高一数学上学期17周周练试题

合集下载

高一上学期数学周练13答案

高一上学期数学周练13答案

高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。

2021-2022年高一数学周周清

2021-2022年高一数学周周清

A.{x | 1 x 4} B. {x | 2 x 3} C. {x | 2 x 3} D.{x | 1 x 4}
7.已知| 2x 3 | 2 的解集与 x | x 2 ax b 0 的解集相同,则 ( B )
A. a 3,b 5 4
C. a 3,b 5 4
B. a 3,b 5 4
A. a 2
B. a 2
C. a 1
D. 1 a 2
5.不等式 6 x 2x 2 0 的解集是 ( B ) 2x 1
A. x
|
2
x
1 2
或x
3
2
B. x
|
x
2或
1 2
x
3
2
C.
x
|
x
3 2

1 2
x
2
D.
x
|
2
x
3
2
6.已知全集 U=R,且 A={x︱︱x-1︱>2},B={x︱x 2 -6x+8<0},则( U A)∩B 等 于 (C )
+1).要使
B
A,
必须
2a 2 a2 1
3a
,此时 1
1≤
a
≤3.
综上可知,使 B A 的实数 a 的取值范围为[1,3]
∪{-1}
19. 已 知 命 题 p : | 1 a | 2, 命 题 q : 集 合 A {x | x2 (a 2)x 1 0, x R} , 3
B {x | x 0},且 A B . 如果命题p且q为假命题,p或q为真命题,求实数a的取
解:(1)当 a 2 时, A (2, 7) , B (4, 5) ∴ A B (4, 5) .

苏教版高中数学必修五高一周周练高一试题(解三角形)

苏教版高中数学必修五高一周周练高一试题(解三角形)

南通四星高中07-08学年度高一周周练(解三角形)高一数学试题一、填空题:(每小题5分,共70分)1.一个三角形的两个内角分别为30º和45º,如果45º角所对的边长为8,那么30º角所对的边长是2.若三条线段的长分别为7,8,9;则用这三条线段组成 三角形3.在△ABC 中,∠A.∠B.∠C 的对边分别是a .b .c ,若1a =,b =A =30º;则△ABC 的面积是4.在三角形ABC中,若sin :sin :sin 2A B C =,则该三角形的最大内角等于5.锐角三角形中,边a,b是方程220x -+=的两根,且c =C =6.钝角三角形ABC 的三边长为a ,a +1,a +2(a N ∈),则a=7.∆ABC 中,(sin sin )(sin sin )(sin sin )a B C b C A c A B -+-+-=8.在△ABC 中,若cos cos cos 222ab c ABC==,那么∆ABC 是 三角形9.在∆ABC 中,三边a ,b ,c 与面积s 的关系式为2221(),4s a b c =+-则角C 为 10.在∆ABC 中,根据条件①b=10,A=45o ,C=70o ②a=60,c=48,B=60o③a=7,b=5,A=80ο④a=14,b=16,A=45o解三角形,其中有2个解的有 (写出所有符合条件的序号)11.在∆ABC 中,若tan 2,tan A c b B b-=,则A= 12.海上有A 、B 两个小岛,相距10海里,从A 岛望C 岛和B 岛成60º的视角,从B 岛望C 岛和A 岛成75º的视角;则B 、C 间的距离是 海里.13.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测得该渔轮在方位角45º、距离为10海里的C 处,并测得渔轮正沿方位角105º的方向、以每小时9海里的速度向附近的小岛靠拢。

福建省泉州晋江市磁灶中学2021-2022学年高一上学期第十七周周测数学试题

福建省泉州晋江市磁灶中学2021-2022学年高一上学期第十七周周测数学试题

磁灶中学2021秋高一年段周测卷(第十七周)数学试卷考试时间:75分钟 满分100分一、单选题(本题8小题,每小题5分,满分40分.) 1.已知sin α,则44sin cos αα-的值为( )A .15-B .35C .15D .352.已知tan =3θ,则2cos θ= ABC .910D .1103.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A .y =sin (2)2x π+B .y =cos (2)2x π+C .y =sin ()2x π+D .y =cos ()2x π+4.函数()tan ,(11)f x x x x =⋅-<<的图象可能是( )A .B .C .D .5.化简:sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-------=( )A .-sin θB .sin θC .cos θD .-cos θ 6.点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( ) A .13,22B .12⎛⎫- ⎪ ⎪⎝⎭C.1,2⎛- ⎝⎭D .21⎛⎫ ⎪ ⎪⎝⎭ 7.已知37π6α=-,则222sin(π)cos(π)cos(2π)1sin (π)sin(π)cos (2π)αααααα+⋅---+-++-+的值为( )A .B .CD .12 8.函数y =sin x 的定义域为[,]a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b -a 的最大值与最小值之和等于( ) A .43π B .83π C .2π D .4π二、多选题(本题4小题,每小题5分,满分20分.)9.关于x 的函数f (x )=sin(x +φ)有以下说法,其中正确的是( ) A .对任意的φ,f (x )都是非奇非偶函数 B .存在φ,使f (x )是偶函数 C .存在φ,使f (x )是奇函数 D .对任意的φ,f (x )都不是偶函数 10.在ABC 中下列关系成立的有( ) A .sin()sin A B C += B .cos()cos A B C += C .sincos 22A B C+= D .cossin 22A B C+=- 11.下列在(0,2π)上的区间能使cos x >sin x 成立的是( ) A .(0,)4πB .5(,)44ππC .5(,2)4ππ D .5(,)42ππ∪5(,)4ππ 12.设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确..的是( ) A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=三、填空题(本题4小题,每小题5分,满分20分.) 13.满足[]cos 0,0,2x x >∈π的x 的取值范围是______. 14.函数()()2log 2sin 1f x x =+的定义域为________. 15.若函数()sin 23cos2f x m x x =+的图象关于点3,08π⎛⎫⎪⎝⎭对称,则实数m =_______. 16.若方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,则实数a 的取值范围_____.四、解答题(本题2小题,每小题10分,满分20分.) 17.已知函数()2cos 1f x x =-.(1)完成下列表格,并用五点法在下面直角坐标系中画出()f x 在[]0,2π上的简图;x2π π32π 2π()f x(2)求不等式()31f x ≤-的解集.18.已知函数f (x )=sin 1)62(++πx ,x ∈R .(1)求出f (x )的单调递减区间;(2)当x ∈]4,0[π时,求函数f (x )的值域.磁灶中学2021秋高一年段周测卷(第十六周)数学试卷考试时间:75分钟 满分100分一、单选题(本题8小题,每小题5分,满分40分.)1.已知sin α,则44sin cos αα-的值为( )A .15- B .35C .15D .35【答案】B【解析】∪sin α∪224cos 1sin 5αα=-=.∪442222223sin cos (sin cos )(sin cos )sin cos .5αααααααα-=+-=-=- 故选:B2.已知tan =3θ,则2cos θ=A B C .910D .110【答案】D【解析】因为22222cos 1cos sin cos ?tan 1θθθθθ==++,tan 3θ=,所以21cos 10θ=. 故选D3.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A .y =sin (2)2x π+B .y =cos (2)2x π+C .y =sin ()2x π+D .y =cos ()2x π+【答案】A【解析】对于选项A ,y =sin (2)2x π+=cos 2x ,周期为π,当42ππx ≤≤时,22x ππ≤≤,所以cos 2y x =在[,]42ππ上是减函数,所以该选项正确;对于选项B ,y =cos 2sin 22x x π⎛⎫+=- ⎪⎝⎭,周期是π,在[,]42ππ上是增函数,所以该选项错误;对于选项C ,y =sin ()cos 2x x π+=,最小正周期是2π,所以该选项错误;对于选项D ,y =cos ()sin 2x x π+=-,最小正周期是2π,所以该选项错误.故选:A4.函数()tan ,(11)f x x x x =⋅-<<的图象可能是( )A .B .C .D .【答案】B【解析】由()tan (11)f x x x x =-()tan (11)f x x x x =-, 则()()()tan tan -=--=f x x x x x所以()()f x f x =-,即函数()f x 是偶函数 故排除A ,C ,当01x <<时,()0f x >,排除D. 故选:B5.化简:sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-------=( )A .-sin θB .sin θC .cos θD .-cos θ 【答案】A【解析】原式=sin()cos()cos 2cos sin()πθπθθθθ-+-=2(sin )cos cos (sin )θθθθ--=-sin θ. 故选:A6.点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( )A .13,22 B .12⎛⎫- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .21⎛⎫ ⎪ ⎪⎝⎭ 【答案】A【解析】点P 从()1,0出发,沿单位圆逆时针方向运动263π弧长到达Q 点,所以点Q 是角263π的终边与单位圆的交点,所以Q 2626(cos ,sin )33ππ,又角263π的终边与262833-=πππ的终边是相同的,所以2621cos cos 332==-ππ,262sin sin 33==ππ12Q ⎛- ⎝⎭. 故答案为:A 7.已知37π6α=-,则222sin(π)cos(π)cos(2π)1sin (π)sin(π)cos (2π)αααααα+⋅---+-++-+的值为( )A .B .CD .12【答案】A 【解析】原式()2222sin cos cos 2sin cos cos cos 11sin sin cos 2sin sin sin tan αααααααααααααα-⋅---====+---,当37π6α=-时,37tan tan tan 66ππα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故1tan α= 故选:A.8.函数y =sin x 的定义域为[,]a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b -a 的最大值与最小值之和等于( ) A .43πB .83π C .2π D .4π【答案】C【解析】作出y =sin x 的一个简图,如图所示∪函数的值域为11,2⎡⎤-⎢⎥⎣⎦,513sin 2sin ,sin 16622ππππ⎛⎫+===- ⎪⎝⎭∪定义域[,]a b 中,b -a 的最小值为352263πππ-=定义域[,]a b 中,b -a 的最大值为542663ππππ+-= 故可得,最大值与最小值之和为2π. 故选:C二、多选题(本题4小题,每小题5分,满分20分.)9.关于x 的函数f (x )=sin(x +φ)有以下说法,其中正确的是( ) A .对任意的φ,f (x )都是非奇非偶函数 B .存在φ,使f (x )是偶函数 C .存在φ,使f (x )是奇函数 D .对任意的φ,f (x )都不是偶函数 【答案】BC【解析】解:因为φ=0时,f (x )=sin x 是奇函数;φ=2π时,f (x )=cos x 是偶函数, 所以B ,C 正确,A ,D 错误, 故选:BC.10.在ABC 中下列关系成立的有( ) A .sin()sin A B C += B .cos()cos A B C += C .sincos 22A B C+= D .cossin 22A B C+=- 【答案】AC【解析】ABC 中,因为A B C π++=, 所以222A B CA B C ππ++=-⇒=-,所以()sin()sin sin A B C C π+=-=,A 正确;()cos()cos cos A B C C π+=-=-,B不正确;sin sin cos 2222A B C C π+⎛⎫=-= ⎪⎝⎭,C 正确;coscos sin 2222A B C C π+⎛⎫=-= ⎪⎝⎭,D 不正确.故选:AC.11.下列在(0,2π)上的区间能使cos x >sin x 成立的是( ) A .(0,)4πB .5(,)44ππC .5(,2)4ππ D .5(,)42ππ∪5(,)4ππ 【答案】AC【解析】在同一平面直角坐标系中画出正、余弦函数的图象,在(0,2π)上,当cos sin x x =时,4x π=或54=x π, 结合图象可知,在(0,2π)上的区间能使cos sin x x >成立的是(0,)4π和5(,2)4ππ. 故选:AC12.设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确..的是( ) A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】ABD【解析】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22()cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确; 当x ∈,2ππ⎛⎫ ⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确. 三、填空题(本题4小题,每小题5分,满分20分.) 13.满足[]cos 0,0,2x x >∈π的x 的取值范围是______.【答案】30,,222ππ⎡⎫⎛⎤π⎪ ⎢⎥⎣⎭⎝⎦【解析】画出函数[]cos ,0,2y x x =∈π的图象,如图所示.由图象,可知在[]0,2π上,满足cos 0x >的x 的取值范围为30,,222ππ⎡⎫⎛⎤π⎪ ⎢⎥⎣⎭⎝⎦,故答案为30,,222ππ⎡⎫⎛⎤π⎪ ⎢⎥⎣⎭⎝⎦.14.函数()()2log 2sin 1f x x =+的定义域为________. 【答案】722,66x k x k k ππππ⎧⎫-+<<+∈⎨⎬⎩⎭Z【解析】解:要使函数有意义,则必有2sin 10x +>,即1sin 2x >-.结合正弦曲线或单位圆,如图所示,可知当72266k x k ππππ-+<<+时,1sin 2x >-.(1) (2)故函数()()2log 2sin 1f x x =+的定义域为722,66x k x k k ππππ⎧⎫-+<<+∈⎨⎬⎩⎭Z .故答案为:722,66x k x k k ππππ⎧⎫-+<<+∈⎨⎬⎩⎭Z .15.若函数()sin 23cos2f x m x x =+的图象关于点3,08π⎛⎫⎪⎝⎭对称,则实数m =_______. 【答案】3【解析】由题得33sin(2)3cos(2)088m ππ⨯+⨯=,所以3(0,m ⨯= 所以3m =.当3m =时,函数()sin 23cos2f x m x x =+的图象关于点3,08π⎛⎫⎪⎝⎭对称. 故答案为:3 16.若方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,则实数a 的取值范围_____.【答案】(]1,0-【解析】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,如图所示.由图象,可知当11122a-≤<,即10a -<≤时, cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦的图象与12a y -=的图象有两个交点,即方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,故实数a 的取值范围为(]1,0-.四、解答题(本题2小题,每小题10分,满分20分.) 17.已知函数()2cos 1f x x =-.(1)完成下列表格,并用五点法在下面直角坐标系中画出()f x 在[]0,2π上的简图;(2)求不等式()1f x ≤的解集.【答案】(1)答案见解析;(2)572,266k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈). 【解析】(1)由函数()2cos 1f x x =-,可得完成表格如下:可得()f x 在[]0,2π的大致图象如下:(2)由()1f x ≤,可得2cos 11x -≤,即cos x ≤,当[]0,2x π∈时,由cos x ≤,得57,66x ππ⎡⎤∈⎢⎥⎣⎦.又由函数cos y x =的最小正周期为2π, 所以原不等式的解集为572,266k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈). 18.(10分)已知函数f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6 +1,x ∈R . (1)求出f(x)的单调递减区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4 时,求函数f(x)的值域. 【解析】(1)设X =2x +π6 ,则X =2x +π6 在R 内是单调递增函数.y =sin X 的单调递减区间为⎣⎢⎡⎦⎥⎤2kπ+π2,2kπ+3π2 ,k∪Z , 由2kπ+π2 ≤X≤2kπ+3π2 ,k∪Z ,即2kπ+π2 ≤2x +π6 ≤2kπ+3π2 ,k∪Z ,得kπ+π6 ≤x≤kπ+2π3 ,k∪Z ,所以f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6 +1的单调递减区间为⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3 ,k∪Z . (2)当x∪⎣⎢⎡⎦⎥⎤0,π4 时,2x +π6 ∪⎣⎢⎡⎦⎥⎤π6,2π3 , 所以当2x +π6 =π2 ,即x =π6 时,sin ⎝ ⎛⎭⎪⎫2x +π6 取得最大值为1, 所以,函数f(x)的最大值为2.当2x +π6 =π6 ,即x =0时,sin ⎝⎛⎭⎪⎫2x +π6 取得最小值为12 .所以函数f(x)的最小值为32 . 综上可知函数f(x)的值域为⎣⎢⎡⎦⎥⎤32,2 .。

江苏省江阴市第一中学2020-2021学年第一学期高一数学周练试卷11

江苏省江阴市第一中学2020-2021学年第一学期高一数学周练试卷11

江阴一中高一数学周周练11(时间:90分钟满分120分)一、单项选择题:本题共8小题,每小题5分,共40分。

1.函数311)(++-=x e x f x 的定义域为() (].3,0A -(].3,1B -()(].,33,0C -∞--()(].,33,1D -∞-- 2.存在性量词命题“)(,x p M x ∉∃”的否定是().,()A x M p x ∀∈⌝.,()B x M p x ∀∉.,()C x M p x ∀∉⌝.,()D x M p x ∀∈3.利用二分法求方程log 3x=5-x 的近似解,则解所在区间为 ( )A. (0, 1)B. (1, 2)C. (2, 3)D. (3, 4) 4. 函数22(0x y aa +=+>且1)a ≠的图象恒过的定点是()A. )2,2(-B.)3,2(-C. )2,0(D.)2,1(5.已知函数223y x x =-+在区间[]0,m 上有最大值3,最小值2,则m 的取值范围是()A.[)1,+∞B .[]0,2C .(],2-∞D .[]1,26.函数()22xxf x a -=+⋅(a R ∈)的图象不可能为()A . B. C. D .7. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对[],2x a a ∀∈+,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A .[2,)+∞B .[2,)+∞C .(]0,2D .[2,1][2,2]--8. 设定义在R 上的函数()f x ,()g x 满足:(0)1f =,(1)0g =,且对任意实数x ,y ,()()()()()f x y f x f y g x g y -=+,则()A .(0)1g =B .函数()f x 为偶函数C .()()1f x g x >D .()11f =二、多项选择题:本题共4小题,每小题5分,共20分。

北京市西城区北京师范大学附属实验中学2024-2025学年高一上学期阶段练习一(10月)数学试题

北京市西城区北京师范大学附属实验中学2024-2025学年高一上学期阶段练习一(10月)数学试题

北京师范大学附属实验中学2027届高一上学期数学阶段练习一2024.10.8班级__________姓名__________学号__________一、选择题(每小题4分,共32分)1.已知集合,则( )A. B. C. D.2.命题的否定是( )A. B.C. D.3.如图,阴影部分可用集合表示为( )A. B.C. D.4.下列结论正确的是( )A.若,则B.若,则C.若,则 D.若,则5.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知,则的取值范围是( )A. B. C. D.7.若命题“”为假命题,则实数可取的最小整数值是()A. B.0 C.1 D.3{}{}24,2,1,0,2A x x B =<=--∣A B ⋂={}1,0-{}2,1,0--{}2,1,0,2--{}1,0,2-30,1x x ∃><30,1x x ∀≤≥30,1x x ∀>≥30,1x x ∃>≥30,1x x ∃≤≥,M P M P ⋂M P⋃()()U U M P ⋂ðð()()U U M P ⋃ðða b >ac bc >a b >11a b<a b >22a b >22ac bc >a b>x ∈R 21x -<220x x +->23,21a b <<-<<-2a b -()6,7()2,5()4,7()5,8[]20,3,20x x x a ∀∈-->a 1-8.对集合的每一个非空子集,定义一个唯一确定的“交替和”,概念如下:按照递减的次序重新排列该子集,然后从最大的开始,交替减加后面的数所得的结果.例如:集合的“交替和”为,集合的“交替和”为,集合的“交替和”为6,则集合所有非空子集的“交替和”的和为()A. B. C.D.二、填空题(每小题4分,共24分)9.集合可以用列举法表示为__________.10.方程组的解集是__________.11.若关于的不等式的解集为,则的值为__________.12.为了丰富全校师生的课后学习生活,共建和谐美好的校园文化,某校计划新建校园图书馆精品阅读区,该项目由图书陈列区(阴影部分)和四周休息区组成.图书陈列区的面积为,休息区的宽分别为2和5(如图所示).当校园图书馆精品阅读区面积最小时,则图书陈列区的边长为__________.13.已知集合,且中有2个子集,则实数的取值范围为__________.14.设集合,其中为实数,令,若中的所有元素之和为中的所有元素之积为__________.三、解答题(共44分)15.(本小题10分)已知集合.(1)若,求和;{}1,2,3,,A n =⋯{}1,2,4,664213-+-={}3,8835-={}6A 2n 21n n +-12n n -⋅2n n ⋅45x x ⎧⎫∈∈⎨⎬-⎩⎭N N 22235x y x y +=⎧⎨+=⎩x 20x mx n ++<{14}xx <<∣m n +1111A B C D ABCD ABCD 21000m m m 1111A B C D BC m {}11,,02x A a B x x ⎧⎫+==≤⎨⎬-⎩⎭A B ⋂a {}1,2,A m =m {}2,B a a A C A B =∈=⋃∣C 6,C {}14,{123}A xx B x m x m =-≤≤=-<<-∣∣4m =A R ðA B ⋃(2)若,求实数的取值范围.16.(本小题10分)设,求证.17.(本题共10分)已知是方程的两个不相等的实根,求值:(1)(2)(3)18.(本题共14分)已知关于的方程.(1)若该方程的解集中只有一个元素,求的值;(2)若,且当时,恒成立,求实数的取值范围;(3)若,解关于的不等式.【附加题】已知有限集,如果中的元素满足,就称为“完美集”.(1)判断:集合是否是“完美集”并说明理由;(2)是两个不同的正数,且是“完美集”,求证:至少有一个大于2;(3)若为正整数,求“完美集”.B A ⊆m 0a b >>22b a a a b b+<+12,x x 2510x x -+=2212x x +12x x -3312x x +x ()2110ax a x +--=a 2a =0x >()2119ax a x bx +-->-b 0a <x ()2110ax a x +-->{}()12,,2,n A a a a n n =⋯≥∈N A ()1,2,,i a i n =⋯1212n n a a a a a a ++⋯+=⨯⨯⋯⨯A {11---+12a a 、{}12,a a 12a a 、i a A。

江苏省徐州高一数学周周清(集合+函数性质)

江苏省徐州高一数学周周清(集合+函数性质)

高一上学期单元测试数学试题1.集合{},,a b c 的非空真子集共有 个2.已知集合,,则_______________. 3.若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是4.已知函数,则_____________________.5.若函数为偶函数,则实数_____________________. 6.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则a 的取值范围是7.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8, 则A-B=8.以下六个关系式:①{}00∈,②{}0⊇∅,③Q ∉3.0, ④N ∈0, ⑤{}{}a b b a ,,⊆,⑥{}2|20,x x x Z -=∈是空集,其中错误的个数是9.函数的单调增区间为________________________.10.记,则____________. 11.已知集合,,且.(1)求实数的值; (2)若,求集合.12.已知集合,. (1)已知,求实数的取值范围; (2)要使中恰有个整数,求实数的取值范围.13.已知奇函数的定义域为,且恒有.(1)求的值;(2)写出函数在上的单调性,并用定义证明; (3)讨论关于的方程的根的个数.}{2x x x A ==}0,1{-=B =B A ⎩⎨⎧<≥-=0,0,)(2x x x x x f =-))3((f f m x x x g -+=2)(=m 22y x x =-22()1x f x x =+11()()(1)(2)(3)32f f f f f ++++=},3,1{2x A =}2,1{x B -=A B ⊆x A C B = C }0)3)(1({>+-=x x x A }0))(3({2≤-+=a x x x B R B A ≠ a B A 3a ),()(*2R b N a a x b ax x g ∈∈++=R 21)(≤x g b a ,)(x g y =]1,1[-x )(0)(R t t x g ∈=-。

2024-2025学年北京市东城区第一七一中学高一上学期12月月考数学试题(含答案)

2024-2025学年北京市东城区第一七一中学高一上学期12月月考数学试题(含答案)

2024-2025学年北京市东城区第一七一中学高一上学期12月月考数学试题一、单选题:本大题共10小题,共50分。

1.已知全集U ={−2,−1,0,1,2},集合A ={−2,−1,0},则∁U A =( )A. {1,2,3}B. {1,2}C. (0,2)D. (1,2)2.已知a,b,c ∈R ,且a >b ,则下列不等式一定成立的是( )A. a 2>b 2 B. ac >bcC. 2a >2bD. 1a <1b3.sin (2π3)=( )A.32 B. −32C. 12D. −124.在同一个坐标系中,函数f (x )=log a x,g (x )=a −x ,ℎ(x )=x a 的部分图象可能是( )A. B.C. D.5.下列函数中,既是奇函数,又在(0,+∞)上单调递减的是( )A. f (x )=xB. f (x )=−x |x |C. f (x )=1x 2+1D. f (x )=x 36.下列各组角中,终边相同的角是( )A. k2π与kπ+π2(k ∈Z ) B. kπ±π3与k3π(k ∈Z )C. kπ+π6与kπ±π6(k ∈Z )D. (2k +1)π与(4k ±1)π(k ∈Z )7.已知a =20.1,b =log 2 3,c =log 32,则实数a ,b ,c 的大小关系是( )A. c >a >bB. c >b >aC. a >c >bD. a >b >c8.已知函数f (x )=12x +1−a2,则“a =1”是“f (x )为奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.科赫(Kocℎ)曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相,则称D为该图形的分形维数.那么科赫曲线的分形维数是( )似,且相似比为r的部分组成.若r D=1NA. log23B. log32C. 1D. 2log3210.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达方式是( )A. 3n(sin30∘n+tan30∘n)B. 6n(sin30∘n+tan30∘n)C. 3n(sin60∘n+tan60∘n)D. 6n(sin60∘n+tan60∘n)二、填空题:本大题共5小题,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省清镇市2017-2018学年高一数学上学期17周周练试题
(共13道题)
13. 已知集合{}{}
1,0,1,11A B x x =-=-≤<,则A B ⋂ A.{}0,1 B.{}1,0,1- C.{}1,0,1- D.{}1,0- 14.函数sin 2y x =是 A.周期为
π的奇函数 B. 周期为π的偶函数
C.周期为2π的偶函数
D.周期为2π
的奇函数
15.已知函数2log ,0
()2,0
x
x x f x x >⎧=⎨≤⎩,则1(())2
f f 的值是
12 D.12
- 16.函数()log (1)2(01)a f x x a a =-+>≠且的图像恒过定点为 A.(3,2)B.(2,1)C.(2,2)D. (2,0) 17.7cos()3
π-
= A .
12 B
..12- D
18.幂函数()f x 的图象过点(2,4)且()16f m =,则实数m 的所有可能的值为 A .4 B .2±C .4± D. 14
19.已知11
tan(),tan 34
αββ+=
=,则tan α的值为 A.16B.113 C.711 D.1318
20
.已知cos 23
θ=
,则44
sin cos θθ-的值为 A

3 B
.3-C .1118 D .29
21.如图,点D 是△ABC 的边AB 上的中点,则
12
BA + B.
12BC BA -- C . 12BC BA - D. 1
2
BC BA +
22.将函数)3
2sin(π
-
=x y 的图象先向左平移
6
π
,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为 A.cos y x = B. sin()6
y x π
=- C. sin 4y x = D.sin y x =
23. 函数1
(00)x y a a a a
=->≠且的图像可能是
24.根据表格中的数据,可以断定:方程--2=0x e x 的一个根所在的区间是
A .(2,3)
B .(1,2)
C .(0,1)
D . (-1,0)
25.若函数⎪⎩⎪
⎨⎧≤+->=1,2)2
4(1,)(x x a
x a x f x 是R 上的增函数,则实数a 的取值范围为 A.(1,)+∞ B.(1,8) C.[)4,8 D.(4,8) 数学(13题):13-25 DACCA CBBAD DBC。

相关文档
最新文档