比例尺应用题
六年级上册数学《比》3类必考应用题及练习

六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。
所设未知数的计量单位名称要与已知的计量单位名称相同。
练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。
X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。
2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。
2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。
例题如下:六一玩具厂要生产2080套儿童玩具。
前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
比例尺应用题五道简单(字少)

比例尺应用题五道
1.一块长方形菜地的周长是640米,长与宽的比是5:3,这个长方形菜地的面积是多少?
2.用120厘米的铁丝做一个长方体的框架。
长、宽、高的比是3: 2: 1。
这个长方体的长、宽、高分别是多少?体积是多少?
3.买一套衣服用了640元,其中裤子和上衣价钱比是3 : 5,上衣和裤子各需要多少钱?
4.水泥、沙子和石子的比是2:3:5。
要搅拌20吨这样的混凝土,需要水泥、沙子和石子各是多少吨?
5.淘气一家三口和笑笑一家四口一起外出自驾游,总共消费2800元。
两家决定按人数分摊费用,两家各付多少钱?。
关于比例的应用题

关于比例的应用题一、简单比例应用题1. 题目- 已知甲、乙两数的比是3:5,甲数是12,求乙数是多少?- 解析:- 因为甲、乙两数的比是3:5,设乙数为x。
- 根据比例的定义,(甲)/(乙)=(3)/(5),已知甲数是12,可列出方程(12)/(x)=(3)/(5)。
- 通过交叉相乘得到3x = 12×5,即3x=60。
- 解得x = 20,所以乙数是20。
2. 题目- 一种盐水,盐和水的比是1:10,要配制这种盐水550克,需要盐和水各多少克?- 解析:- 盐和水的比是1:10,那么盐水一共是1 + 10=11份。
- 要配制550克盐水,每份的重量是550÷11 = 50克。
- 盐占1份,所以盐的重量是50×1 = 50克。
- 水占10份,水的重量是50×10 = 500克。
二、比例尺相关应用题1. 题目- 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米。
A、B两地的实际距离是多少千米?- 解析:- 比例尺1:5000000表示地图上1厘米代表实际距离5000000厘米。
- 量得A、B两地在地图上的距离是6厘米,那么实际距离就是6×5000000 = 30000000厘米。
- 因为1千米 = 100000厘米,所以30000000厘米=30000000÷100000 = 300千米。
2. 题目- 一个长方形操场,长120米,宽80米。
如果把它画在比例尺是1:400的图纸上,长和宽各应画多少厘米?- 解析:- 因为1米 = 100厘米,所以长120米=120×100 = 12000厘米,宽80米=80×100 = 8000厘米。
- 根据比例尺1:400,图上距离 = 实际距离×比例尺。
- 长应画12000×(1)/(400)=30厘米。
- 宽应画8000×(1)/(400) = 20厘米。
比例尺应用题及答案

比例尺应用题及答案一、问题描述现有一条公路,长度为300千米,若要将其缩小到一张长为15厘米的纸上,应使用何种比例尺?二、解题过程1.确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度2.计算比例尺的值:实际长度为300千米,绘制长度为15厘米,代入公式可得:比例尺 = 300 ÷ 15 = 20三、答案阐述根据计算结果可得,将300千米的公路缩小至15厘米的纸上时,应采用比例尺为1:20。
即每1厘米的纸代表实际公路的20千米。
四、其他应用示例1.问题描述现有一块土地,面积为80亩,若要将其绘制在一张长为40厘米的图纸上,应使用何种比例尺?2.解题过程(1)确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度(2)计算比例尺的值:实际长度为80亩,绘制长度为40厘米,代入公式可得:比例尺 = 80 ÷ 40 = 23.答案阐述根据计算结果可得,将80亩的土地绘制在一张长为40厘米的图纸上时,应采用比例尺为1:2。
即每1厘米的图纸代表实际土地的2亩。
2.问题描述某模型飞机的实际长度为30厘米,若要将其放大至实际飞机的长度,应使用何种比例尺?3.解题过程(1)确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度(2)计算比例尺的值:实际长度为30厘米,绘制长度为实际飞机的长度,代入公式可得:比例尺 = 30 ÷ 1 = 304.答案阐述根据计算结果可得,将某模型飞机放大至实际飞机的长度时,应采用比例尺为30:1。
即模型飞机的长度是实际飞机长度的30倍。
五、总结比例尺是地图、图纸等绘制工作中常用的概念,用于表示实际长度与绘制长度之间的比例关系。
在实际问题中,我们需要根据实际情况确定比例尺的数值,以便准确地绘制出所需的图形或地理信息。
在计算比例尺时,我们可以根据公式进行简单的除法运算,得出比例尺的数值。
比例尺的正确应用可以确保绘制的图形或地理信息具有一定的准确性和可读性。
比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶小时后,离乙地还有多远?16.一个零件长厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A 地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题——比例问题(1)年级姓名一、填空题 1. 4:=设4:x=16=?10=% 2016?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为亩、亩、亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728 540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210 325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?233 1112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B 两地同时出发相向而行,小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。
六年级关于比例的应用题

六年级关于比例的应用题一、比例应用题。
1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。
已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。
设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。
2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。
设铺42平方米要用x块方砖。
可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。
3. 配制一种农药,药粉和水的比是1:500。
- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。
- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。
4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。
操场长120米=12000厘米,宽80米=8000厘米。
长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。
5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
- 解析:首先统一单位,4厘米= 40毫米。
比例尺=图上距离:实际距离=40:5 = 8:1。
中学比例尺应用题专项练习题

中学比例尺应用题专项练习题1. 某地图上,2厘米表示5公里。
如果纸带上的距离是12.5厘米,请计算实际距离是多少公里?解答:根据比例关系,2厘米表示5公里,那么1厘米表示2.5公里。
纸带上的距离为12.5厘米,所以实际距离为12.5厘米 × 2.5公里/1厘米 = 31.25公里。
2. 一辆汽车行驶了240千米,行驶时间为6小时。
以比例尺1:,根据地图上的比例,汽车行驶了多少厘米?如果用实际尺寸表示,地图上的汽车行驶距离是多少千米?解答:根据比例关系,1千米表示厘米,那么1千米表示1/ * 1厘米。
汽车行驶了240千米,所以地图上的表示为240千米 × 1/ * 1厘米 = 0.6厘米。
如果用实际尺寸表示,地图上的汽车行驶距离是240千米。
3. 在一张比例尺为1:的地图上,两个城市的距离是7.5厘米。
如果按实际尺寸,这两个城市的距离是多少千米?解答:根据比例关系,1厘米表示千米,那么7.5厘米表示7.5厘米 ×千米/1厘米 = 千米。
所以按实际尺寸,这两个城市的距离是千米。
4. 一辆小汽车以时速80千米在高速公路上行驶,假设地图比例尺为1:,根据地图上的比例,这辆车在地图上每小时行驶多少厘米?解答:根据比例关系,1千米表示厘米,那么1千米表示1/厘米。
小汽车以时速80千米行驶,所以地图上的表示为80千米 × 1/厘米 = 0.04厘米。
所以这辆车在地图上每小时行驶0.04厘米。
5. 一张地图上两个城市之间的距离是12.5厘米,比例尺为1:5000。
这两个城市之间的实际距离是多少千米?解答:根据比例关系,1厘米表示5000千米,那么12.5厘米表示12.5厘米 × 5000千米/1厘米 = 千米。
所以这两个城市之间的实际距离是千米。
以上是中学比例尺应用题专项练习题的答案和解析。
比的应用题及答案

比的应用题及答案1. 题目:小明和小华一起买了一些苹果,小明买了苹果的3/5,小华买了苹果的2/5。
如果小明买了15个苹果,那么小华买了多少个苹果?答案:首先,我们需要确定苹果的总数。
小明买了苹果总数的3/5,已知他买了15个苹果,所以苹果总数为15除以3/5。
计算过程如下:苹果总数= 15 ÷ (3/5) = 15 × (5/3) = 25个接下来,我们计算小华买的苹果数。
小华买了苹果总数的2/5,所以:小华买的苹果数 = 苹果总数× (2/5) = 25 × (2/5) = 10个所以,小华买了10个苹果。
2. 题目:一个班级有40个学生,其中男生占3/5,女生占2/5。
如果班级中转来了2个男生,那么现在班级中男生和女生的比例是多少?答案:首先,我们计算原来班级中男生和女生的人数。
男生人数= 40 × (3/5) = 24人女生人数= 40 × (2/5) = 16人转来2个男生后,男生的人数变为:新的男生人数 = 24 + 2 = 26人班级总人数也增加了2人,变为:新的班级总人数 = 40 + 2 = 42人现在,我们计算男生和女生的新比例:男生比例 = 新的男生人数 / 新的班级总人数 = 26 / 42女生比例 = 新的女生人数 / 新的班级总人数 = 16 / 42化简比例:男生比例 = 13 / 21女生比例 = 8 / 21所以,现在班级中男生和女生的比例是13:8。
3. 题目:一个长方形的长是宽的4倍,如果长是16厘米,那么宽是多少厘米?答案:设长方形的宽为x厘米,根据题意,长是宽的4倍,所以长为4x厘米。
已知长为16厘米,我们可以列出方程:4x = 16解这个方程,我们得到:x = 16 / 4 = 4所以,长方形的宽是4厘米。
4. 题目:一个比例尺为1:500的地图上,一个长方形的长是2厘米,宽是1厘米。
求实际长方形的长和宽各是多少米?答案:首先,我们需要将比例尺转换为实际距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?2.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?3.在一幅比例尺是1 :10000000的地图上,量得重庆到成都的高速公路长上3.3厘米,重庆到成都的高速公路实际长是多少千米?4.某建筑工地挖一个长方形的地基,把它画在比例尺是的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?7.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
8.甲乙两地实际距离是50米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是()。
9.在一幅地图上,量得甲地到乙地的距离是4.2厘米,实际距离是1050千米,这幅地图的比例尺是()。
10.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?11.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?12.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?13.某小学的校园长200米,画在平面图上是20厘米,量得校园宽是150米,在这张图纸上应画14. 在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?15. 在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?16. 北京与天津大约相距120千米,在比例尺是1:600000的地图上的距离约是多少多少厘米?17. 一种精密零件长5毫米,画在纸上长10厘米,这幅图纸的比例尺是多少?18. 兰州到乌鲁木齐的铁路线大约长1900km,在一幅地图上量得两地间的距离是5cm 。
这幅地图的比例尺的多少?19. 地图的比例尺是,北京到天津某地的距离画在该地图上是4.8厘米,求两地的实际距离多少?20. 兰州到乌鲁木齐的铁路线大约长1900km 。
在比例尺是1:40000000的地图上,它的长是多少?21. 在一幅比例尺是1:5000000的地图上,量得上海到杭州的距离是3.4厘米,上海到杭州的实际距离是多少?22. 在一幅比例尺是1:2000000的地图上,量得甲、乙两个城市之间高速公路的距离是5.5cm 。
在另一幅比例尺 是1:5000000的地图上这条公路的图上距离是多少?23. 一种精密零件长5毫米,把它画在比例尺是12:1的零件图上,长应画多少厘米?24. 在一幅比例尺是80000001的地图,量得甲、乙两城之间的路长12.5cm 。
一辆汽车以平均每小时80km 的速度从甲城开往乙城,需多少个小时才能到达?25. 在一幅比例尺是1:5000的平面图上,量得一段公两个修路队,路长16.8厘米。
把修筑这段26.一个圆画在1:100的图纸上,直径是2厘米,求这个圆实际直径和面积各是多少?27.在一幅比例尺是1:6000000的地图,量得甲、乙两城之间的公路长5厘米。
一辆汽车以平均每小时60千米的速度从甲城开往乙城,需要多少小时才能到达?28.小明家上个月用了12吨水,水费是30元,小红家用了15吨水,小红家上个月的水费是多少钱?(用比例解)29.⑴比例尺分为()和()。
⑵在一幅地图上,用3厘米的线段表示18千米的实际距离,这幅地图的比例尺是()。
⑶一幢教学大楼平面图的比例尺是1/200,表示实际距离是图上距离的()倍。
30.⑴在比例尺是1:6000000的地图上,量得重庆到上海的距离是24厘米,重庆到上海的实际距离是多少千米?31.在比例尺是1/1000的地图上,量得一间房屋地基长8厘米,宽5厘米。
这间房屋实际的长和宽分别是多少?32.实际距离240千米,画在比例尺是1:8000000的地图上,应画多少厘米?33.一个长方形操场,长160米,宽120米。
如果把它画在比例尺是1/4000的地图上,长和宽各应画多少厘米?34.在比例尺是1/5000的地图上,量得一所学校的平面图长6厘米,宽4厘米。
这所学校实际占地面积是多少平方米?35.下面是某学校教学楼的地基占地平面图,请量出图上的长和宽,再算出教学楼地基实际的长和宽和教学楼的占地面积。
(图形显示不出,故给出图形信息长为3cm,宽为1.5cm,比例尺1:1500)36.在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。
如果把南京到北京的距离画在比例尺是1:5000000的地图上,应该画多少厘米?37.在一幅地图上,用5厘米的距离表示实际距离1500千米。
在这幅地图上量得A、B两地的距离是3.5厘米,A、B两地的实际距离是多少千米?一条640千米的高速公路,在这幅地图上是多少厘米?38.在比例尺是1:5000000的地图上,量得沈阳和重庆两地相距6厘米。
如果甲、乙两辆汽车同时从两地相对出发,甲车每小时行48千米,乙车每小时行42千米。
几小时后两车能相遇?39.有一幅地图,用4厘米的线段代表实际距离16千米,求这幅地图的比例尺。
40.在一幅世界地图上,用95厘米长的线段表演1900千米的航空线的长度,求这幅世界地图的比例尺。
41.一幅地图上量得北京到武汉的距离是8厘米,而实际北京到武汉的距离是1152千米,求这幅地图的比例尺。
42.有一种精密仪器零件长是5毫米,画在图纸上的长度是8厘米,求这幅图纸的比例尺。
43.一种机械手表上的螺丝直径是4毫米,画在图纸上的长度是厘米,求这张图纸的比例尺。
44.在一张图纸上量得一个零件的长度是6厘米,已知这张图纸的比例尺子是1/100,求这个零件的实际长度是多少米45.在一张地图上量得A地到B地的距离是5厘米,这幅地图的比例尺是1/3000000,A地到B地的实际距离是多少千米46.在比例尺是1:的中国地图上,量得北京到上海之间的距离是厘米,北京到上海的实际距离是多少千米47.在比例尺是1:4000000的中国地图上,量得北京到广州的距离是50厘米,北京到广州的实际距离是多少千米48.在比例尺是6:1的图纸上理得一种精密零件长是3厘米,这个零件的实际长是多少毫米49.一张地图的经例尺是1/20000,从甲地到乙地的距离是60千米,求图上距离是多少厘米。
50.一条跑道长200米,如果用1:500的比例尺画在图纸上,应画多长51.学校操场长60米,宽45米,用1:1500的比例尺画在图纸上,长和宽应各画多长如果画在比例尺是1/1000的图纸上,长和宽各应画多长52.一个长方形机件长毫米,宽毫米,按8:1的比例尽画在图纸上,长和宽各应画多长53.一张图纸的比例尺是1/300,图中长方形实验田长是40厘米,宽是30厘米,这块长方形实验田的实际面积是多少平方米54.一块长方形地长120米,宽90米,用1/3000的比例尺画出这块地的平面图。
55.一块实验田长180米,宽120米,请你选择适当的比例尺,画出平面图。
56.在比例尺是1/400000的地图上量得长春到吉林的距离是35厘米,已知一列客车每小时行70千米,这列客车从长春到吉林要行多少小时57.在比例尺是五十万分之一的地图上,量得两地间的距离是8厘米,如果将它表演的实际距离画在1:4000000的地图上,应画多长58.在比例尺是1:2000的图纸上量得一个圆形花坛的直径是3厘米,这个圆形花坛的实际面积是多少平方米(∏取3)59.在比例尺是1:1500的图纸上量得一个操场的长是5厘米,宽是厘米,求这个操场的实际面积是多少平方米。
60.在比例尺是1/2000的图纸上,量得一块正方形土地的边长是4厘米,这块正方形土地的实际61.在一张比例尺是8:1的图纸上,量得一个精密零件的长是12厘米,这个零件的实际长是多少厘米62.在比例尺是1:3000000的地图上,量得甲、乙两地的距离是40厘米。
两辆汽车同时从甲、乙两地相对开出,经过12小时相遇。
已知甲车每小时行48千米,乙车每小时行多少千米63.在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。
两列火车同时从甲、乙两地相对开出。
已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇64.新立屯计划挖一条排水渠,在比例尺是1/100的设计图上,水渠长80厘米,宽3厘米,深厘米。
按图施工,这条水渠共挖土多少立方米65.在一幅比例尺是六百万分之一的地图上,量得甲、乙两地的图上距离是厘米,一辆汽车从甲地到乙地行了6小时,平均每小时行多少千米66.有两列火车同时从甲、乙两地相对开出,慢车每小时行70千米,快车每小时比慢车多行10千米,4小时后两车行全程的2/3。
在比例尺是1:的铁路运行图上,甲、乙两地之间的图上距离是多少厘米67.()和()的比叫做这幅图的比例尺。
比例尺分为()比例尺和()比例尺。
68.图上20厘米的距离表示实际距离40千米,这副地图的比例尺是()。
69.一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
70.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。
也就是图上距离是实际距离的( ),实际距离是图上距离的()倍。
用线段比例尺表示为()。
71.在一幅比例尺是30 :1的图纸上,一个零件的图上长度是12厘米,它的实际长度是()。
72.在比例尺是1∶4000000的地图上,1厘米相当于实际( )厘米,合( )千米。
73.在比例尺是1∶100000的地图上,2厘米表示的实际距离是( )千米。
74.把比例尺1:6000000画成线段比例尺是()75.一幅地图,图上4厘米表示实际距离80千米,求这幅地图的比例尺?76.一幅地图,图上10厘米表示实际距离5千米,这幅地图的比例尺是多少?78. 长春到吉林的铁路长124千米,如果用1∶400000的比例尺,画在一幅地图上,需要画多长的线段?79. 一种精密零件长2.5毫米,用20∶1的比例尺画图,应画多长?80. 新建一幢大楼,地基是长方形,长80米,宽30米把它画在设计图上,长是40厘米,宽应是多少厘米?81. 一块长方形地,长60米,宽30米,若用1∶600的比例尺画在图纸上,求在图纸上的面积是多大?82. 在比例尺1∶250000的地图上,量得两地距离约26厘米,两地实际距离是多少千米?83. 在比例尺是7∶1的图纸上,量得一个精密零件的长是42毫米,这个零件的实际长度是多少毫米?84. 在比例尺5∶1的机器零件图上,量得一种零件长是100毫米,宽是85毫米,求这种零件实际的长和宽各是多少?85. 在比例尺是1∶2000的图纸上,量得一个正方形花坛的边长为4厘米,这个花坛实际面积是多少?86. 在比例尺1∶2000的图上量得一块长方形土地,平面图的长是6厘米,宽是4厘米,求这块土地实际面积是多少?87. 在五百万分之一的地图上,量得北京到天津的距离为6.5厘米,若火车每小时行50千米,北京到天津火车需要几小时到达?88. 在一幅比例尺是 的地图上,量得甲、乙两地的图上距离是6厘米,一辆汽车从甲地到达乙地行了6小时,平均每小时行多少千米?89. 在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,30 80 40 120 160千米。