高一数学周练

合集下载

高一上学期数学周练13答案

高一上学期数学周练13答案

高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。

高一年级下学期数学周练4答案

高一年级下学期数学周练4答案

2bc
2
又 A 为△ABC 的内角,所以 A=π. 6
8.已知函数 f(x)=2sin(2x+π),记函数 f(x)在区间[t,t+π]上的最大值为 M,最小值为 m,设
6
4
函数
h(t)=Mt-mt.若
t∈[ π ,5π],则函数 12 12
h(t)的值域为__________.
[解析] 由已知函数 f(x)的周期 T=π,区间[t,t+π]的长度为T.作出函数 f(x)在[ π ,2π]的图象.
B(2,b),且 cos2α=2,则|a-b|=(
)
3
A.1 5
B. 5 5
C.2 5 5
D.1
[解析] 由 cos2α=2cos2α-1=2可得 cos2α=5= cos2α = 1 ,化简可得 tanα=± 5.
3
6 sin2α+cos2α tan2α+1
5
当 tanα= 5时,可得a= 5,b= 5,即 a= 5,b=2 5,此时|a-b|= 5;当 tanα=- 5时,
所以 cos 2α=1-2sin2α=1-2× 9 =-1. 16 8
3
10. 已知向量 a=(2cosx, 3sinx),b=(cosx,2cosx),函数 f(x)=a·b+m,m∈R,且当
x∈[0,π]时,f(x)的最小值为 2. 2
(1)求 f(x)的单调递增区间;
66
6
6
-2 3.
(2) ①若 m⊥n,则 m·n=0,即-sin α(sin α-2)-cos2α=0,即 sin α=1,可得α=2kπ+π或α
2
6
=2kπ+5π,k∈Z. 6
②若|m-n|= 2,则(m-n)2=2,即(2sin α-2)2+(-2cos α)2=2,

(完整版)高一数学第十次周练

(完整版)高一数学第十次周练

高一年级数学周练(十) 班级 姓名一、(1—15每小题6分,共90分。

)1、若α=-3,则角α的终边在( )A. 第I 象限B. 第II 象限C. 第III 象限D. 第IV 象限2、若α是第四象限角,则π-α一定在( )A. 第I 象限B. 第II 象限C. 第III 象限D. 第IV 象限3、半径为2,圆心角为1的扇形面积为( )A. 1B. 2C. 4D. 214、函数f (x )=x 3+x -1在下列哪个区间上有零点( )A.(-2,-1)B.(0,1)C.(1,2)D.(2,3)5、已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =( ) A 3 B 2 C 1 D 06、下列函数是偶函数的是( )A. x y =B. 322-=x yC. 21-=xy D. ]1,0[,2∈=x x y 7、如果0log 21>x 成立,则x 应满足的条件是( )A.x >21B. 21<x <1 C. x <1 D. 0<x <1 8、已知有三个数23.0=a ,3.0log 2=b ,3.02=c ,则它们之间的大小关系是( )A b c a <<. B. c b a << C. c a b << D.a c b <<9、计算()()00)21(51121242---+-+-,结果是( )A.1B. 22C.2 D. 212-10、67°30'化成弧度为 ;11、7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .12、设函数)(1x f =21x ,12)(-=x x f ,23)(x x f =,则123(((2014)))f f f = 。

13、若,且与终边相同,则 .14、若函数()()()3122+-+-=x a x a x f 是偶函数,则()x f 的增区间是15.判断下列各角分别在哪个象限?⑴9; ⑵; ⑶.16、若函数f(x)=x 2-ax-b 的两个零点是2和3,求2log 25a b + (10分)19、求函数263x x y -= 的单调区间。

高一数学第一学期周练15+答案

高一数学第一学期周练15+答案

高一数学周练(15)一、选择题:(本题共12小题,每小题5分,共60分)1.tan390°的值等于()A.B.C.﹣D.﹣2.已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=()A.{0}B.{0,1}C.{0,1,2}D.{0,1,2,4}3.设P是△ABC所在平面内的一点,,则()A.P、A、C三点共线B.P、A、B三点共线C.P、B、C三点共线D.以上均不正确4.给出下列四个式子:①=x;②a3>a2;③(log a3)2=2log a3;④log23>log49.其中正确的有()A.0 个B.1个C.2个D.3个5.如图,已知∠AOB=2弧度,点A1、A2、A3在OA上,点B1、B2、B3在OB上,其中每一条实线段和虚线段长度均为1个单位.一个动点M从点O出发,沿着实线段和以点O为圆心的实线圆弧匀速运动,速度为1单位/秒.则动点M到达A2处所需时间为()秒.A.6B.8C.2+πD.2+3π6.下列四个函数中,在(0,+∞)上为增函数的是()A.y=﹣1B.y=x2﹣3x C.y=﹣D.y=﹣|x|7.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,3)内近似解的过程中取区间中点x0=2,那么下一个有根区间为()A.(1,2)B.(2,3)C.(1,2)或(2,3)D.不能确定8.已知函数f (x )=,若f (f (﹣1)=18,那么实数a 的值是( )A .0B .1C .2D .39.若,则sin2α的值为( )A .B .C .D .10.如图2-3-6所示,△ABC 中,若D ,E ,F 依次是AB 的四等分点,则以CB →=e 1,CA →=e 2为基底时,CF →=________.A. 34e 1+14e 2 B.C. D.11.已知函数f (x )=Asin (wx +φ)(A >0,w >0,|φ|<,x ∈R )在一个周期内的图象如图所示.则y=f (x )的图象可由函数y=cosx 的图象(纵坐标不变)( )A .先把各点的横坐标缩短到原来的倍,再向左平移个单位B .先把各点的横坐标缩短到原来的倍,再向右平移个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移个单位12.设函数f (x )为偶函数,且当x ≥0时,f (x )=()x ,又函数g (x )=|xsinπx |,则函数h (x )=f (x )﹣g (x )在[﹣,2]上的零点的个数为( )个. A .3B .4C .5D .6二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知集合M={x |log 2(x ﹣3)≤0},N={x |y=},则集合M ∩N 为 .14.(5分)函数的单调增区间为 .15.(5分)甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2).甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半时间使用速度v 2.请在如图坐标系中画出关于甲、乙二人从A 地到达B 地的路程与时间的函数图象(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点,t 1是t 2的一半).16.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值是 . 三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(1)已知||=1,||=,若与的夹角为,求|﹣|.(2)已知=(﹣4,3),=(1,2),求(﹣3)•(2+)的值.18.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (﹣3,4).(1)求sinα,cosα的值;(2)的值.19.已知函数)32sin(23π+-=x y .(1)求函数的值域; (2)求函数取最小值时x 的集合; (3)当⎥⎦⎤⎢⎣⎡-∈3,3ππx 时,求函数的最大值.20.设函数f (x )=log a x ,x (0<a <1). (1)比较f (sin1)与f (cosl )的大小;(2)记函数f (x )的反函数为g (x ),若a +kg (x ﹣1)≥0在x ∈[2,+∞)上恒成立,求k 的最小值.21.已知函数2()log (21)x f x =+(1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若关于x 的方程2log (21)()x m f x -=+在[1,2]上有解,求m 的取值范围。

人教版高一数学第周每周一练

人教版高一数学第周每周一练

22.已知两直线 l1 : ax by 4 0, l2 : (a 1) x y b 0 ,求分别满足下列条件的 a 、 b 的值.
(1)直线 l1 过点 (3, 1) ,并且直线 l1 与直线 l2 垂直; (2)直线 l1 与直线 l2 平行,并且坐标原点到 l1 、 l2 的距离相等.
x y 1 0 ,则 PB 的方程为
()
A. x y 5 0 B. 2 x y 1 0 C. 2 y x 4 0 D. 2 x y 7 0
10.若三条直线 l1:x-y=0;l2:x+y-2=0; l3:5x-ky-15=0 围成一个三角形,则 k 的
取值范围是
()
A.k R 且 k 5 且 k 1
即 Ax x0 B y y 0 0 ,得证.
20.略解(利用待定系数发设出 P 点的坐标即可):⑴点 P(0,4);⑵|AB|= 6 2
21.解:设 P 关于 l 的对称点为 P x , y ,直线 l 的斜率为 3
PP l
1
k PP
3
∴直线 P P 的方程为: y 5 1 x 4
3
即: x 3 y 19 0 ,设 P P 与 l 交于 Q 点
B.k R 且 k 5 且 k -10
C.k R 且 k 1 且 k 0
D.k R 且 k 5
11.点 P (m n, m ) 到直线 x y 1 的距离为 mn
()
A. m 2 n 2
B. m 2 n 2
C. m 2 n 2
D. m 2 n 2
12.若点 (4, a ) 到直线 4 x 3 y 1 0 的距离不大于 3,则 a 的取值范围为
A. m 0
B. m 3 2
C. m 1

高一数学周周练试题 试题

高一数学周周练试题  试题

智才艺州攀枝花市创界学校淳中高一数学周周练试题一.选择题〔每一小题5分,一共50分〕1.⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214|,那么〔〕 〔A N M =〔B 〕M N 〔C 〕N M 〔D 〕N M ⊆ 2.设全集{}+∈≤=N x x x U ,8|,假设{}8,1)(=⋂B C A U ,{}6,2)(=⋂B A C U , {}7,4)()(=⋂B C A C U U ,那么〔〕〔A 〕{}{}6,2,8,1==B A 〔B 〕{}{}6,5,3,2,8,5,3,1==B A 〔C 〕{}{}6,5,3,2,8,1==B A 〔D 〕{}{}6,5,2,8,3,1==B A3.集合{}01|2=++=x m x x A ,假设Φ=⋂R A ,那么实数m 的取值范围是〔〕 〔A 〕4<m 〔B 〕4>m 〔C 〕40<<m 〔D 〕40<≤m4.假设关于x 的不等式|x+2|+|x-1|<a 的解集为φ,那么a 的取值范围是 〔〕 〔A 〕〔3,+∞〕〔B 〕[3,+∞〕 〔C 〕〔-∞,3] 〔D 〕〔-∞,3〕 5.设P=}|),{(},|{22x y y x Q x y x ===,那么P 、Q 的关系是〔〕 〔A 〕P Q 〔B 〕P Q 〔C 〕P=Q 〔D 〕P Q=Φ 6.以下四组函数,表示同一函数的是〔〕〔A 〕f (x )=2x ,g (x )=x 〔B 〕f (x )=x ,g (x )=x x 2 〔C 〕f (x )=42-x ,g (x )=22-+x x 〔D 〕f (x )=|x +1|,g (x )=⎩⎨⎧-<---≥+1111x x x x 7.假设奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是〔〕 〔A 〕增函数且最大值为-5 〔B 〕增函数且最小值为-5≠⊂≠⊂〔C 〕减函数且最小值为-5 〔D 〕减函数且最大值为-58.)(x f 是偶函数,且当0>x 时,x x x f -=2)(,那么当0<x 时,)(x f 的解析式为〔〕〔A 〕x x x f -=2)(〔B 〕x x x f --=2)(〔C 〕x x x f +=2)(〔D 〕x x x f +-=2)(9.函数24)(2++=ax x x f 在)6,(-∞内递减,那么a 的取值范围是〔〕 〔A 〕3≥a 〔B 〕3≤a 〔C 〕3-≥a 〔D 〕3-≤a10.函数x y 111+=的定义域是〔〕〔A 〕0>x 〔B 〕0>x 或者1-≤x 〔C 〕0>x 或者1-<x 〔D 〕10<<x二.填空题〔每一小题5分,一共10分〕11.=A {23|≤≤-x x },=B {1212|+≤≤-m x m x },且BA ,那么实数m 的 取值范围为。

高一数学周练试卷

高一数学周练试卷

高一数学周练试卷一. 选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若A={x|x ≥0},那么正确的是 ( ) (A )A (B ){0} A (C ){0} A (D )0 A.2、 设{}{}{}S M N ===1231213,,,,,,,那么()C M C N S S ()等于( ) A. ∅B. {}13, C. {}1D. {}23,3、 下列函数中哪个与函数y x =是同一个函数( ) A. y x =()2B. y x x=2C. y x =33D. y x =24、 函数y x x =-32的定义域是( )A. (,)-∞0B. (,)03C. []03,D. []-30,5、 下列四式中正确的是( ) A. a 01=B.()-=-33263 C.a a n nn n =()D.||||a a n n=6、 下图中的对应关系中是映射的个数是( )A. 1个B. 2个C. 3个D. 4个7、已知集合M={(x,y )|x+y=2},N={(x,y )|x-y=4},那么集合M ∩N 为( )。

(A )x=3,y=1 (B )(3,-1) (C ){3,-1} (D ){(3,-1)}8、函数(x)=(2k+1)x+b,在(-∞,+∞)是减函数,则 ( )(A )k >(B )k >- (C )k < (D )k <- 二. 填空题(本大题共6个小题,每小题4分,共24分,把答案直接填在题中的横线上) 9、 已知{}x x x ∈=122,,,则.10、 已知函数f x x f a a ()().2314=-==,且,则11、已知⎪⎩⎪⎨⎧<-=->=)0(,32)0(,1)0(,0)(x x x x x f ,则()[]{}5f f f 的值是 .12、已知幂函数y=f(x)的图象过点(2),则f(9)=_ .13、用列举法表示集合:12|6B m N N m ⎧⎫=∈∈=⎨⎬-⎩⎭. 14、若方程232-=x x的实根在区间()n m ,内,且1,,=-∈m n Z n m ,则=+n m .三. 解答题(解答应写出文字说明,证明过程或演算步骤。

高一数学周周练测试题

高一数学周周练测试题

高一数学周周练( 必修4综合)班级__________ 姓名_________ 学号______一、选择题: 本大题共10小题,每小题4分,共40分 1、若),1,3(),2,1(-==则=-2 ( )A 、 )3,5(B 、 )1,5(C 、 )3,1(-D 、 )3,5(--2、5a b ==,a与b的夹角为3π,则a b -等于( )A .35B .235 C .3 D . 53.已知角α 的终边过点P (-4,3),则ααcos sin 2+的值为( ) A .54- B .53C .52D .24、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( ) A 、0 B 、2π C 、4π-D 、π5.设),6,2(),3,4(21--P P 且P 在21P P=,则点P 的坐标是 ( )A 、)15,8(-B 、 (0,3)C 、)415,21(-D 、)23,1( 6.已知a=(4,3),向量b是垂直于a的单位向量,则b=( )A .5354)54,53(,或()B .5354)54,53(,或(-- )C .5453)54,53(--,或( )D . 5453)54,53(,或(--)7.a =1,b=2,c a b =+ ,且c ⊥a ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150→→→→→→→→b a a b b a b a 的模与,则方向的投影为在,方向的投影为在是非零向量,与、设438的模之比值为( )A 、43 B 、34 C 、73 D 、749.函数44f (x)sin(x)sin(x)ππ=+-是( )A 、周期为2π的奇函数B 、周期为2π的偶函数C 、周期为π的奇函数D 、周期为π的偶函数10. 设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A .[6,1]-B .[4,8]C .(,1]-∞D .[1,6]-二、填空题:本大题共6小题,每小题4分,满分24分.11、已知113a (,2sin ),b (cos ,),a 322=α=α 且∥b ,则锐角α的值为 ;12、若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为 ;13、函数y cos 2x 4cos x,x [,]32ππ=-∈-的值域是 ;14、若为则ABC AB BC AB ∆=+∙,02三角形;15将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a平移,则平移后所得图象的解析式为 16、下列命题:①若c a cb b a =⋅=⋅,则 ②若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向-=+0=⋅ba ④若a 与b 是单位向量,则1=⋅其中真命题的序号为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈13中学2013-2014学年度 高一上学期周练测试
学科:数学 (2013、9、12)
考试时间: 60 分钟 卷面分值: 100 分
命题人:张灵娜
注意事项:
1.答题前,务必将自己的姓名、考号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂
黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须将答案书写在专设答题页规定的位置上。

4.所有题目必须在答题卡上作答.在试题卷上答题无效。

5.考试结束后,只交试卷答题页。

教师寄语: 聪明在于勤奋,天才在于积累。

第Ⅰ卷(共40分)
一、选择题:(本大题共12个小题,每小题5分,共60分)
1、设}10{,3≤==x x M a ,给出下列关系:①;M a ⊆②};{a M ⊇③ ;}{M a ∈④;2M a ∉⑤}{}{a ⊆φ,其中正确的关系式共有 ( ) A. 1个 B. 2个 C. 3个 D. 4个
2、不等式x 2-ax -12a 2<0(其中a <0)的解集为( )
A .(-3a ,4a )
B .(4a ,-3a )
C .(-3,-4)
D .(2a ,6a )
3、已知集合A={}
1|2
+=x y y , B={}1|+=x y y , 则A B 等于
A.{}2,1,0
B.{})2,1(),1,0(
C. {}1|≥x x D . R
4、设全集R U =,集合{}
2,3≥-≤=x x x E 或,{}
51<<-=x x F , 则集合{}
21<<-x x 是 ( ) A. F E B.
()F E C U C. ()()F C E C U U D. ()EUF C U
5、集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A∩B={-1},
则a 的值是 A .-1 B .0 或1 C .2 D .0 6、满足{}M
a ⊆{a,b,c,d}的集合M 共有 ( )
A .6个 B. 7个 C. 8个 D. 15
7、集合A={}Z k k x x ∈=,2|, B={}Z
k k x x ∈+=,24|, 则有( ) A. A=B B. A
B C.B
A D. 以上都不是
8、已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为 ( )
A.1
B.-1
C.1或-1
D.1或-1或0
9、设M ,P 是两个非空集合,定义M 与P 的差集为
M -P={}
P x M x x ∉∈且,,则M -(M -P )等于 ( ) A. P B. P M C. P M D. M
10、设U ={1,2,3,4,5},若A ∩B ={2},(C U A )∩B ={4},(C U A )∩(C U B )={1,5},则下列结论正确的是 ( ) A.3∉∈A 且3∈B B.3∉∈B 且3∈A C.3∉A 且3∉∈B D.3∈A 且3∈B
11、已知{}
04<<-=m m P ,
{}
成立对一切R x mx mx m Q ∈<--=,012,那么下列关系中成立的是
( ) A. P Q = B.
P Q ⊆ C. Q P ⊆ D. φ=Q P
12、已知不等式02
>++c bx ax 的解集为⎭
⎬⎫⎩⎨⎧<<-
231
x x ,则不等式02<++a bx cx 的解集为 ( )
A. ⎭⎬⎫
⎩⎨⎧<
<-213x x B. ⎭⎬⎫⎩⎨⎧
>-<21,3x x x 或 C. ⎭
⎬⎫⎩
⎨⎧<<-312x x D. ⎭
⎬⎫⎩
⎨⎧>-<31,2x x x 或
第Ⅱ卷(共40分)
二、填空题:(本大题共4个小题,每小题5分,共20分,把答案写在答题纸中的横线上)
13、某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人. 14、设全集R U =,集合⎭
⎬⎫
⎩⎨⎧>--=112x x x
A ,则A C U = 15、已知y =x 2+2x +a ,x ∈[-3,2]最大值为4, 求a 的值
16、设21,,x x R m ∈是方程0122
2=-+-m mx x 的两个实根,则2
2
2
1x x +的最小值______
三、解答题:(本大题共2小题,共20分,解答应写出必要的文字说明、证明过程或演算步骤)
17、已知集合A={}
71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;
(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.
18、已知不等式03)1(4)54(2
2>+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围.
哈13中学 试卷答题卡
一、选择题:(本大题共12个小题,每小题5分,共60分)
二、填空题(含4个小题,每空5分,共20分)
13. 14.
15. 16.
三、解答题
17.(10分)


18.(10分)。

相关文档
最新文档