已知密度函数求数学期望
数学期望的计算及应用

数学期望的计算及应用数学与应用数学111 第四小组引言:我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。
因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。
在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即E(X)x k p k;2.应用随机变量函数的期望公式k 1E(q(x))q( x k ) p k 3. 利用期望的有关性质。
但是还是会碰到许多麻烦,这里我们将k 1介绍一些解决这些难题的简单方法。
在现实生活中,许多地方都需要用到数学期望。
如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。
就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。
下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。
1.变量分解法[1]如果可以把不易求得的随机变量 X 分解成若干个随机变量之和,应用E( X 1E2... E n ) E( X 1 ) E ( X 2 )...E ( X n ) 再进行求解得值,这种方法就叫做变量分解法。
这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。
例题 1 :从甲地到乙地的旅游车上载有达一个车站没有旅客下车,就不停车,以20 位旅客,自甲地开出,沿途有10 个车站,如到X 表示停车次数,求E(X).( 设每位旅客在各个车站下车是等可能的)分析:汽车沿途10 站的停车次数X 所以可能取值为0,1,.,10,如果先求出X 的分布列,再由定义计算E(X) ,则需要分别计算{X=0} ,{X=1},,{X=10} 等事件的概率,计算相当麻烦。
注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1 对应起来,映入随机变量X i每一种结果的概率较易求得。
概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
随机变量的数学期望和方差

随机变量的数学期望和方差随机变量是概率论中的重要概念,用来描述一个随机事件可能取到的不同值及其对应的概率。
对于一个随机变量而言,数学期望和方差是常用的统计量,用于描述随机变量的平均水平和离散程度。
一、数学期望数学期望是随机变量的平均值,表示了随机变量在大量重复实验中的长期平均表现。
通常用E(X)或μ来表示,其中X为随机变量。
对于离散型随机变量,数学期望的计算公式为:E(X) = ΣxP(X=x)其中,x为随机变量X可能取到的值,P(X=x)为其对应的概率。
以掷骰子为例,假设随机变量X表示掷骰子的点数,点数可能取到1、2、3、4、5、6,每个点数的概率相等。
则计算掷骰子的数学期望为:E(X) = 1/6 × 1 + 1/6 × 2 + 1/6 × 3 + 1/6 × 4 + 1/6 × 5 + 1/6 × 6 = 3.5对于连续型随机变量,数学期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)为随机变量X的概率密度函数。
二、方差方差是随机变量取值与其数学期望的偏差的平方的平均值,用于衡量随机变量的离散程度。
通常用Var(X)或σ^2来表示,其中X为随机变量。
对于离散型随机变量,方差的计算公式为:Var(X) = Σ(x-E(X))^2P(X=x)以掷骰子为例,假设随机变量X表示掷骰子的点数,其数学期望为3.5。
则计算掷骰子的方差为:Var(X) = (1-3.5)^2 ×1/6 + (2-3.5)^2 ×1/6 + (3-3.5)^2 ×1/6 + (4-3.5)^2 ×1/6 + (5-3.5)^2 ×1/6 + (6-3.5)^2 ×1/6 = 2.9167对于连续型随机变量,方差的计算公式为:Var(X) = ∫(x-E(X))^2f(x)dx方差的平方根被称为标准差,用于度量随机变量的离散程度。
概率论与数理统计-期末测试(新)第二章练习题

一、选择题1、离散型随机变量X 的分布律为(),1,2,k P X k b k λ===L ,则λ为( )。
(A)0λ>的任意实数 (B)1b λ=+ (C)11b λ=+ (D)11b λ=-2、设随机变量X 的分布律为()!kP X k ak λ==(λ>0,k=1,2,3,…),则a = ( )。
(A)e λ- (B) e λ (C) 1e λ-- (D) 1e λ-3、离散型随机变量X 的分布律为{},0,1,2,3!kAP X k k k ===L 则常数A 应为( )。
(A) 31e (B) 31-e (C) 3-e (D) 3e4、离散型随机变量X,则{||2|0}P X X ≤≥为( )。
(A)2129 (B)2229 (C)23 (D)135、随机变量X 服从0-1分布,又知X 取1的概率为它取0的概率的一半,则(1)P X =为( )。
(A) 13 (B) 0 (C) 12(D) 16、设随机变量X 的分布律为:0120.250.350.4XP,而{}()F x P X x =≤,则=)2( F ( )。
(A) 0.6 (B) 0.35 (C) 0.25 (D) 07、已知离散型随机变量的分布律为1010.250.50.25XP -,则以下各分布律正确的是( )。
(A)22020.510.5X P- (B) 211130.250.250.5X P +-(C) 2010.50.25X P(D)2010.50.5X P8、随机变量,X Y 都服从二项分布:~(2, ), ~(4, )X B p Y B p ,01p <<,已知{}519P X ≥=,则{}1P Y ≥=( )。
(A)6581 (B) 5681 (C) 8081(D) 19、随机变量X 的方差()3D X =,则(25)D X -等于( )。
(A) 6 (B) 7 (C) 12 (D) 1710、随机变量X 的分布律为:1()(),1,2,2(1)P X n P X n n n n ===-==+L ,则()E X =( )。
第六单元 数学期望

经济数学基础第10章随机变量与数字特征第六单元数学期望一、学习目标通过本节课的学习,认识数学期望是最好的代表性数字,并能利用定义和性质,熟练地进行数学期望的计算.二、内容讲解1.定义3.4数学期望如果随机变量X的概率分布为则称和数x1p1+x2p2+…+x k p k+…=kkkpx为X的数学期望或期望,记作E(X).E(X)=∑kkkpx如果随机变量X的密度函数为f(x),则称xf x x()d-∞+∞⎰为X的数学期望或期望,记作E(X).2.常见分布的期望(1)二点分布随机变量X的概率分布为则E(X)=1×p+0×(1-p)=p(2)二项分布X~B(n,p)经济数学基础第10章随机变量与数字特征E(X)=kpkkn=∑=⎛⎝⎫⎭⎪--=∑k nkp pk n kkn()10=np(3)泊松分布X~π(λ)P(X=k)=λkk-e!λ(k=0,1,2,…)E(X)=λ(4)均匀分布X~f(x)=⎪⎩⎪⎨⎧∉∈-],[],[1baxbaxabE(X)=⎰⎰-=+∞∞-ba abxxxxxfdd)(=2+212baxabba=-(5)正态分布X~f(x)=222)(e21σμπσ--xE(X)=⎰∞+∞---xx xde2222)(σμπσ=⎰∞+∞----xx xde21222)(σμσμπ+⎰∞+∞---xxde21222)(σμπσμ=μ3.随机变量函数的期望我们提这样一个问题,若X为随机变量,问X2是随机变量吗?若X的概率分布为你会计算E(X2)吗?下面我们讨论这个问题.经济数学基础 第10章 随机变量与数字特征离散型E (X )=kkkp x连续型X ~f (x ),E (X )=xf x x()d -∞+∞⎰若X 为随机变量,则X 2也是随机变量,且有一般地,设X 是随机变量,Y =g (x )是连续函数,Y =g (X )亦是随机变量.且有E (Y )=E (g (X ))=⎪⎩⎪⎨⎧==⎰∑∞+∞-)((d )()())((p )(x f X X xx f x g p x X P X X xg k k kk k~是连续型~是离散型问题思考1: 数学期望E (X )是随机变量吗?能将数学期望写成E (x )吗? 答案不是.不成.E (X )是一个确定的数,不是随机变量.不能把数学期望写成E (x ),因为x 是普通变量,有E (x )=x .问题思考2: 数学期望E (X )=∑kkkp x视为加权平均,那么它的权是什么?答案它的权是随机变量X 取值x k 的概率值p k .三、例题讲解例1:假设A ,B 两个工人生产同一种产品,日产量相同.在一天中出现的不合格品件数分别为X (件)和Y (件),它们的概率分布为经济数学基础 第10章 随机变量与数字特征试比较两工人技术情况.解:E (X )=0×0.4+1×0.3+2×0.2+3×0.1+4×0=1E (Y )=0×0.5+1×0.1+2×0.2 +3×0.1+4×0.1=1.2 平均而言,工人A 比工人B 的技术好些.例2:设连续型随机变量X 的密度为f (x )=⎩⎨⎧≤≤--其它0112x x Ax 求E (X ).解:先确定常数A .因为A x x Ax x x f 32)d (d )(1112===⎰⎰-+∞∞--所以23=A E (X )=⎰+∞∞-xx xf d )(=32)d 23(112⎰--=⋅x x x x - 例3:一管理员拿10把钥匙去试开一房门,只有1把钥匙能打开此房门.他随机拿出1把钥匙试开,如若打不开,就把这钥匙放在一旁,再随机取出1把试开,直至把房门打开为止.问平均试开几次能把房门打开.解:设X 为试开第x 次打开了房门,有X =1,2,…,10 P (X =1)=0.1P (X =2)=9101901⨯=.P (X =10)=91089121⋅⋅ =0.1 于是,能打开房门的平均次数为经济数学基础 第10章 随机变量与数字特征E (X )=1×0.1+2×0.1+…+10×0.1=01101102112.()⨯+⨯=例4 设X ~f (x )=⎪⎩⎪⎨⎧∉∈-],[0],[1b a x b a x a b ,求E (X 2-X +1).解:由随机变量函数的期望公式E (X 2-X +1)=x a b x x d 1ba2⎰-+-=b ax x x a b ]23[123+--=1)+(21)(3122+-++a b a ab b四、课堂练习练习1假设袋中装有12个球其中9个新球,3个旧球.从中任取1球,如果取出的是旧球就不再放回,再任取1个球.直至取得新球为止.求在取得新球以前取出的旧球的平均数.解:设X =(取得新球以前取得的旧球个数),显然旧球只有3个,故X =0,1,2,3.旧球只有3个,X 表示取得的旧球个数.因为只有3个旧球,若连续三次都取得旧球,第四次必定终止.是否第四次终止呢?所求是终止前取得的旧球个数的平均,设终止前取得的旧球个数为随机变量X 为好.这是离散型随机变量的数学期望问题.首先确定这个随机变量的可能取值,其次求这个随机变量的概率分布,最后代入数学期望的计算公式.练习2 设连续型随机变量X 的分布函数为⎩⎨⎧≥-<=-0e 100)(x x x F x 求:E (X ). 解:已知随机变量的分布函数F(x),连续型随机变量的分布函数与其密度函数的关系为f(x)=F(x),当x<0时,F(x)=0,故f(x)=0;当x 〉0时,f(x)=F(x)=(1经济数学基础 第10章 随机变量与数字特征-e -x) =1-(e -x)=e -x 。
《经济数学》第三篇概率论第8章随机变量与数字特征作业详解

《经济数学》第三篇概率论第8章随机变量与数字特征作业详解练习8.11.定点投篮1次,投中的概率是0.4,试用随机变量描述这一试验解,引入随机变量X,8发投篮命中的,令X=1;当不中时X=0,即P(X=1)=0.4,P(X=0)=1-0.4=0.6。
2.一次试验中,若某事件A必然产生、试用随机变量描述该现象,并指出此随机变量可能取多少个值?A出现,令X=1,有P(X=1)=1,A不出现,令X=0,有P(X=0)=0,X 可能取1,0两个值。
练习8.21.判断以下两表的对应值能否作为离散型随机变量的概率分布(1)(2)解:P k的概率之和为1,即∑P k=1。
现在第(1)情况,虽P k≥0,但。
所以不可以作为随机变量概率分布。
第(2)情况不仅P k≥0,且,所以能作为离散型随机变量的概率分布。
2.设随机变量Y的概率分布为,k=1,2,3,求P(Y=1),P(Y>2),P(≤3),P(1.5≤y≤5),P(y>)解:P(Y=1)=,P(Y>2)=P(Y=3)=P(1.5≤Y≤5)=P(Y=2)+P(Y=3)=;P(Y>)=P(Y=2)+P(Y=3)=3.气象记录表明,某地在11月份的30天中平均有3天下雪,试问明年11月份至多有3个下雪天的概率11月份下雪天的概率是,不下雪天的概率是,每次只有两种可能,要么下雪,要么不下雪,所以服从二项分布,X~B(30,0.1)X表示11月份下雪天数,解:P(X≤3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)其中不下雪的概率P(X=0)==0.04239有一天下雪的概率P(X=1)==0.1413有二天下雪的概率P(X=2)==0.22766有三天下雪的概率P(X=3)==0.2361∴P(X≤3)=0.04239+0.1413+0.22766+0.2361≈0.6474.某车间有12台车床,每台车床由于装卸加工的零件等原因时常停车,设各台车床停车或开车是相互独立的每台车床在任一时刻处于停车状态的概率是0.3,求(1)任一时刻车间内停车台数X的分布;(2)车间内有3台车床停车的概率;(3)任一时刻车间内车床全部工作的概率。
概率论与数理统计试习题与答案

设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,
,
七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。
数学期望的计算方法及其应用

数学期望的计算方法及其应用摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。
本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。
本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。
关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT :第一节 离散型随机变量数学期望的计算方法及应用1.1 利用数学期望的定义,即定义法[1]则随机变量X的数学期望E(X)=)(1ini ix p x ∑=学期望不存在[]2例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。
推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。
试问推销人在用船运送货物时,每箱期望得到多少?按数学期望定义,该推销人每箱期望可得=)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2 公式法对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有密度函数求期望公式是什么?
有密度函数求期望公式:DX=EX^2-(EX)^2 。
拓展资料:
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
随机变量表示随机试验各种结果的实值单值函数。
随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。
例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。