人教版九年级上册数学圆的有关性质 四课时教学设计(教案)
人教版九年级数学上册24.1圆的有关性质(教案)

一、教学内容
人教版九年级数学上册24.1圆的有关性质,主要包括以下内容:
1.圆的定义及其基本元素:圆心、半径、直径;
2.圆的周长和面积的计算公式;
3.圆的性质:圆上任意两点间的线段、圆的半径、直径之间的关系;
4.弧、弦的定义及分类:优弧、劣弧、半圆、直径;
3.重点难点解析:在讲授过程中,我会特别强调圆的周长和面积的计算公式,以及圆周角定理这两个重点。对于难点部分,如圆内接四边形的性质,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如如何计算一个圆形水池的体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量一个圆形物体的半径和直径,并计算其周长和面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、周长和面积的计算公式,以及圆周角定理等重要性质。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-例如:在证明圆周角定理时,引导学生从圆的性质入手,利用已知角度关系推导出圆周角定理。
(3)圆的周长和面积的实际应用:
-学生在将圆的周长和面积计算公式应用于解决实际问题时,往往难以确定所需的半径或直径。教师应通过举例,指导学生如何在实际问题中寻找所需的几何信息。
-例如:计算一个圆形花坛的面积,需要先确定花坛的直径或半径,再代入公式计算面积。
人教版九年级数学上册《圆的有关性质(第4课时)》示范教学课件

连接OA,OB.
根据圆周角定理,得∠C1=
1 2
∠AOB,
∠C2=
1 2
∠AOB,∠C3=
1∠AOB, 2
∴∠C1=∠C2=∠C3.
由此可得,同弧所对的圆周角相等.
C2
C1
C3
O
A
B
(2)等弧所对的圆周角
如图,在⊙O中,如果 AB =DE ,那么它们所对的圆周角∠C1 和∠C2的大小有什么关系?由此你能得到什么结论?
它们所对的弧一定相等.
O B
理由:在同圆或等圆中,如果两个圆周
角相等,那么它们所对的圆心角相等,因此 它们所对的弧也相等.
C
E
D
探究 仔细观察下面的动图,想一想直径所对的圆周角的度数确定吗?
如果确定,它是多少度?
探究 仔细观察下面的动图,想一想直径所对的圆周角的度数确定吗?
如果确定,它是多少度?
A
O
B
∴∠AOD=∠BOD, ∴AD=BD.
又在Rt△ABD中,AD2+BD2=AB2,
D
∴AD=BD= 2 AB=5 2
2 (cm) .
巧用圆周角定理及其推论解决两类问题 (1)解决与圆有关的角度的相关计算时,一般先判断角是 圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利 用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半 等关系求解. (2)在圆中有直径即可连接圆一点与直径的两个端点,构 造直径所对的圆周角,这是圆中添加辅助线的一种常用方法.
如图,∠C=90°,
C
根据圆周角定理:圆周角∠C的度数等
O
于它所对的圆心角∠AOB度数的一半,
A
B
∴∠AOB=180°.
人教版九年级上册24.1圆的有关性质课程设计

人教版九年级上册24.1圆的有关性质课程设计一、课程目标通过本次课程的学习,学生将能够掌握以下知识和能力:1.理解圆的定义,并能够用正确的术语描述圆的各种性质。
2.能够计算圆的直径、半径、周长和面积,掌握圆相关公式,运用公式解决实际问题。
3.能够运用圆的性质解决实际问题,例如预测和解决国际象棋中马脚位的问题。
二、教学内容与安排1. 圆的定义与性质(1)圆的定义我们先从圆的定义入手,通过引导学生探究圆的一些基本概念,让学生初步了解圆并感受到圆的美妙。
引导学生讨论圆的定义,通过班讨进行交流,达成一致意见,最终教师给出准确的定义。
(2)圆的性质要想深入了解圆,必须掌握其各种性质。
帮助学生了解圆的性质,掌握正确的标记演示方法,增强对圆的认识。
1.圆的半径、直径和周长的概念2.圆心角与弧度的关系3.弧长、面积的计算通过展示动态模型,让学生 observe 圆的各种性质,帮助学生理解这些性质,并用实例进行具体化。
2. 解决实际问题(以国际象棋中马脚位的问题为例)(1)国际象棋中的马脚位引出国际象棋中的马脚位问题,简述问题的背景。
(2)用圆解决问题将问题转化为圆上点的位置,运用圆的性质推导点的可行范围,通过模型中的演示,给出答案和说明,并介绍此类问题的一般处理方法,并强调其应用前景。
3. 总结与小结问卷调查学生的收获,引导学生总结本节课的重要内容。
通过班讨和师生互动,巩固本节课的知识点,帮助学生掌握圆的重要性质。
并对课程的重点和难点进行整理和总结,加深学生的记忆。
三、教学方法本课程的教学方法包括:1.互动教学法:通过课堂互动、班讨、小组合作等形式,激发学生的学习兴趣,提高学习效果。
2.模拟演示法:通过模拟具体的情景,帮助学生理解抽象的数学概念和原理,提升学生的解决问题能力。
3.自主探究法:鼓励学生自己去发现、思考问题,并寻找解决问题的方法,提高学习主动性和自主探究能力。
四、课时安排本课程为单节课,每节课时约为45分钟。
九年级数学上册(人教版)24.1.1圆教学设计

(二)讲授新知
1.圆的定义:讲解圆的基本概念,强调圆是由一条曲线组成,所有点到圆心的距离相等。
2.圆的性质:讲解圆的半径、直径、周长、面积等基本性质,以及圆的对称性、轴对称性等。
3.圆的周长和面积计算:介绍圆周长和面积的公式,并结合实例进行讲解。
九年级数学上册(人教版)24.1.1圆教学设计
一、教学目标
(一)知识与技能
1.理解圆的定义,掌握圆的基本性质,如半径相等、直径是半径的2倍等。
2.学会使用圆规画圆,掌握圆的对称性质,并能运用到实际中。
3.掌握圆的周长和面积的计算公式,并能灵活运用解决相关问题。
4.了解圆的位置关系,如相离、相切、相交等,并能判断圆与圆、圆与直线之间的位置关系。
3.教学评价:
a.采用形成性评价和终结性评价相结合的方式,全面了解学生的学习过程和结果。
b.重视学生在课堂上的表现,如发言、讨论、练习等,及时给予鼓励和指导。
c.定期进行单元测试,检测学生对圆的知识掌握程度,为下一步教学提供依据。
4.教学拓展:
a.介绍圆在生活中的应用,如建筑、艺术、科技等领域,激发学生的学习兴趣。
b.计算给定圆的周长和面积,要求使用两种不同的方法计算,并比较结果。
c.画出两个相交、相切和相离的圆,并简要说明判断依据。
2.实践应用题:
a.利用圆的性质,设计一个圆形花园,要求给出花园的半径和面积。
b.在一张白纸上画出一个圆,然后剪下这个圆,测量并计算它的周长和面积。
c.结合生活实例,说明圆在实际应用中的优势。
c.如果一个圆的半径增加了两倍,那么它的周长和面积会发生怎样的变化?
初中数学初三数学上册《圆的基本性质》教案、教学设计

3.应用与实践教学:
-创设实际问题情境,如计算操场的周长和面积,让学生运用所学知识解决问题。
-设计分层练习,针对不同水平的学生提供不同难度的题目,使每个学生都能得到有效训练。
4.思维能力培养:
-鼓励学生提出自己的观点和疑问,进行小组讨论,培养学生的批判性思维。
-小组内讨论并解决一个涉及圆的复杂几何问题,要求给出解题过程和最终答案。
作业要求:
-请学生认真完成作业,注意书写的规范性和解答的完整性。
-作业完成后,进行自我检查和同伴互评,相互学习,共同提高。
-教师将根据作业完成情况,给予及时反馈,帮助学生发现并改正错误。
5.通过数学软件或实际操作,观察圆的性质,培养学生的直观想象能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生通过观察、实验、推理等过程,探索圆的基本性质。
2.利用小组合作学习,让学生在交流、讨论中互相启发,提高解决问题的能力。
3.运用变式教学,让学生从不同角度、不同、学情分析
本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了平面几何的基本知识和技能,对于点、线、面等基本元素有了较为深入的理解。在此基础上,学生对圆的学习具备了一定的认知基础。然而,圆作为一种特殊的几何图形,其性质和运用对学生而言仍存在一定难度。因此,在教学过程中,教师需关注以下几点:
初中数学初三数学上册《圆的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解圆的基本概念,掌握圆的符号表示、半径、直径、圆周等基本元素。
2.学会使用圆规画圆,掌握圆的对称性质,能够运用到实际问题的解决中。
3.掌握圆的基本性质,如圆上任意两点到圆心的距离相等,圆的切线垂直于过切点的半径等。
人教版九年级数学上册24.1圆的有关性质教学设计

3.请同学们预习下一节课内容,提前了解圆的位置关系,为课堂学习做好准备。
4.针对本节课的学习,撰写一篇学习心得,谈谈自己对圆的性质及圆周角定理的理解和感悟,字数不限。
3.教师选取部分学生的答案进行展示和点评,指出解题过程中的常见错误和注意事项。
4.针对学生的掌握情况,教师进行针对性的讲解和辅导,巩固课堂所学。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,提问:圆的性质有哪些?圆周角定理是什么?
2.学生回答,教师点评并补充:圆的性质包括半径相等、圆心角相等、圆的对称性等;圆周角定理指出,同弧或等弧所对的圆周角相等。
3.各小组汇报讨论成果,教师点评并总结:圆的性质在生活中的应用非常广泛,如建筑、工程设计等领域;圆周角定理可以用来解决与圆有关的角度问题,如圆内接四边形的对角互补等。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,涵盖圆的性质、圆周角定理等知识点,让学生独立完成。
2.学生完成练习题,教师巡回指导,解答学生的疑问。
(二)过程与方法
1.提高观察能力和空间想象力,通过观察圆的性质,培养学生对几何图形的认识。
2.发展逻辑思维能力和推理能力,通过推导圆的性质,使学生学会运用几何知识解决问题。
3.培养学生的动手操作能力,通过画圆、测量等实践活动,提高学生对圆的认识。
4.学会与他人合作交流,培养团队精神和沟通能力。
(三)情感态度与价值观
3.教师强调圆的性质在生活中的应用,以及圆周角定理在解决实际问题中的作用。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的实践能力。
人教版九年级数学上册教案:24.1圆的有关性质

-弦的定义、性质
-圆心角与弧的关系
-弓形的定义及计算
5.圆的内接四边形与外接四边形
-内接四边形的性质
-外接四边形的性质
6.圆的相似性质-Fra bibliotek似圆的定义及性质
-相似比的应用
7.圆的实际应用
-圆在实际问题中的应用
-解决与圆相关的问题
二、核心素养目标
1.培养学生的几何直观与空间观念,通过探究圆的性质,提高对圆及相关图形的认识,形成直观想象能力。
-在相似圆的应用中,难点在于如何从实际问题中抽象出相似关系,并进行比例计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆的有关性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过圆形物体,比如车轮、硬币?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆的性质的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、周长和面积的公式、切线与割线的性质,以及圆在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对圆的性质的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量硬币的直径和计算其面积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教版九年级数学上册圆的有关性质《圆周角》教学设计

24.1圆的有关性质(第四课时)一、内容和内容解析1.内容圆周角概念,圆周角定理及其推论.2.内容解析与圆心角一样,圆周角也是研究圆时重点研究的一类角.顶点在圆上并且两边都与圆相交的角叫做圆周角.圆周角定理(即一条弧所对的圆周角等于它所对的圆心角的一半)揭示了一条弧所对的圆周角与圆心角之间的数量关系.从而把圆周角与相对应的弧、弦联系起来.圆周角定理及其推论为与圆有关的角的计算,证明角相等,弧、弦相等等数学问题提供了十分便捷的方法和思路,即是圆心角、弦、弧之间关系的继续,又是后续研究圆与其他平面图形的桥梁和纽带.圆周角定理得证明,采用完全归纳法,通过分类讨论,把一般问题转化为特殊情况来证明,渗透了分类讨论和化一般为特殊的化归思想.基于以上分析,确定本节课的教学重点是:圆周角定理.二、目标和目标解析1.目标(1)了解圆周角的概念,会证明圆周角定理及其推论.(2)结合圆周角定理的探索与证明的过程,进一步体会分类讨论、化归的思想方法.2.目标解析达成目标(1)的标志是:能在具体的图形中正确识别一条弧所对的圆周角;知道一条弧所对的圆周角等于这条弧所对的圆心角的一半,知道同弧或等弧所对的圆周角相等,能够正确识别直径所对的圆周角,并会结合具体问题构造直径所对的圆周角;能够应用定理和推论解决简单问题.达成目标(2)的标志是:能通过画图、观察、度量、归纳等方式发现一条弧所对圆周角与圆心角之间的关系;能根据圆心与圆周角的位置关系对同弧所对的圆周角进行分类,理解证明圆周角定理需要分三种情况的必要性;理解证明圆周角定理时,可以把圆心在圆周角的内部和外部两种情况转化成特殊情况,从而证明定理.三、教学问题诊断分析圆心与圆周角具有三种不同的位置关系:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部.所以,圆周角定理的证明要采用完全归纳法,分情况证明.学习本节课内容时,学生已经具备一定的逻辑推理能力,但对于一个几何命题要分情况证明的经验还很缺乏.因此,教学的关键是:①在学生明确圆周角的概念后,让学生动手画圆周角,一方面让学生深入了解圆周角,另一方面,让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系,为后面证明中的分类讨论做好铺垫.②学生合作交流,通过度量事先画的一条弧所对的圆周角与圆心角的度数,探究并猜想他们之间的数量关系,然后教师在利用计算机软件来验证,让学生进一步明确他们之间的关系,从而得到命题:一条弧所对的圆周角等于它所对的圆心角的一半.③从特殊的位置关系——圆心在圆周角一边上的情形入手,先证明猜想,再将其他两种情形转化为圆心在圆周角一边上的情形.基于以上分析,本节课的教学难点是:分情况证明圆周角定理.四、教学过程设计1.了解圆周角的概念问题1 如图1,∠ACB的顶点和边有哪些特点?师生活动:学生观察图形,教师引导学生结合图形认识到:∠ACB的顶点在OΘ上,角的两边分别交OΘ于点A,B两点.教师进而指出:顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角与圆心角都是圆有关的角.设计意图:结合图形,获得圆周角定义,理解圆周角的概念.练习教科书第88页练习第一题.师生活动:学生思考并回答问题.设计意图:同时呈现有关圆周角的正例和反例,有利于学生对圆周角概念的本质属性与非本质属性进行比较,巩固对概念的理解.2.探索圆周角定理问题2在图2中,∠ACB是圆周角,作出弧AB所对的圆心角∠AOB.分别测量∠ACB和∠AOB的度数.他们之间有什么关系?师生活动:学生画图,连接OA,OB得到圆心角∠AOB.跳时指出∠ACB和∠AOB都对着弧AB提出以下问题.教师追问1:图2中,∠ACB和∠AOB有怎样的关系?1.即师生活动:学生通过观察,度量,猜想AOB∠=ACB∠2一条弧所对的圆周角等于它所对的圆心角的一半.教师追问2:在OΘ上任取一条弧,做出这条弧所对的圆周角和圆心角,测量它们的度数,你能得出同样的结论吗?师生活动:除学生动手画图度量,并验证猜想外,教师也可以利用《几何画板》软件的动态功能和度量功能进行演示,从更广泛的角度验证猜想:①拖动圆周角的顶点在优弧AB上运动;②改变弧的大小;③改变圆的大小后分别进行①和②的掩演示.引导学生发现,在演示过程中,∠ACB和∠AOB 度数的比值保持不变.设计意图:引导学生经历观察猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质:一条弧所对的圆周角等于它所对的圆心角的一半.教师使用《几何画板》做进一步演示与验证,在动态环境中研究圆周角与圆心角的关系,即在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解一条弧所对的圆周角与圆心角的数量关系.3.证明圆周角定理问题3 如何证明一条弧所对的圆周角等于它所对的圆心角的一半?教师追问1:在圆上任取弧BC,画出圆心角∠BAC和圆周角∠BOC,圆心与圆周角有几种位置关系?师生活动:学生动手画图、交流、思考,得到圆心与圆周角的三种位置关系(图3):①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.设计意图:把直观操作与逻辑推理有机结合,使得推理论证成为学生观察、实验、探究得出结论的自然延续.同时进一步明确证明的必要性和证明的方法.教师追问2:第①种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生结合三种位置的图形,认识到第①种情况属于特殊情况,另外两种情况比第①种情况复杂.研究数学问题一般从特殊情况开始,再考虑其他情况能否转化成特殊情况.师生结合图3(1),分析第①种情况,得到BOC A C A BOC C A OC OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21 教师指出:符号”B A “⇒表示由条件A 推出B ,可以用”“⇒方式给出推理过程.设计意图:从特殊情况入手,证明猜想G 便于学生的学习又为其他两种情况的证明提供了转化的方向.教师追问3: 在第②③种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生思考,尝试解决.如果学生有困难,教师可提示学生:将第②③种情况转化成第①种情况.根据学生的情况,师生共同研究完成第②种情况的证明.证明:如图4,连接AO 并延长交ΘO 于点D.BOD BAD B BAD BOD B BAD OB OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21. 同理,COD CAD ∠=∠21. BOC COD BOD CAD BAD BAC ∠=∠+∠=∠+∠=∠∴212121.学生独立完成第③种情况的证明.从而得到定理:一条弧所对的圆周角等于它所对的圆心角的一半.设计意图:将一般情况化为特殊情况,体现了化归的数学思想.学生通过证明三种情况,感受分类证明的必要性,有利于逻辑推理能力的提升.4.探究特殊情况,获得推论问题4我们知道,一条弧,可以对着不同的圆周角,这些圆周角之间有什么关系?也就是说,同弧或等弧所对的圆周角之间有什么关系?师生活动:学生画出弧BC所对的几个圆周角和圆心角(图5),先观察、猜想,根据定理得到结论:一条弧所对的圆周角相等.再思考同弧或等弧的情况.如果学生遇到困难,教师可根据情况提示学生:考虑圆周角与圆心角之间的关系、弧与圆心角之间的关系,通过弧相等得到结论.设计意图:让学生经历观察、猜想、证明得出推论的探索过程,得到圆周角定理的推论,进一步认识与圆有关的角和弧之间的关系.问题 5 半圆或直径所对的圆周角有什么特殊性?师生活动:学生画出弧AB所对的几个圆周角和圆心角(图6),通过观察、猜想,根据定理得到结论:半圆(或直径)所对的圆周角是直角.教师进一步引导学生得出:90°的圆周角所对的弦是直径.设计意图:由一般到特殊进一步认识定理,加深对定理的理解,获得推论.5.应用圆周角定理与推论例如图7,OΘ的直径AB的长为10cm.弦AC长为6cm,∠ACB的平分线交OΘ于点D, 求BC,AD,BD的长.师生活动:师生共同分析已知条件、所求和解题思路.如图8,欲求BC的长,由BC所在的△ABC中AB 为OΘ的直径,可知∠ACB=90°.又AB和AC已知,在Rt△ABC中,由勾股定理可求BC的长.由CD平分∠ACB得∠ACD=∠BCD,连接OD,可得∠AOD=∠BOD=90°,进而由勾股定理可求AD,BD的长.学生解答,一名学生板书,教师组织学生交流.设计意图:应用圆周角定理及其推论解决问题,巩固所学的内容.6.小结教师与学生一起回顾本节课的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)我们是如何证明圆周角定理的?在证明过程中用到了哪些思想方法?设计意图:通过小结使学生归纳梳理总结本节的知识、技能、方法,将本节课所学的知识与以前所学的知识进行紧密联系,有利于学生认知数学思想、教学方法,积累数学活动的经验.7.布置作业教科书第88页练习题第2,3,4题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学时间课题24.1.1 圆课型新授课教学目标知识和能力探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.过程和方法体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.情感态度价值观在解决问题过程中使学生体会数学知识在生活中的普遍性.教学重点圆的两种定义的探索,能够解释一些生活问题.教学难点圆的运动式定义方法教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?图5师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).小结:圆的两种定义以及相关概念.在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OA M与△OB M都是直角三角形,又O M为公共边,所以两个直角三角形全等,则A M=B M.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此.AM=B M,AC=BC,同理得到AD BD教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接作OE ⊥AB ,垂足为E ,交圆于则AE =21AB = 30 cm .令⊙的半径为R ,情感培养学生积极探索数学问题的态度及方法.态度价值观教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由AB AC=,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵AB AC=∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.图3学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=23×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系.作业设计必做习题24.1 第2、3题,第10题.选做P88:11、12教学反思教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.过程和方法1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.4.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度价值观引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图[活动1 ]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发问题1如图:同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,他们的视角(AOB ∠和ACB ∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D 和E ,他们的视角(ADB ∠和AEB ∠)和同学乙的视角相同吗?角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究.教师关注:1.问题的提出是否引起了学生的兴趣;2.学生是否理解了示意图; 3.学生是否理解了圆周角的定义;4.学生是否清楚了要研究的数学问题.现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的?O BAC BOA C D E教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论. 在活动中,教师应关注:1.学生是否积极参与活动; 2.学生是否度量准确,观察、发现的结论是否正确.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数; 3.改变圆的半径大小.活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.问题5如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6如图,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.问题6提出后,教师关注:1.学生是否能由已知条件得出直角三角形ABC、ABD;2.学生能否将要求的线段放到三角形里求解;3.学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.[活动5]问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业的目的是让学生养成看书的习惯,并通过看书加DBOAC。