四年级下册知识复习精选题《空间与图形》(解析版)人教版
四年级数学空间与图形试题答案及解析

四年级数学空间与图形试题答案及解析1.过直线外一点作已知直线的垂线和平行线.【答案】【解析】解:【点评】本题考查了学生平行线和垂线的作法,培养学生的作图能力.2.在下面○里填上适当的符号“<”、“>”、“=”。
①直角○90°②锐角○90°③90°○钝角○180°④平角○2倍直角○180°【答案】①=;②<;③<,<;④=,=。
【解析】根据4种角的概念进行比较:等于90度的角叫直角;大于0度而小于90度的角是锐角;大于90度而小于180度的角是钝角;等于180度的角是平角。
3.图中角1=30°,角2= °,角3= °.【答案】60,30.【解析】由图可知:∠3和∠2组成直角,∠1和∠3和直角组成平角,再根据直角是90°,平角是180°进行解答;据此解答即可.解:∠3=∠1=30°∠2=90°﹣30°=60°故答案为:60,30.【点评】解答此题应明确:直角是90度,平角是180度.4.只有一组对边平行的四边形叫做梯形..(判断对错)【答案】√【解析】根据梯形的定义:只有一组对边平行的四边形叫做梯形;进行判断即可.解:只有一组对边平行的四边形叫做梯形,说法正确;故答案为:√.【点评】此题考查的是梯形的概念,应理解并灵活运用.5.一个梯形上底和下底间的距离处处()A.不相等 B.不一定相等 C.相等【答案】C【解析】因为梯形的上底和下底互相平行,在梯形上底上任取一点,过这一点向下底作垂线段即为梯形的高.这样的线段可以作无数条,又因为梯形的上底和下底互相平行,因而这些高都相等.据此得出答案.解:根据根据可知,梯形的上底和下底互相平行,因为两平行线间的距离处处相等,所以C答案正确.故选:C.【点评】解题关键是学生要理解梯形的特征:“梯形的两底平行”,另外还要理解平行线的特征:“两平行线间的距离处处相等.”6.长方形的两条对边互相,相邻的两条边互相.【答案】平行,垂直【解析】根据长方形的特征,对边平行且相等,4个角都是直角,可知,长方形相邻的两条边互相垂直,相对的两边互相平行.解:长方形的两条对边互相平行,相邻的两条边互相垂直;故答案为:平行,垂直.【点评】此题主要考查长方形的特征.7.一条直线长100千米.(判断对错)【答案】×【解析】根据直线特点:直线没有端点,向两端无限延长,所以长度不可度量;据此判断.解:因为直线没有端点,能向两端无限延长,所以长度不可度量.所以一条直线长100千米说法错误.故答案为:×.【点评】此题主要考查直线的特点:直线没有端点,能向两端无限延长,长度是不可度量的.8.一个三角形剪成两个小三角形,则每个小三角形的内角和是90°..(判断对错)【答案】×【解析】根据三角形的内角和是180度,把一个三角形分成两个小三角形,不管分成几个,只要是三角形,它的内角和就是180°;据此判断即可.解:根据三角形的内角和是180度,所以把一个三角形分成两个三角形,每个小三角形的内角和是90°,说法错误;故答案为:×.【点评】解答此题应明确:不管把一个三角形分成几个小三角形,只要是三角形,它的内角和就是180°.9.锐角三角形的内角和都比钝角三角形内角和小..(判断对错)【答案】×【解析】根据三角形的内角和定理进行解答即可.解:任意三角形的内角和都是180°,锐角三角形的内角和、直角三角形的内角和和钝角三角形的内角和都是180°;所以锐角三角形的内角和等于钝角三角形的内角和.故答案为:×.【点评】考查了三角形的内角和定理:三角形的内角和等于180°.10.等腰三角形一定比等边三角形大.(判断对错)【答案】×【解析】判断两个三角形的大小,主要是依据它的周长判断,也就是依据三条边的长度和,不知道三条边的长度,也就无法比较其大小,据此判断即可.解:据分析可知:等腰三角形一定比等边三角形大,是错误的;故答案为:×.【点评】此题主要考查依据三角形的周长的意义进行判断.11.在同一平面内,( ) 的两条直线叫做平行线.两条直线相交,如果其中一个角是90°,那么这两条直线叫做( )【答案】不相交,相互垂直。
四年级数学空间与图形试题

四年级数学空间与图形试题1.画一条线段,将下面的梯形分割成一个平行四边形和一个三角形.【答案】【解析】经过梯形的上底的顶点,画出梯形的一条腰的平行线,即可把梯形分成一个三角形和一个平行四边形;据此即可画图;据此解答.解:如图:【点评】此题考查了梯形、三角形、平行四边形的特征及性质,应灵活运用.2.下面有一排字母:A、T、E、N、Z、K、H、X有互相垂直线段的字母是;有互相平行线段的字母是;既有互相垂直,又有互相平行的线段的字母是.【答案】T、E、H;E、N、Z、H;E、H.【解析】根据垂直和平行的性质:在同一平面内相交成直角的两条直线叫做互相垂直,不相交的两条直线叫做平行线;据此判断即可.解:有互相垂直线段的字母是T、E、H;有互相平行线段的字母是E、N、Z、H;既有互相垂直,又有互相平行的线段的字母是E、H;故答案为:T、E、H;E、N、Z、H;E、H.【点评】此题考查了垂直和平行的特征和性质,根据意义判断即可.3.9时整,钟面上时针和分针成角;时整,时针和分针成平角.【答案】直,6.【解析】因为钟面上12个数字,以表芯为旋转点,表针转一圈是360°,被12个数字平均分成12份,每一份也就是两数之间夹角是30°,当钟面上9时整,时针指着9,分针指12,之间有3个大格,因此此时时针和分针所成的角是90°;6时整,时针指着6,分针指着12,两针成一直线,把钟面平分为2份,所组成一个平角.据此解答即可.解:由分析可知,钟面上9时整,时针和分针所成的角是:3×30°=90°,是一个直角;6时整,时针指着6,分针指着12,两针成一直线,时针和分针成平角;故答案为:直,6.【点评】钟面上时针和分针在旋转过程中组成了两个特殊角,一个是两针互相垂直,一个是两针成一直线.这种特殊情况要求学生熟悉.4.用一个10倍的放大镜看一个15°的角,这个角应该是150°.(判断对错)【答案】×【解析】角的度数的大小,只与两边叉开的大小有关,所以用一个10倍的放大镜看一个15度的角,仍然是15度.解:用一个10倍的放大镜看一个15度的角,那么看到的仍然是15度的角.故答案为:×.【点评】此题主要考查角的概念;放大镜放大的只是两边的长短,与角叉开的大小无关.5.只有一组对边平行的四边形叫做梯形..(判断对错)【答案】√【解析】根据梯形的定义:只有一组对边平行的四边形叫做梯形;进行判断即可.解:只有一组对边平行的四边形叫做梯形,说法正确;故答案为:√.【点评】此题考查的是梯形的概念,应理解并灵活运用.6.每天下午的时候,钟面上时针和分针基本上在一条直线上.①3时整②3时30分③3时50分.【答案】③【解析】首先判断出钟表上一共有12个大格,每个大格是30°,然后判断出每个时刻时针和分针之间相差的大格数,求出时针与分针所成的角各是多少度,即可推得每天下午几时几分的时候,钟面上时针和分针基本上在一条直线上.解:每天下午3时整的时候,时针指向数字3,分针指向数字12,钟面上时针和分针所成的角是90°;每天下午3时30分的时候,时针和分针之间相差2.5个大格,钟面上时针和分针所成的角是:30°×2.5=75°每天下午3时50分的时候,时针和分针之间相差6个大格,钟面上时针和分针所成的角是:30°×6=185°所以每天下午3时50分的时候,钟面上时针和分针基本上在一条直线上.故选:③.【点评】解答此题的关键是分别求出每个时刻下时针与分针所成的角各是多少度.7.风车转动属于现象,升国旗属于现象.A、平移B、旋转C、其他.【答案】B,A【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的,然后根据平移与旋转定义解答即可.解:风车转动属于旋转现象,升国旗属于平移现象;故选:B,A.【点评】此题是对平移与旋转理解及在实际当中的运用.8.等腰三角形一定比等边三角形大.(判断对错)【答案】×【解析】判断两个三角形的大小,主要是依据它的周长判断,也就是依据三条边的长度和,不知道三条边的长度,也就无法比较其大小,据此判断即可.解:据分析可知:等腰三角形一定比等边三角形大,是错误的;故答案为:×.【点评】此题主要考查依据三角形的周长的意义进行判断.9.下面三组小棒,不能围成三角形的是()A. B. C.【答案】C【解析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.解:A、3+3>5,5﹣3<3,所以能围成三角形;B、4+4>4,所以能围成三角形;C、3+3=6,所以不能围成三角形;故选:C.【点评】解答此题的关键是根据三角形的特性进行分析、解答.10.两条直线相交的交点叫做垂足。
人教版四年级下册《空间与几何》期末知识点整理复习

人教版四年级下册《空间与几何》期末知识点整理复习重点知识归纳: 具体内容重点知识位置与方向 1、根据方向和距离两个条件确定物体的位置,先确定方向,再确定距离。
如下题:1号点在东偏北30°处,注意不要画成北偏东30°。
最后要标上:(1)角的度数。
(2)建筑物的名称。
(3)根据图例表示的长度分段。
正确画法:如左图2、位置关系的相对性描述两个物体或地点位置关系的时候会有两种方式,例如“上海在北京的南偏东约30°的方向上”“北京在上海的北偏西约30°的方向上”。
角度不变,方向正好相反。
南偏东对应北偏西(不能说成西偏北)3、知道如何根据方向和距离,绘制简单的路线图。
先确定图例所代表的距离,每到一个地点,用虚线做辅助的坐标图,可以帮助我们准确定位。
位置与方向1、想一想:(1)早晨当你面对着太阳,你的后面是( )面,你的右面是( )面,你的左面是( )面。
(2晚上当你面对着北极星,你的后面是( )面,你的右面是( )面,你的左面是( )面。
2、在商场东面60米的地方有一个游乐场,请你用北34少年宫1路说一说:1路车的行车路线。
从广场出发向行驶站到电影院,再向行驶站到商场,再向偏的方向行驶站到少年宫,再向偏的方向行驶站到动物园。
(1)、小明从商场出发坐了4站,他可能在哪站下车?写出行车路线。
(2)、小红坐了3站在少年宫下车,她是从哪站上车的?写出行车路线。
5、填一填以报社为观测点。
(1)商店在报社_____偏_____的方向上,距离是____米。
(2)超市在报社___偏___ _的方向上,距离是_______米。
(3)书店在报社______偏_ ____的方向上,距离是_______米。
(4)市场在报社_____偏____的方向上,距离是_______米。
(5)医院在报社_______的方向上,距离是_______米。
重点知识归纳:三角形一、填空题。
1、三角形按角分类分为()三角形、()三角形和()三角形。
四年级数学空间与图形试题答案及解析

四年级数学空间与图形试题答案及解析1.边长是4米的正方形,它的周长和面积相等。
( )【答案】×【解析】解:周长和面积的单位不同,不能比较大小。
2.画一条线段,将下面的梯形分割成一个平行四边形和一个三角形.【答案】【解析】经过梯形的上底的顶点,画出梯形的一条腰的平行线,即可把梯形分成一个三角形和一个平行四边形;据此即可画图;据此解答.解:如图:【点评】此题考查了梯形、三角形、平行四边形的特征及性质,应灵活运用.3.直线端点,射线有个端点,线段有个端点.【答案】无,一,两【解析】根据直线、线段、射线的定义解答即可.解:直线无端点,射线有一个端点,线段有两个端点;故答案为:无,一,两.【点评】本题考查直线、线段、射线的知识,属于基础题,注意基本概念的掌握.4. 1周角= 平角= 直角.【答案】2,4.【解析】根据周角、平角、直角的定义可知,1周角=360°,1平角=180°,1直角=90°.根据度数关系,找倍数关系.解:因为1周角=360°,1平角=180°,1直角=90°,所以1周角=2平角=4直角.故答案为:2,4.【点评】本题主要考查周角和平角.直角的定义,是需要熟记的内容.5.每天下午的时候,钟面上时针和分针基本上在一条直线上.①3时整②3时30分③3时50分.【答案】③【解析】首先判断出钟表上一共有12个大格,每个大格是30°,然后判断出每个时刻时针和分针之间相差的大格数,求出时针与分针所成的角各是多少度,即可推得每天下午几时几分的时候,钟面上时针和分针基本上在一条直线上.解:每天下午3时整的时候,时针指向数字3,分针指向数字12,钟面上时针和分针所成的角是90°;每天下午3时30分的时候,时针和分针之间相差2.5个大格,钟面上时针和分针所成的角是:30°×2.5=75°每天下午3时50分的时候,时针和分针之间相差6个大格,钟面上时针和分针所成的角是:30°×6=185°所以每天下午3时50分的时候,钟面上时针和分针基本上在一条直线上.故选:③.【点评】解答此题的关键是分别求出每个时刻下时针与分针所成的角各是多少度.6.如果直线a与直线b平行,那么a是平行线.(判断对错)【答案】×【解析】根据平行的含义:在同一个平面内的不相交的两条直线,叫做平行线;由此可知:只能说一条直线是另一条直线的平行线;据此解答即可.解:由平行的含义可知:如果直线a与直线b平行,那么a是平行线,说法错误;因为a是b的平行线;故答案为:×.【点评】明确平行的含义是解答此题的关键.7.先判断下列图形哪些是轴对称图形,再画出下面轴对称图形的对称轴,能画几条就画几条【答案】【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8.小猴要给一块地围上篱笆,你认为()的围法更牢固些.A. B. C.【答案】B【解析】紧扣三角形具有稳定性的性质,即可选择正确答案.解:A和C中,围成的图形为四边形,而四边形有容易变形的特点,B中,围成的图形为三角形,三角形具有稳定性,所以B的围法更牢固些.故选:B.【点评】此题考查了三角形的稳定性.9.在同一平面内,( ) 的两条直线叫做平行线.两条直线相交,如果其中一个角是90°,那么这两条直线叫做( )【答案】不相交,相互垂直。
四年级数学空间与图形试题答案及解析

四年级数学空间与图形试题答案及解析1.请用作垂线和平行线的方法:①画一个长3厘米,宽2厘米的长方形.②画一个长4厘米,高2厘米的平行四边形.【答案】①.②.【解析】①长方形特征:长方形的对边相等,四个角都是直角.首先用三角板画一条3厘米的线段,三角板不动,再用另一三角板的一直角边靠着这块三角板,另一条边上下滑动,过3厘米线段的两个端点分别画两条2厘米的垂线段,再连接这两条线段的另外两点,即可画出一个长3厘米,宽2厘米的长方形.②首先作一条2厘米的线段,再分别过这条线段的两个端点作一组平行线,并分别在这组平行线上截取4厘米长的线段;然后连接这两条线段的另外两点,即可画出一个长4厘米,高2厘米的平行四边形.解:根据分析,可得①.②.【点评】此题主要考查了画指定长、宽的长方形的方法,以及画指定底、高的平行四边形,要熟练掌握.2.一个平角减去一个钝角的差一定是一个锐角.(判断对错)【答案】√【解析】依据角的定义及分类即可判断.解:因为平角是180°,钝角大于90°,平角减钝角,差小于90°,即为锐角.故答案为:√.【点评】此题主要考查角的概念及分类,弄清各类角的度数即可判断.3.一条直线长6厘米,它的一半是3厘米..(判断对错)【答案】×【解析】根据题意知道,一条直线长6厘米是错误,因为直线是无限长的,没有具体长度,而说成有长度.据此判断.解:一条直线长6厘米,它的一半是3厘米,是错误的,因为直线是无限的.故答案为:×【点评】考查了认识直线的性质,要注意是直线,不是线段.4.以一点为端点,可以作出()A.一条射线 B.两条射线 C.无数条射线【答案】C【解析】根据射线的特点:有一个端点,无限长;可以得出由一点可以引出无数条射线,由此解答即可.解:以一点为端点,可以作出无数条射线;故选:C.【点评】此题考查了射线的特点.5.把你学过的角按从小到大的顺序排列..【答案】锐角<直角<钝角<平角<周角【解析】根据角的含义:大于0°、小于90°的角叫做锐角;等于90°的角,叫做直角;大于90°、小于180°的角叫做钝角;平角等于180°;周角等于360°;根据题意进行排列即可.解:由分析可得:锐角<直角<钝角<平角<周角;故答案为:锐角<直角<钝角<平角<周角.【点评】此题应根据各种角的定义进行分析、解答.6.经过两点可以画条直线,梯形有条高.【答案】一条,无数【解析】(1)根据直线的性质:两点确定一条直线;解答即可;(2)梯形的上、下底平行,梯形的高是两平行边之间的距离,有无数条.解:根据直线的性质,经过两点可以画一条直线,梯形有无数条高;故答案为:一条,无数.【点评】本题主要考查了直线的性质和梯形的特征.7.钟面2:00时,时针和分针形成的角是度,它是角,时整,时针和分针形成的是直角,5:00时,时针和分针形成的角是度,它是角.【答案】60、锐、3或9、150、钝.【解析】(1)因为钟面上12个数字,以表芯为旋转点,表针转一圈是360°,被12个数字平均分成12份,每一份也就是两数之间夹角是30°;当面上2时整,时针与分针之间有2个大格是60°,是锐角;据此解答即可;(2)钟表上共有12个大空格,每个空格是30°,90°的角需要分针与时针之间有3个空格,在3点或9点的时间恰好成90°;(3)钟面上被分成了12个大格,每格是360°÷12=30°,在5点时,分针指向12,时针指向5,分针与时针相差5格,它们之间的夹角是30°×5=150°,进而根据钝角的含义“大于90度小于180度的角是钝角”解答即可.解:钟面2:00时,时针和分针形成的角是 60度,它是锐角,3或9时整,时针和分针形成的是直角,5:00时,时针和分针形成的角是 150度,它是钝角;故答案为:60、锐、3或9、150、钝.【点评】解答此题应结合题意,根据角的概念和分类进行解答.在学习角的时候,渗透了钟表的认识,及两者的共性,时针和分针在旋转过程中组成的两个特殊角.一个两针互相垂直,一个两针成一直线.8.从直线外一点到直线的所有线段中,垂线段最短..(判断对错)【答案】√【解析】根据从直线外一点向直线所作的所有线段中,垂线段最短解答即可.解:因为从P点向已知直线所作的垂线段PC最短,所以原题说法正确.故答案为:√.【点评】此题主要考查垂线段的性质的灵活运用.9.平角是180度,它等于两个()A.锐角 B.直角 C.周角【答案】B【解析】根据直角、平角的含义解答:等于90°的角是直角;等于180°的角是平角;因为180÷90=2,所以一个平角等于两个直角;据此解答.解:180°÷90°=2(个),即一个平角等于两个直角;故选:B.【点评】此题应根据直角、平角的含义进行解答.10.一个三角形剪成两个小三角形,则每个小三角形的内角和是90°..(判断对错)【答案】×【解析】根据三角形的内角和是180度,把一个三角形分成两个小三角形,不管分成几个,只要是三角形,它的内角和就是180°;据此判断即可.解:根据三角形的内角和是180度,所以把一个三角形分成两个三角形,每个小三角形的内角和是90°,说法错误;故答案为:×.【点评】解答此题应明确:不管把一个三角形分成几个小三角形,只要是三角形,它的内角和就是180°.11.有四根分别为5厘米、6厘米、7厘米、11厘米的小棒,从中任意选三根小棒围成一个三角形,有()种不同的围法.A.4B.3C.2D.1【答案】B【解析】根据三角形边的特征,在三角形中任意两边之和大于第三边,由此解答.解:根据三角形的特性:任意两边之和大于第三边;可以组成的三角形有:①5厘米,6厘米,7厘米;②6厘米,7厘米,11厘米;③5厘米,7厘米,11厘米;所以一共可以拼成3个三角形;故选:B.【点评】此题考查了三角形的特性中的三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.12.画出下面三角形底边上的高.【答案】【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高,用三角板的直角可以画出三角形的高(直角三角形一条直角边上的高就是另条直角边).解:画出下面三角形底边上的高:【点评】本题是考查作三角形的高.注意作高用虚线,并标出垂足.13.一个三角形∠A=30°,∠B=28°,求∠C的大小,并判断它是什么三角形.【答案】∠C是122度,它是一个钝角三角形.【解析】依据三角形的内角和是180°,已知∠A和∠B的度数,用180°减去∠A和∠B的度数即可得到∠C的度数,再根据最大角进行判断三角形的类型即可.解:∠C=180°﹣∠A﹣∠B=180°﹣30°﹣28°=150°﹣28°=122°因为∠C是钝角,所以这个三角形是钝角三角形.答:∠C是122度,它是一个钝角三角形.【点评】解答此题应明确三角形的内角和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.14.仔细观察下面的物体,画出你从不同角度看到的形状.从正面看.从侧面看.从上面看.【答案】,,.【解析】这个立方体图形由两部分组成,左边2个相同的小正方体,右边3个同样的小正方体.从正面能看到5个正方形,左部分一行2个,右部分能看到3个正方形,分两行,下行3个,上行1个;从侧面只能看到一列2个正方形;从上面能看到4个正方形,左部分一行2个,右部分一行2个.解:仔细观察下面的物体,从不同角度看到的形状:从正面看从侧面看从上面看.故答案为:,,.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.15.钝角三角形的内角和大于锐角三角形的内角和..(判断对错)【答案】×【解析】根据任何三角形内角和都是180°即可解决.解:因为任何三角形内角和都是180°,所以原题说法是错误的.故答案为:×.【点评】此题考查了三角形的内角和是180°.16.在同一平面内,( ) 的两条直线叫做平行线.两条直线相交,如果其中一个角是90°,那么这两条直线叫做( )【答案】不相交,相互垂直。
四年级下册数学试题-期末复习——空间与图形(含答案)人教版

四年级下册数学期末复习——空间与图形一、填空。
(22分)1.在一个三角形中,有两个角分别是25°和65°,这是一个()三角形。
2.一个等边三角形的周长是210cm,那么它的边长是()cm。
3.直角三角形的三个角中,最大的一个角是()度,另外两个角都是()角。
4.一个等腰三角形的底边长14cm,腰比它长3cm,它的周长是()cm。
5.在字母“A、B、C、D、E、F、G”中,是轴对称图形的有()个。
6.如果一个三角形的两条边分别是20cm、30cm,第三条边的长度要在题后括号里选出,只能选()。
(60cm,40cm,50cm)7.数一数下面每个图形中小正方体的个数。
()个()个()个8.右图中一共有()个三角形,其中有()个直角三角形,有()个锐角三角形,有()个钝角三角形,有()个等腰三角形。
9.左面的两个立体图形,从()面看到的图形是相同的。
10.(1)图①向()平移()格到图置②(2)图③向()平移()格到图④,再向()平移()格到图⑤。
二、判断。
(对的打“√”,错的打“×”)(6分)1.把三角形的一个30°的角剪去,剩下图形的内角和是150。
()2.从不同的角度观察同一个物体,看到的图形可能是不一样的。
()3.两个形状不同的三角形,它们的内角和是相同的。
()4.半圆也是轴对称图形,它的对称轴条数和圆一样多。
()5.把一个等边三角形等分成两个直角三角形后,每个直角三角形的两个锐角分别是60°和30°。
()6.小明说,他画了有两个钝角的三角形。
()三、选择。
(把正确答案的序号填在括号里)(10分)1.下面的图形能通过平移得到的是()。
A. B. C.2.等腰三角形()是锐角三角形。
A.一定B.不一定C.不可能3.如果一个三角形的两条边分别为30cm和40cm,第三边可能是()cm。
A.80B.70C.50D.104.一个锐角三角形的最大角一定是()。
人教版_四年级_数学下册_总复习《空间与图形》

1)已知等腰三角形的两边长为4cm和 9cm则这个三角形的周长为_________ 22cm
2)已知等腰三角形的两边长为4cm和7cm 18cm或15cm 则这个三角形的周长为_________
3)已知等腰三角形的一个角为30度,则另 都是75°或者是30°和120° 外两个角____________
第五单元
三角形
• 1、由三条线段首尾相接围成的图形叫做三角形。 • 2、从三角形的一个顶点到它的对边作一条垂线, 顶点到垂足之间的线段叫做三角形的高,这条对 边叫做三角形的底。三角形有3条高。 • 3、三角形具有稳定性。 • 4、三角形任意两边之和大于第三边。 • 5、三个角都是锐角的三角形叫做锐角三角形。
在全长1120米的大桥两边摆花(包括两 端),每隔10米放一盆花,一共要放多少 盆花?
三(3)有52人,其中喜欢语文的有30人, 喜欢数学的有35人, 既喜欢语文又喜欢数学的有20人。 (1)只喜欢语文的有多少人? (2)只喜欢数学的有多少人? (3)两种都不喜欢的有多少人?
答:只喜欢语文的有10人,只喜欢数学 的有15人,两种都不喜欢的有7人。
位置与方向
1、同一个物体的位置对于不同的观测点来说, 所描述的位置是( 不同 )的。 2、上海在北京的南偏东30°的方向上,也可以 说上海在北京的( 东偏南60° )的方向上。
3、上海在北京的南偏东30°的方向上,那么北 京在上海的( 北偏西30°)的方向上。
4、确定一个点的位置要根据(方向 )和( 距离 ) 两个条件。
一个三角形的两条边分别是7cm和4cm, 第三条边的长可能是多少?(答案取 整数)
7-4=3(cm) 7+4=11(cm)
第三条边大于3厘米且小于11厘米。 答:第三条边的长可能是4厘米、5厘 米、6厘米、7厘米、8厘米、9厘米、 10厘米。
四年级数学下册空间与图形专项复习

四年级数学下册空间与图形专项复习(1)日期:班级:姓名:知识点一:三角形1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。
6、有一个角是直角的三角形叫做直角三角形。
7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。
11、等边三角形是特殊的等腰三角形。
12、三角形的内角和是180°。
13、四边形的内角和是360°。
14、用2个完全一样的三角形可以拼成一个平行四边形。
15、用2个完全一样的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
16、用2个完全一样的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。
一个大的等腰的直角的三角形。
易错题:一、填空1. 把一根14厘米长的吸管剪成三段,用线串成一个三角形。
可剪成()厘米、()厘米、()厘米;还可以剪成()厘米、()厘米、()厘米。
2.一个等腰三角形,它的一个顶角是底角的4倍,顶角是()度,这是个()三角形。
3. 三角形具有()性,不容易()。
4. 在等腰三角形中,相等的两条边叫做三角形的(),另一条边叫做三角形的()。
5. 在一个三角形中,三个内角互不相等,其中最小的角是45度,那这个三角形是()三角形。
6. 一个三角形的两条边的长分别是4厘米和7厘米,第三条边的长度一定大于()厘米,同时小于()厘米。
7. 在括号里填入“锐角”“钝角”或“直角”。
(1)如果三角形的三个内角都相等,那么这个三角形是()三角形。
(2)如果三角形的一个内角等于另外两个内角之和,那么这个三角形是()三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学四升五暑期衔接—提优复习精选汇编题专训温故知新篇03?空间与图形?一.选择题1.〔20xx•鄞州区〕用5个相同的小正方体搭成下面三个立体图形,如图,从〔〕看这三个立体图形所看到的形状是完全一样的.A.正面B.左面C.右面D.上面【解答】解:用5个相同的小正方体搭成下面三个立体图形,如图,从正面看这三个立体图形所看到的形状是完全一样的.应选:A.2.〔20xx•江北区〕用假设干个小方块堆成一个立体图形,从上面看和正面看都如下图,最少用了〔〕个小方块.A.6 B.5 C.4 D.3【解答】解:从上面和正面看到的形状都是如图,搭成这样的立体图形前排3个小正方体,后排靠左边最少有1个.最少需要3+1=4〔个〕.应选:C.3.〔20xx秋•成都期末〕一个三角形的两个内角和是100°,这是一个〔〕三角形.A.锐角B.直角C.钝角D.以上都有可能【解答】解:因为一个三角形的两个内角之和是100°,这两个角中可能含有钝角,也可能含有锐角,还有可能含有直角;根据三角形的分类可知:这个三角形可能是锐角三角形,可能是直角三角形,可能是钝角三角形.应选:D.4.〔20xx秋•曲沃县期末〕下面的哪组图形经过平移能够互相重合?〔〕A.B.C.【解答】解:、两个图形不能经过平移能够互相重合;两个图形能经过平移能够互相重合.应选:B.5.〔20xx春•高邑县期中〕在下面的线段中,能与5厘米和8厘米长的两条线段组成一个三角形的是〔〕A.3厘米B.5厘米C.15厘米【解答】解:5+3=8,A不能组成一个三角形;5+5>8,B能组成一个三角形;5+8<15,C不能组成一个三角形;应选:B.6.〔20xx•舒城县〕下面图形是用木条钉成的支架,最不容易变形的是〔〕A.B.C.【解答】解:下面图形是用木条钉成的支架,最不容易变形的是;应选:B.7.〔20xx秋•临漳县期中〕图案是从〔〕上剪下来的.A.B.C.D.【解答】解:图案是从上剪下来的.应选:C.8.如图,图1到图2是向右平移了〔〕格.A.2 B.3 C.5【解答】解:如图,图1到图2是向右平移了5格.应选:C.9.〔20xx•益阳模拟〕如图是由8个小正方体搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上的小正方体的个数,那么这个几何体从左面看到的是〔〕A.B.C.D.【解答】解:这个几何体从左面看到的是.应选:D.二.填空题10.〔20xx•慈溪市〕用同样大小的正方体拼搭几何体,从不同方向看到的图形分别如图,那么至少有4块正方体.【解答】解:如图:用同样大小的正方体拼搭几何体,从不同方向看到的图形分别如图,那么至少有4块正方体.故答案为:4.11.〔20xx春•高邑县期中〕两根分别是5厘米和4厘米的小棒,再选一根〔长度为整厘米〕三根首尾依次相接围成一个三角形,所选小棒最长可以是8厘米,最短可以是2厘米.【解答】解:5﹣4<第三边<5+4,1<第三边<9,第三根小棒最长可以是8厘米,最短可以是2厘米.故答案为:8,2.12.〔20xx春•高邑县期中〕一个三角形中,有两个角的度数分别是32°和46°,第三个内角为102°,这个三角形是钝角三角形.〔按角分类〕【解答】解:180°﹣〔32°+46°〕=180°﹣78°=102°这个三角形有一个角是钝角,是钝角三角形答:第三个内角为102°,这个三角形是钝角三角形.故答案为:102,钝角.13.〔20xx•中山市〕如下图是围棋棋盘的一局部,在这个4×4的方格图形中已经放置了5枚棋子,假设要将它变为上下左右都对称的图形,那么最少还要在棋盘上摆放11枚棋子.【解答】解:如图:由图可知,最少还要在棋盘上摆放16﹣5=11枚棋子;故答案为:11.14.〔20xx春•微山县期中〕如图,从正面看到的形状是,从侧面看到的形状是.【解答】解:如图,从正面看到的形状是,从侧面看到的形状是.故答案为:正,侧.15.〔20xx秋•醴陵市期末〕用一些棱长为1cm的小正方体搭建成一个几何体,从两个角度观察所得的图形如下,那么这个几何体的体积最大是7cm3.【解答】解:根据从正面看到的图形可以分析出:几何体的体积最大时,从上面看到图中每摞正方体的个数为:2+2+1+2=7,所以这个几何体最多由7个正方体组成;由于小正方体的棱长为1厘米,那么每个小正方体的体积为1立方厘米,故这个几何体的体积最大是7立方厘米.故答案为:7.16.〔20xx春•随州期末〕三角形先向上平移了5格,再向右平移了7格.小船先向下平移了5格,再向左平移了7格.【解答】解:三角形先向上平移了5格,再向右平移了7格.小船先向下平移了5格,再向左平移了7格;故答案为上,5,右,7,下,5,左,7.三.判断题17.〔20xx秋•文水县期末〕黄昏路灯下,人离路灯越近,影子越短,人离路灯越远,影子越长.√.〔判断对错〕【解答】解:画图如下:黄昏路灯下,人离路灯越近,影子越短,人离路灯越远,影子越长,原题说法正确.故答案为:√.18.〔20xx春•黄冈期中〕一个立体图形,如果从上面和正面看到的形状都是,那么从左面看到的形状也一定是.×〔判断对错〕【解答】解:一个立体图形,如果从上面和正面看到的形状都是,那么从左面看到的形状有可能是,所以原说法错误.故答案为:×.19.〔20xx春•高邑县期中〕锐角三角形可以画3条高,而钝角三角形只能画出1条高.×.〔判断对错〕【解答】解:锐角三角形三条高都在三角形内部,直角三角形有两条高是直角边,斜边上的高在三角形内部,钝角三角形有两条在三角形的外部,有一条在三角形内部,所以锐角三角形和钝角三角形都可以画出3条高.故答案为:×20.〔20xx秋•临漳县期中〕沿虚线对折后能完全重合.√〔判断对错〕【解答】解:沿虚线对折后能完全重合.原题说法正确.故答案为:√.21.〔20xx春•汉寿县期中〕△是三角形.√〔判断对错〕【解答】解:△是三角形.原题说法正确.故答案为:√.22.〔20xx秋•临漳县期中〕一个图形先向上平移5格,再向下平移6格,得到的图形就相当于向下平移了1格.√〔判断对错〕【解答】解:一个图形先向上平移5格,再向下平移6格,得到的图形就相当于向下平移了1格.故原题说法正确.故答案为:√.四.应用题23.一个几何体从左面看到的图形是,从上面看到的图形是.这个几何体可能是由多少个小正方体组成的?【解答】解:如图答:这个几何体可能是由6个或7个或8个正方体组成的.24.用几个体积是1立方厘米的正方体木块摆成一个物体,从正面、侧面和上面看到的形状如图.这个物体的体积是多少立方厘米?【解答】解:如图:摆成从正面、侧面和上面看到的形状如下图,需要5个正方体,体积为:5×1=5〔立方厘米〕答:这个物体的体积是5立方厘米.25.〔20xx春•高邑县期中〕红红家有一块三角形的小菜园,菜园的最大角是120°,且最大角的度数是最小角的4倍,这块三角形菜地其他角的度数是多少?这块地的形状是一个什么三角形?【解答】解:120°÷4=30°180°﹣120°﹣30°=30°这个三角形的最大角是钝角,它是一个钝角三角形答:这块三角形菜地其他角的度数都是30°,这块地的形状是一个钝角三角形.26.在俄罗斯方块游戏中,要铺满最下面的一排,图A,B应分别先向右平移几格?【解答】解:要铺满左边图形最下面的一排,图A应先向右平移3格.要铺满右边图形最下面的一排,图B应先向右平移4格.27.在一个三角形中,∠1,∠2,∠3为三角形的三个角,∠1=45°,∠2比∠1大15°,求∠2和∠3的度数分别是多少.【解答】解:∠2=45°+15°=60°∠3=180°﹣45°﹣60°=75°答:∠2和∠3的度数分别是60°和75°.五.操作题28.〔20xx春•高邑县期中〕按照要求画出看到的图形.【解答】解:如图:29.左图分别是由右面哪张纸剪成的?连一连.【解答】解:如图:30.哪个机器人是由〇、□、通过平移拼成的?把它涂上颜色.【解答】解:通过平移拼成的为图②如图:六.解答题31.〔20xx秋•武川县期末〕看图连线【解答】解:32.〔20xx春•黄冈期末〕如图,将三角形ABC绕点C逆时针旋转30°得到三角形A'B'C,假设A′C垂直于AB,求∠CA′B′的度数.【解答】解:如图:假设A'C垂直于AB,垂足为D,那么∠CDA=90度,三角形ACD是直角三角形,所以∠CAB=180﹣90﹣30=60度,由旋转的性质得:∠CA'B'的度数与∠CAB的度数相等.所以∠CA'B'=60度.答:∠CA'B'的度数是60度.33.〔20xx•桐城市〕看图填空①〔1〕向上平移了2格.②〔2〕向左平移了4格.③〔3〕向右平移了6格.【解答】解:①〔1〕向上平移了2格.②〔2〕向左平移了4格.③〔3〕向右平移了6格.故答案为:上,2,左,4,右,6.34.〔20xx春•厦门期末〕王老师给同学们准备了一些小棒,数量如图.选用其中的局部小棒搭成一个长方体.〔1〕长方体一共有12条棱,每组相对的棱有4条,因此,不可能选用8cm的小棒.〔2〕这个长方体相交于一个顶点的三条棱的长度分别是5cm、4cm和4cm.〔3〕计算这个长方体的外表积.【解答】解:〔1〕长方体一共有12条棱,每组相对的棱有4条,因此,不可能选用8cm的小棒.〔2〕这个长方体相交于一个顶点的三条棱的长度分别是5cm、4cm和4cm.〔3〕〔5×4+5×4+4×4〕×2=〔20+20+16〕×2=56×2=112〔平方厘米〕答:这个长方体的外表积是112平方厘米.故答案为:12,4,8;5,4,4.35.〔20xx春•黄冈期末〕在三角形ABC中,AB=AC,∠C=50°,在BC边上取一点D,∠ADC=72°,求∠BAD的度数.【解答】解:因为AB=AC所以∠B=∠C=50°在三角形ABC中∠BAC=180°﹣50°﹣50°=80°在三角形ADC中∠DAC=180°﹣72°﹣50°=58°所以∠BAD=∠BAC﹣∠DAC=80°﹣58°=22°.36.〔20xx•柯城区〕从镜子中看到的左边图形的样子是什么?请在认为正确的图形上画“√〞.【解答】解:根据镜面对称,如下列图:。