点击化学的进展及应用

合集下载

点击化学

点击化学

材料科学与工程学院本科生课程论文课程名称论文题目:点击化学及其应用学生姓名:杨一昭学号:201230320221所在学院:材料科学与工程提交日期: 2014.12.19点击化学及其应用摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术关键词:点击化学,原位点击人类在21世纪的最大课题之一是保护环境。

橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。

20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】1点击化学的提出一个可成药化合物应满足以下条件:含有不少于30个非氢原子,分子量不小于500 D,由c、N、O、P、s、cl和Br组成,在室温下稳定和对水、氧稳定等。

1996年cuid等”1通过计算机模拟计算得出具备此条件的化台物有1矿个;然而,到目前为止已知的满足此条件的化合物仅有1 06—107个,即只有很少的药物被开发出来。

从20世纪末开始,随着新药物需求的增长和高通量筛选方法的出现,使大量新型分子的台成成为化学合成的迫切任务.建立分子库、发展分子多样性成了重要的课题。

借助现代技术的力量,手性技术、高通量筛选等新技术正在快速提高化学合成药物的质量和开发速度。

1990年代的新兴技术——缝合琵学…是这努越粒一矮重要技术,毽在结梅类型多样性上还有稂夫的局限性,艇它比传统合成化学更依赖于单体官能团间的反应。

点击化学的提出,则顺应了化学合成对分子多样性的要求。

2 点击化学的反应特征点击化学实质是指选用易得原料,通过可靠、高效而又具选择性的化学合成来实现碳杂原子连接(c—x—c),低成本、快速合成大量新化合物的一套可靠的合成方法。

点击化学及其在生物医学领域中的应用

点击化学及其在生物医学领域中的应用

点击化学及其在生物医学领域中的应用点击化学法主要由诺贝尔化学奖获得者sharpless于2001年提出,其以组合化学为基础,经过一系列革命性变化的合成方法,为一种新型的快速合成大量化合物方法。

由于其具备反应条件温和、产物收率高、高度选择性、产物速率快、产物易分离等优点,使得其在各种用途的生物医用领域中得到广泛应用,并为其提供较多便利,逐渐受到国内、国外科学家的关注。

为更加深入地了解点击化学法在生物医学领域中的应用效果,现综述如下。

1 点击化学概述点击化学被称作链接化学、动态组合化学,属于一个模块合成概念,为一种选用易得原料,经过可靠性、模块化、高选择性、高效率的化学转变,进而实现碳杂原子连接(c-s-c),通过应用低成本快速合成各类新化合物组合化学方法,突破传统有机合成,为目前化学领域发展较显著的一个趋势。

点击化学具备的优异特征可使应用分子裁剪手段模块组合成复杂化合物,主要包括树枝状分子、星形聚合物、梳形聚合物、糖类衍生物及蛋白质及生物杂化物等生物医学材料。

2 点击化学法及其在生物医学领域中的应用2.1 应用至合成基因载体领域研究指出,临床已将点击化学法应用到合成基因载体领域中,且在高转染效率与低细胞毒性的基因载体中已经获得一定进展。

应用电极化学反应合成法,主要将聚天冬酰胺作为基础,成分主要以含有双硫键聚乙烯亚胺衍生物p为主,并以其为载体,作为非病毒基因载体的研究。

研究时,使用已合成的叠氮管能化聚合含有双硫键作为载体,单炔终止予聚乙烯亚胺;点击化学反应合成后,主链为聚天冬酰胺,侧链为聚亚胺作,有研究显示,pxss-peis 可和质粒dna与浓缩dna互相结合,之后形成纳米粒子。

还有体外试验研究表明,高分子刷被降解后,不仅具备低细胞毒性,而且具备转染活性,表明在基因载体领域中,这种还原可降解分子刷发挥着潜在作用。

2.2 应用至药物释放载体领域药物载体不仅在药物释放体系中发挥着重要作用,而且还对药效产生决定性作用。

点击化学最新进展(二)

点击化学最新进展(二)

点击化学最新进展(二)引言:
点击化学是一种迅速发展的领域,通过光和/或电刺激,可以实现化学反应的可逆和可控。

本文将介绍点击化学的最新进展,包括不同类型的点击反应、点击生物学应用和未来的发展方向。

正文:
一、碳-碳点击反应
1. 烯烃点击反应的发展和应用
2. 炔烃点击反应的优化与反应机制研究
3. 碳-碳点击反应在药物合成中的应用案例
4. 碳-碳点击反应的可控性和选择性的研究进展
5. 碳-碳点击反应在有机材料领域的应用
二、碳-氮点击反应
1. 纳米金属催化下的碳-氮点击反应
2. 氨基酸点击反应的反应机理研究
3. 碳-氮点击反应在药物物理化学性质研究中的应用
4. 通过碳-氮点击反应合成多肽的最新方法
5. 碳-氮点击反应在合成生物学中的应用
三、生物学应用
1. 点击化学在药物靶点识别中的应用
2. 通过点击化学实现药物递送系统的构建
3. 点击生物学在蛋白质合成和修饰中的应用
4. 点击化学在药物筛选和高通量筛选中的应用
5. 点击生物学在生物传感和成像中的应用
四、点击化学的未来发展方向
1. 新型点击反应的发现和开发
2. 点击生物学的深入研究和应用拓展
3. 点击化学在纳米科技领域的应用
4. 点击化学在能源转化和存储中的应用
5. 点击化学与其他领域的交叉研究
总结:
点击化学作为一种可逆且可控的化学反应方式,具有广泛的应用前景。

本文介绍了碳-碳点击反应和碳-氮点击反应的最新进展,以及点击化学在生物学中的应用。

未来,点击化学将继续发展新型反应,拓展在纳米科技和能源领域的应用,并与其他领域进行交叉研究,为科学研究和技术创新提供新的可能性。

化学分析技术的新进展与应用

化学分析技术的新进展与应用

化学分析技术的新进展与应用近年来,随着科学技术的不断进步,化学分析技术也取得了长足的发展,为各行各业的发展提供了有力的支持和保障。

本文将介绍化学分析技术的新进展以及在各个领域中广泛应用的情况。

一、新进展1. 高效分离技术高效分离技术是化学分析的关键环节之一。

新近的研究表明,离子交换、凝胶色谱、毛细管电泳等分离方法在分析速度、分离效率和准确性上均有长足的进步。

其中,毛细管电泳技术尤为突出,其具有分离速度快、样品消耗少、适用于各种类型化合物等优点,为化学分析提供了更多选择。

2. 光谱技术的发展光谱技术在化学分析中发挥着重要的作用。

近年来,红外光谱、紫外-可见光谱和拉曼光谱等技术不断得到改进和完善。

利用这些技术,可以快速、准确地测定样品的成分和结构信息,并广泛应用于药物分析、环境监测、食品安全等领域。

3. 电化学分析技术的创新电化学分析技术是化学分析领域的重要手段之一。

随着纳米技术的发展,电化学传感器在高灵敏度和高选择性方面有了突破性进展。

同时,微型电化学分析系统也取得了突破,使得传统的电化学分析得以进一步推广和应用。

二、应用领域1. 药物分析在药物研发和药品检测中,化学分析技术发挥着重要作用。

新型药物的合成和纯度分析、残留物的检测以及药物代谢产物的分析等均离不开化学分析技术的支持。

2. 环境监测化学分析技术在环境监测中的应用日益广泛。

通过对空气、水和土壤中有害物质的检测,可以及时发现和预防环境污染问题,保护大自然和人类的健康。

3. 食品安全食品安全一直备受社会关注,化学分析技术在食品检测中发挥着重要的作用。

通过对食品中的添加剂、农药残留物、重金属等有害物质的快速检测,可以确保食品的质量和安全,保障消费者的健康权益。

4. 新材料研发化学分析技术为新材料的研发提供了必要手段。

通过对材料成分、结构和性能的分析,可以对材料进行优化和改进。

在能源材料、光电材料等领域,化学分析技术的进展为新材料的开发和应用带来了更多可能性。

点击化学的原理与应用

点击化学的原理与应用

点击化学的原理与应用化学是一门非常广泛的科学,涵盖着几乎所有的物质和化学反应。

而在当今这个高度数字化的时代,点击化学已经成为了化学领域里一项非常重要的技术。

这项技术主要是基于计算机和数学模型,在不同化学实验的基础上进行研究与应用。

本文将介绍点击化学的原理与应用。

一、点击化学的原理点击化学是一种用于解决生物分子合成中的关键问题的新技术。

这个技术利用了“点击反应”的原理。

在这种反应中,两份分子被连接在一起,形成一个新的分子。

这个过程是一个快速、高效的反应,其速度和立体选择性都非常好。

点击反应中使用的大多数化学反应都是通过铜催化剂引起的,这使得反应发生的速度非常快。

这种反应也使用了光化学反应和电化学反应,以便控制反应的速度和选择性。

在点击化学中,研究者使用的化学分子都是已经设计好的,这些分子可以在反应中快速合成新的化合物。

研究者们也会将这些化合物与其他分子进行结合,以便进一步研究和应用。

二、点击化学的应用1. 药物研发点击化学技术在药物研发中有着重要的应用,研究人员可以通过点击反应将分子和其他分子的结合在一起,从而合成新的药物。

这个过程非常快速,也能够使药物具有高效、低剂量和低毒性。

这种技术还能够为科学家提供大量的药物结构模型,以便更好地预测药物的毒性和反应。

2. 生物成像点击化学技术在生物成像中也有着广泛的应用。

这个过程主要是基于金属离子的选择性结合,以获得高清晰度的生物成像结果。

这种技术已经被用于癌症和其他疾病的检测,非常有效。

3. 生物标记生物标记是一种利用抗体识别细胞和分子的技术。

这个过程中通常需要使用荧光标记或放射性标记来标记分子和细胞。

在过去,这个过程需要进行很长的时间才能完成。

但是现在,通过点击反应,研究人员可以合成出更快、更有效的标记物,为其他分子提供高效的标记。

这个过程也使得标记的荧光更明亮,并且发射持久时间更长,可以减少更换标记物的次数。

总而言之,点击化学已经成为了化学领域里一项非常重要的技术。

点击化学的应用

点击化学的应用

点击化学的应用摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。

1.引言2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。

这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。

“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。

无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。

而且搭扣的两部分结构决定了它们只能和对方相互结合起来。

2.点击化学反应点击反应有着下列的共同特征:(1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。

从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。

(2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。

这与近年来重视碳-碳键形成的有机化学方向不同。

(3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。

(4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。

(5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。

这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。

如图1,因为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。

然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。

此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。

3.点击化学的反应类型点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。

点击化学在食品安全检测中的应用研究进展

点击化学在食品安全检测中的应用研究进展

第44卷第5期2401年5月分析测试学报FENX 【CESHS XUEBAO (Jouoal cf Instomeatal Analysis)Vol. 02 Nc. 5643〜655doi : H 3969/j ・ issm 1704 -4457. 2021・ 05・ 004点击化学在食品安全检测中的应用研究进展谢桂芳,苏本超,谢晓霞,孙志昶,陈 奇,曹宏梅,刘 星**收稿日期:2224 -11 -19;修回日期:2241 -24-14基金项目:国家自然科学基金资助项目(31762493)*通讯作者:刘 星,博士,副教授,研究方向:食品安全,E - mail : xliu@ hainanu. 1pu. 1a(海南大学 食品科学与工程学院,海南 海口 570228)摘 要:点击化学因具有反应模块化、无有毒有害副产物、反应效率高等岀色的反应性能备受关注,是继组 合化学之后又一新型合成技术,在材料表面功能化、大分子聚合物的合成、生物标记等领域得到了广泛应 用。

点击反应试剂的活性基团易于修饰在其他化学基团上,表明点击反应有望作为中间反应介导特定反应的信 号转换或放大。

近几年岀现了大量基于点击化学构建的一系列分析检测方法,此类分析方法具有检测限低、线 性范围广、可对目标分析物进行准确定量的优势,有着良好的应用前景。

经典的点击反应——“叠氮-烘环 加成(CuAAC )”是点击反应中应用最为广泛的反应,具有传感反应所需的几个独特优势:(1)以Cu +作为催 化剂可极大提高反应效率以及反应灵敏度;(2)烘桂和叠氮基间的正交反应决定了良好的反应特异性;(3) 反应对环境条件(温度、水、pH 值等)不敏感,能够在室温和水溶剂条件下进行。

这些良好的反应性能使得 利用CuAAC 反应构建灵敏度高、特异性好且稳定性强的传感检测方法成为可能。

食品安全检测是控制食品 中危害物、保障公众健康的重要手段。

当前食品安全监测常用的技术手段几乎都依赖于一些笨重的仪器设备 而无法具有较高检测效率,点击化学的优越性能为食品安全检测提供了新的思路。

点击化学在药物合成中的应用研究

点击化学在药物合成中的应用研究

点击化学在药物合成中的应用研究药物合成是一项重要的研究领域,其目的是合成出具有特定药理活性的化合物,以应用于治疗疾病。

化学在药物合成中的应用研究正日益受到关注,成为药物研发的关键组成部分。

本文将从化学方法的发展、合成策略和实例等方面探讨点击化学在药物合成中的应用研究。

随着化学合成方法的不断发展,点击化学成为一种重要的合成策略在药物合成中得到广泛应用。

点击化学是指通过在化合物之间形成特定的共价键,从而实现目标分子的合成。

这种合成策略具有高效、高选择性和可控性的特点,因此在药物合成中展现出巨大的潜力。

在点击化学中,一种重要的方法是叠氮化合物与炔烃的环加成反应。

这种反应可以快速生成含有五元杂环的化合物,常用于构建药物分子的核心骨架。

例如,近年来有研究利用这一反应合成出具有抗肿瘤活性的药物分子。

另一种重要的点击化学方法是利用光照射下的环加成反应,例如利用紫外光催化的环加成反应可以高效合成具有药理活性的多肽和蛋白质。

除了点击化学,其他化学方法也广泛应用于药物合成中。

合成策略方面,多步合成和串联反应是常用的方法之一。

多步合成是以多个中间体为过渡化合物,通过逐步反应进行的合成过程,其优点是可以制备复杂的化合物。

而串联反应则是一种多组分反应,可以将多种底物在一个反应中进行耦合,从而高效地生成目标化合物。

这些方法的应用使得药物合成的效率和产率得到显著提高。

在药物合成中,化学的策略和方法选择是非常关键的。

根据目标化合物的结构和药理活性需求,研究人员选择不同的化学方法进行合成。

例如,对于含有多个手性中心的化合物,手性化学是非常关键的。

手性化学可以通过手性催化剂催化特定的反应,实现手性选择性的合成。

这种方法在合成药物中常常被应用,从而获得具有高药理活性和低副作用的手性化合物。

同时,药物合成的研究还面临着一些挑战。

例如,一些目标化合物的合成路径非常复杂、产率低,需要开发新的合成方法和反应。

另外,一些药物分子的合成存在着环境和安全问题,需要优化合成方法以减少对环境的污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点击化学的进展及应用 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT点击化学的进展及应用点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。

这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。

经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。

本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。

点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。

环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。

叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。

因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。

此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。

但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。

另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。

图1 Huisgen环加成反应图2 叠氮—炔环加成反应图3 Diels—Alder反应巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。

但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。

图4 巯基—烯反应亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。

在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

图5 亲核开环类的点击化学反应非醇醛的羰基化学包括醛、酮与一级胺形成亚胺的席夫碱反应(Schiff base reaction),肼和羰基化合物脱水缩合等。

图6 席夫碱反应图7 非醇醛的羰基化学点击化学在组织再生,药物输送,材料表面修饰,实现聚合物功能化等方面具有诸多应用。

在组织再生方面,Xifeng Liu等人使用无金属点击化学制备了可注射的自交联超支化聚(ε—己内酯),将32臂的超支化的PCL树枝状大分子分别通过叠氮基团和含有环炔基的BCN基团进行修饰,使超支化分子尽可能多的带有能够进行SPAAC反应的基团,将两组分的溶液在37℃下培育30分钟后,即通过点击化学反应实现凝胶化,得到的可注射水凝胶生物相容性好,可支持细胞黏附和生长,利于骨组织的再生[2]。

图8 树枝状大分子hyPCL32-BCN和hyPCL32-N3合成示意图点击化学在不同的药物合成体系也有诸多应用。

Zhe Zhang等运用了CuAAC将β—环糊精和疏水的葡聚糖进行连接,通过β—环糊精为末端的葡聚糖链和苯并咪唑为末端的聚乙二醇链在生理条件下的通过主客体作用得到两亲性嵌段聚合物,并进一步自组装得到具有pH响应性,并且能够装载疏水性药物的胶束[3]。

图9 主客体作用下类两亲性嵌段聚合物的合成Yavuz Oz等人通过巯基—烯反应实现还原氧化石墨烯为载体的靶向药物输送。

还原氧化石墨烯纳米片上的二维结构由于其π—π共轭作用的叠加和其他疏水相互作用,对疏水性药物具有很高的负载能力,而成为一种优异的药物载体;并且,已知具有精氨酸—甘氨酸—天冬氨酸序列(RGD)的合成环肽对肿瘤细胞区域大量表达的整合蛋白具有很强的结合作用,将两者结合科得到靶向药物载体。

研究人员将含有马来酰亚胺基团的儿茶酚在还原氧化石墨烯上进行非共价连接,由此引入的双键与带有巯基的具有RGD序列环肽进行点击化学反应,将肿瘤识别部分与药物载体部分相连接,用以输送药物[4]。

图10 定向载药还原氧化石墨烯制备图Sangmin Lee等人将三乙酰化N—叠氮基乙酰基—D—甘露糖胺(Ac 3 ManNAz)连接在琥珀酸封端的聚(酰氨基胺)(PAMAM)树枝状聚合物上,制备含有叠氮基的高分子量纳米树枝状大分子,这种纳米尺寸的代谢前体因为实体瘤的高通透性和滞留效应,定位于肿瘤细胞,之后通过代谢糖工程,均匀地在肿瘤细胞表面上产生叠氮基团,之后通过体内生物正交点击化学,作为人造化学受体的叠氮基团和环炔基团修饰的药物结合,达到药物靶向递送的效果[5]。

图11 体内点击化学反应靶向输送药物示意图材料的表面处理也是点击化学的一个重要应用。

Cuong . Le等人通过可逆加成—断裂链转移(RAFT)法聚合合成聚(苯乙烯—马来酸酐)(PSM)共聚物。

随后用糠胺衍生形成聚(苯乙烯—马来酸酐)糠酰胺(PSMF)作为高度水溶性的聚合物。

然后,在超声波作用下下,碳纳米管(CNT)分散性提高,并且活化碳碳双键并引发其表面的化学反应,通过Diels—Alder反应,实现了在水中直接将PSMF接枝在CNT 表面,得到PSMF / CNT复合材料[6]。

图12 通过Diels—Alder制备接枝碳纳米管示意图S. Kosti?等人通过巯基-烯反应来增加木板的疏水性。

先使用乙烯基三甲氧基硅烷-TVMS对木板进行硅烷化,经固化保证凝胶与木板表面羟基的共价连接引入双键,之后,将带有不同烷基的硫醇与木板表面双键进行反应,利用连接上的烷基增加木板疏水性,可达到保护木材料表面的目的[7]。

图13 木板表面改性增加疏水性示意图在高聚物的功能化中,点击化学也起到很大的作用。

Juan Yu等人通过ATRP和“点击化学”的组合合成了基于乙基纤维素(EC),脂肪酸和糠醛的具有可持续性的纤维素类热塑性弹性体。

将叠氮基引入溴化后的乙基纤维素。

以四氢糠基甲基丙烯酸酯和甲基丙烯酸月桂酯为原料,通过ATRP分别合成均聚物,以及一系列双嵌段、无规共聚物,并以此引入炔基,通过点击反应将这些聚合物和乙基纤维素主链上的叠氮基团连接,得到刷状聚合物。

不同组成所得产物具有不同的拉伸强度和延伸性能,以及相形态。

制造了基于EC的不同侧链的可持续TPE,为开发完全基于生物质的材料提供了可持续的途径[8]。

图14 基于乙基纤维素的可持续型热塑性弹性体合成示意图通过上述科研实例,可表明点击化学在各领域合成方面的广泛应用,并能够与主客体、ATRP等结合,得到一系列较为复杂的聚合产物,具有较好的研究前景。

但是,点击化学也存在着仍需发展改善的地方,如最经典的CuAAC反应所需催化剂为一价铜,具有一定的毒性,且容易被氧化而失效,反应过程中需用到易爆且剧毒的叠氮化钠等。

其他点击化学反应体系也各有不完善的地方,仍待解决。

此外,点击化学反应的高产率优势可能随着反应步骤的推进而逐渐降低而不再具有优势,这些不足之处均有待改进。

参考文献[1] Meghani N M, Amin H H, Lee B J. Mechanistic applications ofclick chemistry for pharmaceutical drug discovery and drugdelivery[J]. Drug Discovery Today, 2017.[2] Liu X, Ii A L M, Fundora K A, et al. Poly(ε-caprolactone)Dendrimer Cross-Linked via Metal-Free Click Chemistry:Injectable Hydrophobic Platform for Tissue Engineering[J].Acs Macro Letters, 2016, 5(11):12611265.[3] Zhang Z, Ding J, Chen X, et al. Intracellular pH-sensitivesupramolecular amphiphiles based on host–guest recognitionbet ween benzimidazole and β-cyclodextrin as potential drugdelivery vehicles[J]. Polymer Chemistry, 2013, 4(11):3265-3271.[4] Oz Y, Barras A, Sanyal R, et al. Functionalization of ReducedGraphene Oxide via Thiol–Maleimide “Click” Chemistry:Facile Fabrication of Targeted Drug Delivery Vehicles[J]. Acs Applied Materials & Interfaces, 2017.[5] Lee S, Jung S, Koo H, et al. Nano-sized metabolic precursorsfor heterogeneous tumor-targeting strategy usingbioorthogonal click chemistry in vivo.[J]. Biomaterials, 2017, 148:1.[6] Le C M Q, Xuan T C, Lim K T. Ultrasound-promoted directfunctionalization of multi-walled carbon nanotubes in watervia Diels-Alder “click chemistry”[J]. UltrasonicsSonochemistry, 2017, 39:321-329.[7] S. Kosti, J. K. Berg, K. Casdorff, et al. A straightforwardthiol–ene click reaction to modify lignocellulosic scaffolds in water[J]. Green Chemistry, 2017, 19(17).[8] Yu J, Lu C, Wang C, et al. Sustainable thermoplasticelastomers derived from cellulose, fatty acid and furfuralvia ATRP and click chemistry[J]. Carbohydrate Polymers, 2017, 176:83-90.。

相关文档
最新文档