连续性数学期望的公式

连续性数学期望的公式

连续性数学期望是概率论中用来衡量随机变量平均值的重要概念。许多概率论问题都将连续性数学期望作为其中的重要研究中心,用来深入分析并探索一般变量的相关特性。连续性数学期望的公式为:E[X] = ∫(-∞,∞)*f(x)dx,其中E[X]是对随机变量X的数学期望,f(x) 是随机变量 X 的概率分布函数,(-∞,∞)表示随机变量 X 可能取值范围。

这个公式能够衡量一个随机变量的平均值,以及这个随机变量在特定范围内的概率分布情况。通过这个公式,可以在实际的概率论问题中获得更加准确的问题解决方案。例如,通过知道随机变量 X 的概率分布函数 f (x),就可以得到它的数学期望值,从而可以更精确的判断该随机变量的概率特性。

连续性数学期望是概率论中一个重要的概念,它能够很好的帮助我们研究概率论问题,得出更正确的解决方案。此外,通过连续性数学期望计算机可以实现自动化仿真,从而研究不同变量不同概率特性之间的相关性,从而得到更为全面的问题解决方案。

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)=)(1 i n i i x p x ∑=

学期望不存在[]2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布: X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1)(= (4) 泊松分布:)(~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确 分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

期望-方差公式-方差和期望公式

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 期望-方差公式-方差和期望公式 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量可能取值为(=1,2,3 ,…),其分布列为(=1,2,3,…),则当<时,则称存在数学期望,并且数学期望为E=,如果=,则数学期望不存在。 定义2 期望:若离散型随机变量ξ,当ξ=xi的概率为P(ξ=xi)=Pi (i=1,2,…,n,…),则称Eξ=∑xi pi为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C是常数,则E(C)=C 。 (2)若k是常数,则E(kX)=kE(X)。 (3)。 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量

由密度分布函数求期望和方差

由密度分布函数求期望和方差 1.已知概率密度函数怎么求它的数学期望和方差 2.期望值公式 离散型随机变量X的取值为,为X对应取值的概率,可理解为数据出现的频率,其中E(x)为期望。∑为求和公式,在概率论和统计学中。数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,它反映随机变量平均取值的大小。数学期望的来历:有一个赌徒向法国著名数学家帕斯卡挑战,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励,甲获胜的可能性大,乙获胜的可能性小,因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4。也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎,而乙期望赢得100法郎就得在后两局均击败甲;乙连续赢得后两局的概率为 (1/2)*(1/2)=1/4。 3.方差与数学期望的关系公式DX=EX^2-(EX)^2 不太清楚是什么意思举例说下。谢谢 将第一个公式中括号内的完全平方打开得到 DX=E(X^2-2XEX+(EX)^2)=E(X^2)-E(2XEX)+(EX)^2=E(X^2)-2( EX)^2+(EX)^2=E(X^2)-(EX)^2若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望完全由随机变量X的概率分布所确定。若X的取值比较集中,则方差D(X)较小,

若X的取值比较分散,则方差D(X)较大。D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。k是随机变量。k 的取值只能是自然数0,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。某人在站台等车时间x是个随机变量。 4.数学期望值的公式 1、二项分布求期望:那么E(r)=np示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。所以这四道题目预计猜对1道。 2、二项分布求方差:公式:p),那么Var(r)=npq示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。 Var(r)=npq =4×0.25×0.75=0.75扩展资料由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。 5.二项分布数学期望和方差公式, 1、二项分布求期望:公式:如果r~B(r,p),那么E(r)=np示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。E(r) = np = 4×0.25 = 1 (个),所以这四道题目预计猜对1道。 2、二项分布求方差:公式:如果r~B(r,p),那么Var(r)=npq示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

论文 随机变量的期望和方差的计算方法

序 言 数学方差和期望比较集中的反映随机变量的某个侧面的平均特性,因此对随机变量的期望和方差的计算具有很深的实际意义. 本论文着重总结了随机变量期望和方差的几种常用计算方法,并通过具体例子阐述在不同情况下应该采用的计算方法,以达到使计算最简便化的目的. 一、 离散型随机变量期望的计算方法 方法一 定义法 [1] 即若已知离散型随机变量ξ的分布列为 则ξ的期望为1111(2)()()p p A B p A B ξ==+ 例1 某项考试按科目A 和科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试,已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的 的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 解 设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件2A ,“科目 B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B ,已知得ξ=2,3,4注意到各 事件之间的独立性与互斥性,可得 1111(2)()() 21113233114399 p p A B p A B ξ==+=⋅+⋅= +=

对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布、超几何分布等),则此随机变量的期望可直接利用这种典型分布的期望公式求得. 方法二 公式法 设随机变量ξ服从二项分布(,,)B b n p ,其分布列为: {}(1) (0,1,2)k k n k n P k C p p k n ξ-===-=⋅⋅⋅, 则我们有: 01 1 11 11 1 !()(1) !()!! (1)!()! (1) (1)(1) n k n k k n k n k k n k k n k n k n i i n i n i i n E k p p k n k n p p k n k np p p np p p np i k C C ξ-=-=----=----== ⋅ --= --=-=-==-∑ ∑ ∑ ∑ 由此便推出服从二项分布的随机变量的数学期望的计算公式为()E np ξ=. 例2 一个实验学科的考察方案:考生从6道选题中一次性随机抽取3题,按题目要求独立完成全部实验操作.规定:至少正确完成其中2题者方可通过,已知6道备选题中考生甲有4 不影响. 分别求出甲、乙两考生正确完成题数的数学期望. 解 设考生甲正确完成的题数为ξ,则ξ服从超几何分布,其中6,4,3N M n ===, ∴3426 nM E N ξ⋅= == 设考生乙正确完成的题数为η,则 2 ~[3,]3B η,2323E np η==⋅ = 方法三 性质法 即利用期望的性质求期望,所用到的性质主要有:

相关文档
最新文档