固体表面计算和应
《无机非金属材料科学基础》第6章 固体的表面与界面行为

由此我们可以得到一个重要的结论:肥皂池的半径越 小,泡膜两侧的压差越大。
上式是针对球形表面而言的压差计算式,对于 一般的曲面,即当表面并非球形时,压差的计算式 有所不同。一般地讲,描述一个曲面需要两个曲率 半径之值;对于球形,这两个曲率半径恰好相等。一 般曲面两个曲率的半径分别为R1和R2。我们可以得 到一般曲面的压差计算式:
1. 共价键晶体表面能
2. 离子晶体表面能
每一个晶体的自由焓都是由两部分组成,体积 自由焓和一个附加的过剩界面自由焓。为了计算 固体的表面自由焓,我们取真空中0K下一个晶体 的表面模型,并计算晶体中一个原子(离子)移到晶 体表面时自由焓的变化。在0K时,这个变化等于 一个原子在这两种状态下的内能之差。
目录
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节
表面与界面物理化学基本知识 固体的表面(固-气) 固-液界面 浆体胶体化学原理 固-固界面
6.1 表面与界面物理化学基本知识
固体的界面可一般可分为表面、界面和相界面: 1)表面:表面是指固体与真空的界面。 2)界面:相邻两个结晶空间的交界面称为“界面”。 3)相界面:相邻相之间的交界面称为相界面。相界面有
界面间的吻合和结合强度。
表面微裂纹是由于晶体缺陷或外力作用而产生。微 裂纹同样会强烈地影响表面性质,对于脆性材料的强度 这种影响尤为重要。
脆性材料的理论强度约为实际强度的几百倍,正是 因为存在于固体表面的微裂纹起着应力倍增器的作用, 使位于裂缝尖端的实际应力远远大于所施加的应力。
葛里菲斯(Griffith)建立了著名的玻璃断裂理论, 并导出了材料实际断裂强度与微裂纹长度的关系
R 2E C
固体表面吸附和催化

稳定的表面团簇; 表面的台和阶:平台(Terrace)是指台阶的平坦晶面,
台阶(step)是指台阶平台之间的阶越部分; 空位(Vacancy):平台上尚未被填充的单原子空位; 扭折(Kink):指沿step拐折的内角;
• 如活性炭、氧化铝、硅胶、聚酰胺、硅酸 镁、滑石粉、氧化钙(镁)、淀粉、纤维 素和蔗糖等。
• 分类:吸附剂可按孔径大小、颗粒形状、化学成 分、表面极性等分类,如粗孔和细孔吸附剂,粉 状、粒状、条状吸附剂,碳质和氧化物吸附剂, 极性和非极性吸附剂等。
吸附剂的选择(制造困难,理论缺乏)
1、选择性高(如分子筛)(1)孔道(2)极性
催化剂
催化剂-反应物
产物
催化剂的特性
• 加快化学反应的速度,但不进入化学反应 计量
• 催化剂对反应有选择性 • 只能加速热力学上可能的反应 • 不改变化学平衡的位置 • 催化剂可使化学反应经由只需较少活化能
(activation energy)的路径来进行化学 反应。
固体催化剂的构成
• 载体(Al2O3 ) • 主催化剂(合成NH3中的Fe) • 助催化剂(合成NH3中的K2O) • 共催化剂(石油裂解SiO2-Al2O3)
13X分子筛除能吸附5A分子筛所 能吸附的物质外,还能吸附 CHCl3,CHBr3,CHI3,CCl4,CBr4,C6H6, N-C3F8,C(CH3)3OH,仲丁醇,环已 烷,异构烷烃,甲苯等。
由于具有很高的催化活性,可用 于催化剂的载体。
固体的应用(2)——催化剂
• 定义:根据IUPAC于1981年提出的定义, 催化剂是一种物质,它能够加速反应的速 率而不改变该反应的标准Gibbs自由焓变化。 这种作用称为催化作用。涉及催化剂的反 应为催化反应。
表面张力的测量和应用

表面张力的测量和应用表面张力是指液体表面上的分子间吸引力所产生的张力,是液体表面强度的度量。
通过测量表面张力,可以获得液体表面的物理和化学性质,从而为各种应用提供有效的参考。
一、表面张力的计算和测量表面张力可以通过两种方法进行计算和测量:接触角法和杂质提升法。
1. 接触角法接触角法是利用液体在固体表面上的接触角来计算表面张力。
接触角是液体与固体表面接触的角度,它可根据接触线和水平面形成的切线得出。
接触角的大小反映了液体与固体之间的相互吸引力大小。
一般来说,角度越小,液体越容易与固体相互吸附,表面张力越小。
2. 杂质提升法杂质提升法是通过往液体表面添加一定量的杂质,从而减小表面张力并测得表面张力大小。
添加的杂质通常为表面活性剂,如十二烷基硫酸钠、十二烷基苯磺酸钠等。
通过测量液体表面杂质提升前后的高度差,可以计算出表面张力的大小。
二、表面张力的应用表面张力主要应用于以下领域:1. 表面润湿性液体经过表面张力的影响,在固体表面上形成了一种液滴状结构。
这种液滴结构对于在固体表面上的液体润湿性有很大影响。
表面张力越小,液体在固体表面上的渗透性越强,润湿性越好。
在工业上,这种性质得到广泛应用,如涂料润滑剂等。
2. 微粒分散性表面张力对于微粒分散性的影响也很大。
在液体中添加适量的表面活性剂,可以减小液体表面张力,使得固体颗粒更容易分散在液体中,提高微粒分散度。
这种方法在制药、化工和材料科学等领域得到广泛应用。
3. 液滴稳定性表面张力对于液滴稳定性也有影响。
液滴稳定性可以用来判断液体的纯度和化学性质。
液滴不稳定的原因通常是表面张力不足或液滴大小不均。
因此,在制药和化学工业中,经常通过测量液滴大小和稳定性来测试化学反应、物质的纯度等。
总之,表面张力的测量和应用在各种领域都具有重要意义。
通过了解表面张力的大小和变化,可以更好地掌握物质的物理和化学性质,为工业生产和实验研究提供有效的依据。
第7章 固体表面与界面

2、铺展润湿
SV= SL+LV cos)
LVcos= SV-SL=F cos=(SV- SL)/LV
面能大小来估计。对于离子晶体,表面主要取决于晶格能和极化
作用(表面能与晶格能成正比)。主要形成化学吸附。
2
2、分子引力(范德华力)
一般是指固体表面与被吸附质点(如气体分子)之间相互作用
力。它是固体表面产生物理吸附和气体凝聚的原因。分子间引力 主要来源于三种不同效应。
1) 定向力:相邻两个极化电矩因极性不同而相互作用的力。主
c.凸面上的饱和蒸气压>平面>凹面(P凸>Po> P凹)。
12
讨 论:
1 Ln (球面), P0 RT r
P
2M
Ln
P P0
M
RT
(
1 r1
+
1 r2
)( 非球面)
r↓→凸面上蒸气压升高P凸↑; r↓→凹面上蒸气压下降P凹↓
这种蒸气压差,在高温下足以引起微细粉体表面质点由凸面
SL很大,不润湿。
16
3、浸渍润湿(液体表面没有变化)
浸渍润湿指固体浸入液体中的过程。 例:生 坯的浸釉。把固体浸在液体之中,固-气界面 为固-液界面所代替,γSV→γSL: ΔG=γSL-γSV 当γSV >γSL,润湿自发进行。
固
液体
三种润湿共同点:液体将气体从固体表 面挤开,由固-液界面→固-气(或液气) 界面,铺展是润湿的最高标准,能铺展 则必能附着和浸渍。
ms表面能计算公式

ms表面能计算公式MS表面能计算公式是指计算物体表面能的数学公式。
物体表面能是指物体分子或原子间的相互作用力所引起的表面现象。
表面能的计算可以通过不同的方法进行,其中最常用的方法是使用Young方程和Laplace方程。
本文将详细介绍这两个方程以及它们在计算表面能方面的应用。
一、Young方程Young方程是描述液体在固体表面上润湿性的数学公式。
该方程由英国科学家Thomas Young在1805年提出。
Young方程的数学表达式为:γsv = γsl + γlv*cosθ其中,γsv表示固体与气体(或液体)的界面表面能,γsl表示固体与液体的界面表面能,γlv表示液体与气体的界面表面能,θ表示接触角。
Young方程的应用非常广泛,可以用来解释液体在固体表面上的润湿性现象。
根据Young方程,当接触角小于90度时,液体在固体表面上会展开,形成润湿现象;当接触角大于90度时,液体在固体表面上会聚拢,形成不润湿现象。
通过测量接触角的大小,可以计算出物体表面的润湿性。
二、Laplace方程Laplace方程是描述液滴或气泡在表面张力作用下形状的数学公式。
该方程由法国数学家Pierre-Simon Laplace在1805年提出。
Laplace方程的数学表达式为:ΔP = 2γ/r其中,ΔP表示液滴(或气泡)内外的压强差,γ表示液体(或气体)的表面张力,r表示液滴(或气泡)的半径。
Laplace方程的应用可以用来解释液滴或气泡的形状。
根据Laplace方程,液滴或气泡的形状取决于表面张力和压强差的关系。
当液滴内外的压强差增大或表面张力减小时,液滴或气泡的形状会更加平坦;当液滴内外的压强差减小或表面张力增大时,液滴或气泡的形状会更加圆润。
通过测量液滴或气泡的半径和表面张力,可以计算出物体表面的形状。
总结:MS表面能计算公式主要包括Young方程和Laplace方程。
Young 方程用于计算物体表面的润湿性,可以通过测量接触角来得到表面能的数值。
固体表面的化学反应——催化剂的活性位点研究

固体表面的化学反应——催化剂的活性位点研究固体表面化学反应是目前材料科学和化学领域中非常重要的研究领域,它在催化剂设计、环境治理、生物医学等众多应用方面都有着重要的意义。
对于生产过程,例如石油催化和化学加工,选择正确的催化剂是至关重要的。
在催化剂表面上,具有高性能(即高反应活性和选择性)的活性位点是实现化学反应的关键。
催化剂是通过特定的化学反应增加化学反应速率的特殊物质。
在化学反应中,催化剂会提高反应物之间的作用力,从而增加反应速率。
不同的催化剂在反应中的作用是不同的,因此,为不同的化学反应设计不同的催化剂是非常重要的。
在催化剂的表面上,活性位点通常被认为是化学反应发生的关键点。
这些活性位点通常是通过选择性地调节催化剂的组成,以及通过对催化剂表面的制备和修饰来控制的。
催化剂的活性位点可以分为两种类型:表面原子和表面缺陷。
表面原子是指催化剂表面上的金属原子或氧化物原子,它们具有较高的化学反应活性,并可以吸附反应物分子。
表面缺陷是指催化剂表面上的缺陷,它们可以提高催化剂表面的电子密度,从而增加化学反应速率。
因此,了解催化剂的活性位点对于设计高性能催化剂非常重要。
如何确定催化剂的活性位点确定催化剂的活性位点是化学反应研究的一个挑战性问题。
通过表面配位理论、X射线光电子能谱、红外光谱等方法对固体表面进行分析,可以推测出催化剂表面上可能存在的活性位点。
例如,通过X射线吸收光谱分析,可以确定铜催化剂表面上的 Cu-O-Cu 配位形成了电子共价键,并可提高催化剂表面的活性位点浓度。
另一方面,计算化学方法已成为确定固体表面活性位点的重要手段。
计算化学方法可以模拟催化剂表面中可能的反应路径。
在反应通道中,可以确定能量最低的振动模式,并确定反应通道中的瓶颈。
通过这种方式,可以确定催化剂表面可能存在的活性位点。
通过实验和计算等多种手段对催化剂的活性位点的研究,可以进一步优化催化剂的结构和性能,提高固体表面化学反应的效率和选择性。
材料表界面思考题答案汇总

考试
答案
第二章:液体表面 2. 试述表面张力(表面能)产生的原因。
P6 原因为液体表面层的分子所受的力不均匀而产生的。液体表面层即气液界面中的分子受到指向液体内 部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分 子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。这里的分子间作用力为范德华力。
17. 表面活性剂的浓度对溶液的表面张力有怎样的影响?为什么有这样的影响? P41 (1)随着表面活性剂浓度的增加,表面张力而下降,当达到临界浓度时,表面张力就不 再发生变化。 (2)表面活性剂其亲水端向水,亲油段相空气,其浓度的上升会使分子聚集在表面,这样, 空气和水的接触面减小,表面张力急剧下降,与此同时,水中的表面活性剂也聚集在一起,排 列成憎水基向里,亲水基向外的胶束。表面活性剂浓度进一步增加,水溶液表面聚集了足够多 的表面活性剂的分子,无间隙地布满在水溶液表面上,形成单分子膜。此时,空气和水完全处 于隔绝状态,表面张力趋于平缓。 18. 表面活性剂按亲水剂类型可怎样分类? P43 表面活性剂溶于水能电离成离子的叫做离子型表面活性剂,R 基不能电离的叫做非离子型 表面活性剂。 其中离子型表面活性剂可分成阴离子、阳离子和两性表面活性剂。
度降低,HLB 值下降,使得乳状液从原来的(O/W)型转变为油包水型(W/O)所对应的温度.又称为亲 水-亲油平衡温度.
共 12 页 当前第 5 页
《材料表界面》复习思考题答案汇总
(2) PIT与HLB都可以反映出亲水亲油性,但是,PIT可以反映出油的种类、水溶液性质、温度 和相体积等的影响。 同时 PIT 测定简单、精度高。
13. 比较物理吸附和化学吸附的区别。
项目 吸附力 吸附热 选择性 吸附层 吸附速度 可逆性 发生吸附速度 物理吸附 范德华力 小,接近液化热 无 单、多分子层 快,不需要活化能 可逆性 低于吸附质临界温度 化学吸附 化学键力 大,接近反应热 有 单分子层 慢,需要活化能 不可逆性 远高于吸附质沸点
bet 比表面积

bet 比表面积表面积在我们的生活中无处不在,从建筑物到食品包装,从人体器官到微小的细胞,表面积都是一个重要的参数。
在科学研究和工程设计中,表面积的计算和优化也是一个重要的问题。
bet 比表面积是一种常用的表面积测量方法,本文将介绍它的原理和应用。
1. 原理bet 比表面积是基于吸附原理的一种表面积测量方法。
吸附是指物质分子在表面上附着的现象,通常是由于表面的化学性质和物理性质与分子的相互作用所致。
吸附现象在很多领域都有重要的应用,例如催化剂、分离技术、气体吸附等等。
bet 比表面积的原理是利用气体分子在固体表面上的吸附现象,测量固体表面积。
当一个气体分子进入固体孔道或孔隙时,它会与固体表面发生相互作用,这种作用会使气体分子在固体表面上停留一段时间。
停留时间越长,表明气体分子与固体表面的相互作用越强,因此可以用停留时间来表示固体表面的特性。
bet 比表面积的测量方法是将一定量的气体通过样品,使其在固体表面上吸附,然后测量吸附后的气体量。
根据吸附量和气体分子的物理化学性质,可以计算出固体表面的比表面积。
2. 应用bet 比表面积在材料科学、化学工程、环境科学等领域都有广泛的应用。
下面介绍一些常见的应用:(1)催化剂催化剂是一种能够促进化学反应的物质,广泛应用于化学工业、石油化工、环保等领域。
催化剂的活性通常与其表面积有关,因为反应物分子需要在催化剂表面上吸附才能发生反应。
因此,测量催化剂的比表面积对于催化剂的设计和优化非常重要。
(2)吸附材料吸附材料是一种能够吸附气体分子、液体分子或离子的材料,广泛应用于环境治理、气体分离、储能等领域。
吸附材料的吸附性能通常与其比表面积有关,因为吸附材料的吸附能力取决于其表面积和化学性质。
因此,测量吸附材料的比表面积对于吸附材料的设计和应用非常重要。
(3)纳米材料纳米材料是一种具有纳米尺度结构的材料,具有特殊的物理和化学性质。
纳米材料的表面积通常非常大,因为其纳米结构可以增加材料的比表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 体心立方晶格
b 面心立方晶格 晶体结构
c 密排六方晶格
固体表面计算和应
在常用金属中: 体心立方晶格:铬(Cr)、钼(Mo)、钨(W)、钒(V)、铁
(α-Fe)等。 面心立方晶格:铝(Al)、铜(Cu)、镍(Ni)、铅(Pb)和铁
(γ-Fe)等。 密排六方晶格:镁(Mg)、镉(Cd)、铍(Be)、锌(Zn)等。
固体表面计算和应
表面力的分类:
(1) 化学力(长程力);
(2) 范德华力(分子引力); 定向作用力FK(静电力) :发生于极性分子之间 诱导作用力FD :发生于极性与非极性分子之间。 分散作用力FL(色散力) :发生于非极性分子之间。
F范=FK+FD+FL 1/r7
固体表面计算和应
1.2 表面结构
气体(氧、氮、二氧化碳和水汽等)所组成。
过渡层为氧化物最为常见。由于一些金属元素的氧化态可变, 因此,在氧化层中也包含不同氧化态的氧化物。
铜:1000℃以下为:空气/CuO/Cu2O/Cu;
1000℃以上为:空气/Cu2O/Cu。
铁:570℃以下为:空气/FO3/Fe3O4/FeO/Fe;
角上原子
3
原子在(111)上
边缘原子
5
原子在(100)上
固体表面计算和应
配位数 9 8
表面上方原子的空缺,必然导致晶体表面电荷分布的变化, 从而使表面原子排列或多或少发生变化。不过,实验分析 表明,很多晶体材料的表面有着近乎理想的原子排列。当 然,也有很多例外。
金属表面出现“断键”,原子的能量会升高,为了达到一个 较稳定的状态,电子也要重新分布,也就是说电子与离子、 电子与电子之间的交互作用都会发生变化,使表面与体内 的电子分布不同,一般要在表面形成一电偶层,可降低十 分之几电子伏特的表面能。
固体表面计算和应
金属表面的实际构成示意图
工程表面 对于给定条件下的表面,其实际组成及各层的厚度与表面 制备过程、环境以及材料本身固体的表面性计算质和应有关。
1.1.2 固体表面力场 定义: 晶体中每个质点周围都存在着一个力场,在晶体内部,质 点力场是对称的;但在固体表面,质点排列的周期重复性 中断,使处于表面边界上的质点力场对称性破坏,表现出 剩余的键力, 称之为固体表面力。
1 固体表面
固体表面计算和应
1.1 表面的基本特性
理想的晶体由原胞组成,并具有三维周期性。但实际物质不 是无限的,在晶体中原子或分子的周期性排列发生大面积突然 终止的地方就出现了界面,如固体-液体、固体-气体及固体 -固体的界面,常把固体-气体(或真空)、固体-液体的界 面称为固体的表面。
很多物理化学过程:催化、腐蚀、摩擦和电子发射等都发 生在“表面”,可见其重要性。
固体表面计算和应
1.2.2 晶体结构变化
晶体结构的变化可以改变金属表面的摩擦特性。如元素 钴在加热时,晶体结构从常温的密排六方晶格转变为面心 立方晶格,摩擦系数增大,而当温度降到室温时,摩擦系 数将减小到原来的数字。而四氯化物在温度升高到222.5K 时,摩擦系数大大降低。
在摩擦力的作用下,表层反复变形,温度也随之变化,
材料表面电子结构的不同,在很大程度决定表面的化学性 质,对金属表面的吸附和粘着是非常重要的。
固体表面计算和应
1.2.4 表面缺陷 按照几何特征,晶体缺陷主要分为: (1) 点缺陷 (2) 线缺陷 (3) 面缺陷
固体表面计算和应
(1) 点缺陷
杂质原子
a 空位
b 间隙原子
c 置换原子
点缺陷破坏了原子的平衡状态,使晶格发生了扭曲—晶 格畸变,使金属的电阻率、屈服强度增加,金属的密度发生 变化。
1.2.1 金属的晶格类型 金属及其合金都是由原子或分子所组成的一种物质的凝聚
集态,金属的性能不仅取决于其组成原子的本性和原子间 结合键的类型,同时也取决于原子规则排列的方式。 固态金属规则排列的原子即称为晶体结构。
固体表面计算和应
基本排列形式有体心立方晶格、面心立方晶格和密排六方 晶格。
固体表面计算和应
(2)合金表面成分 一般特征:“金属/过渡层/空气”,其过渡层中出现的情况更为
复杂。 过渡层常见氧化物,但可能出现硫化物和碳化物等。如仅出
现氧化物层,那么其氧化物层中的组成与合金成分有关。
Fe-Cr合金(1200℃以下), 表面氧化物成分随Cr含量而变: 5%Cr 气相/Fe2O3/Fe3O4/FeO/FeO⋅Cr2O3/Fe+Cr2O3/Fe+Cr 10%Cr 气相/ Fe2O3/Fe3O4/FeO⋅ Cr2O3/Fe+ Cr2O3/Fe+Cr 25%Cr 气相/Cr2O3/Fe+Cr
固体表面计算和应
(2) 线缺陷
C D
B A
位错破坏了原子的有序排列,位错运动可使晶体产生弹性畸变和塑性 变形。位错的产生使金属接近表面处产生微孔隙,当微孔隙凝聚时就产生 相平行的裂纹,当裂纹生长到极限长度时,材料就会以“薄瓣状”剥落下来。 加工硬化就是当位错密度随塑性变形增加而增加时,许多位错相互作用的 结果。
固体表面计算和应
(3) 面缺陷
晶粒 (单晶体)
晶界
晶界对位错运动起阻碍作用,使金 属的强度升高。
晶粒越细,则晶界越多,强度和塑 性越高。
固体表面计算和应
亚晶界
1.4 表面成分
成份是决定材料性能的主要因素。 (1) 金属表面成分 一般特征:“金属/过渡层/空气”,而“金属/空气”极为少见。 过渡层中常由氧化物、氮化物、硫化物、尘埃、油脂、吸附
表面是一个抽象的概念,实际常把无厚度的抽象表面叫数 学表面,把厚度在几个原子层内的表面叫作物理表面,而把我 们常说实际的固体表面叫工程表面。
固体表面计算和应
1.1.1 固体表面的特点 (1) 固体表面的凹凸不平; (2) 固体中晶体晶面的不均一性:各相异性、晶面不完整; (3) 表面被外来物质所污染,表面吸附外来杂质; (4) 制备和加工条件;
接触区的晶体结构和材料结构在不断变化,导致互相作用
的两表面摩擦特性的改变。所以原子由有序排列状态转化
为无序排列状态是材料结构变化的重要因素之一。
固体表面计算和应
1.2.3 表面结构
表面原子M 的配位数为 5。而基体 中的任一个 原子的配位 数为6。
面心立方表面原子的配位数 在表面的位置 配位数 表面所处晶面