随机信号大作业(西电)
西电信号大作业(歌曲人声消除)

信号与系统课程实践报告1内容与要求通过信号分析的方法设计一个软件或者一个仿真程序,程序的主要功能是完成对歌曲中演唱者语音的消除。
试分析软件的根本设计思路、根本原理,并通过MA TLAB程序设计语言完成设计。
更进一步地,从理论和实用的角度改善软件性能的方法和措施。
2 思路与方案歌曲的伴奏左右声道相同,人声不同。
所以通过左右声道不同处理信号,然后通过频率分析做带阻滤波滤除主要人声信号。
3 成果及展示代码:clear;clc;[X,fs]=audioread('D:\文本文档\林.wav');ts=1/fs;N=length(X)-1;t=0:1/fs:N/fs;Nfft=N;df=fs/Nfft;fk=(-Nfft/2:Nfft/2-1)*df;a1=1;a2=-1;b1=1;b2=-1;%别离左声道和右声道SoundLeft=X(:,1);SoundRight=X(:,2);%对左声道和右声道进行快速傅里叶变换SoundLeft_f=ts*fftshift(fft(SoundLeft,N));SoundRight_f=ts*fftshift(fft(SoundRight,N));%显示左右声道幅度变化figure(1)subplot(411)plot(t,SoundLeft);subplot(412)plot(t,SoundRight);%显示左右声道频率变化subplot(413)f_range=[-5000,5000,0,0.1];plot(fk,SoundLeft_f);axis(f_range);subplot(414)plot(fk,SoundRight_f);axis(f_range);NewLeft=a1*SoundLeft+a2*SoundRight; NewRight=b1*SoundLeft+b2*SoundRight; Sound(:,1)=NewLeft;Sound(:,2)=NewRight;Sound_Left_f=ts*fftshift(fft(NewLeft,N)); Sound_Right_f=ts*fftshift(fft(NewRight,N)); figure(2)subplot(411)plot(t,NewLeft);subplot(412)plot(t,NewRight);f_range=[-5000,5000,0,0.1];subplot(413)plot(fk,Sound_Left_f);axis(f_range);subplot(414)plot(fk,Sound_Right_f);axis(f_range);BP=fir1(300,[800,2200]/(fs/2));%根据左右声道差异进行滤波【800,2200】Hz CutDown=filter(BP,1,Sound);Sound_Final=Sound-0.6*abs(CutDown);Sound_Final_f=ts*fftshift(fft(Sound_Final,N));figure(3)subplot(211)plot(t,Sound_Final);subplot(212)f_range=[-5000,5000,0,0.1];plot(fk,Sound_Final_f);axis(f_range);audiowrite('D:\文本文档\林_去人声.wav',Sound_Final,fs);1歌曲原始左右声道的幅度和频率曲线2相减得到的信号幅度和频率曲线3进行消除人声处理后信号的幅度和频率曲线4 总结与感想在本次实践中,熟悉了matlab的操作,了解了很多命令。
西安电子科技大学数字信号处理大作业

数字信号处理大作业班级:021231学号:姓名:指导老师:吕雁一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会1、采样定理在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。
(1)在时域频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原始信号。
(2)在频域当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。
2、奈奎斯特采样频率(1)概述奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍(即奈奎斯特频率)。
奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。
采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可以真实的还原被测信号。
反之,会因为频谱混叠而不能真实还原被测信号。
采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或带宽,就可以避免混叠现象。
从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。
但是,重建信号的过程需要以一个低通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实现的。
在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分量在采样和信号重建的过程中可能会发生畸变。
随机信号大作业

论文《基于动态贝叶斯网络的无人机路径规划研究》读后感***(02101***)随着计算机及相关技术的飞速发展和人类对客观世界认知程度的不断提高,人们已经越来越不满足于使用计算机进行单纯的科学计算和事务性处理。
在实现了描述客观世界和存储传播信息的基础上,信息处理的自动化程度得到不断提高,最终导致人们对思维自动化的思考。
而实现思维自动化的关问题之一,就是如何有效地表达和解决不确定性问题。
最初人们采用概率推理的方法来解决不确定性问题,但对于许多复杂的实际问题来说,单纯的概率推理是难以处理的。
Pearl于1986年提出一种简单而有效的贝叶斯网络来解决这类问题。
随后贝叶斯网络即成为人工智能领域的研究热点之一。
它主要研究不确定性知识表达和推理的方法,被认为是近十年来在人工智能领域中最重要的研究成果之一。
贝叶斯网络的推理实际上是进行概率计算,具体而言,在给定一个贝叶斯网络的模型的情况下,根据已知条件,利用贝叶斯概率中的条件概率的计算方法计算出所感兴趣的查询节点发生的概率。
在Bayes阿络推理中,主要有以下三种形式:(1)因果推理原因推知结论——由顶向下的推理:目的是由原因推导出结果.已知一定的原因(证据).使用Bayes网络的推理计算,求出在该原因的情况下结果发生的概率。
(2)诊断推理结论推知原因——由底向上的推理:目的是在已知结果时,找出产生该结果的原因.已知发生了某些结果,根据Bayes网络推理计算,得到造成该结果发生的原因和发生的概率。
该推理常用在病理诊断、故障诊断中.目的是找到疾病发生、故障发生曲原因.(3)支持推理支持推理——提供解释以支持所发生的现象:目的是对原因之间的相互影响进行分析。
该推理是Bayes网络推理中肋一种合理,有趣的现象。
论文中,针对威胁可变及威胁体不尽相同的无人机路径规划问题提出了一种局部路径重规划的算法,该算法首先构造出战场具有n类威胁体的初始路径图—“改进型Voronoi图”,后应用Dijkstra算法搜索威胁分布图,求解粗略最短路径。
西安电子科技大学 电院 《随机信号分析》大作业

一、用matlab语言产生一个随机白噪声序列的样本序列X(n),要求
3.用遍历性估计X(n)的自相关序列R X(m),画出R X(m)的图像。
二、将一中产生的序列通过一个线性系统,其单位脉冲响应为h(n)=0.9n,n=0,
1,…,100
三、比较X(n)与Y(n)的幅度分布直方图,发生了什么变化。
分析其变化的原
因。
随机信号经过线性系统后,不会增加新的频率分量,但是输出的幅度和相位会发生变化。
白噪声X(n)的幅度基本相同,而Y(n)的幅度基本呈正态分布。
因为均匀白噪声是一种宽带非正态过程,所以通过一有限带宽线性系统后,输出Y(n)近似呈正态分布。
——via 1402011 赵春昊。
西电-随机信号大作业

[键入公司名称]第一章1.23 上机题:设有随机初相信号X(t)=5cos(t+),其中相位是在区间(0,2)上均匀分布的随机变量。
试用Matlab编程产生其三个样本函数。
MATLAB源代码:clc,clear;o=2*pi*rand(1,3)for n=1:3t=0:.01:10;y=5*cos(t+o(n));figure(1);plot(t,y),grid on;hold on;endtitle('三个来自随机初相信号的样本函数');第二章2.22 上机题:利用MATLAB程序设计一正弦信号加高斯白噪声的复合信号。
(1).分析复合信号的功率谱密度、幅度分布特性;MATLAB源代码:clccleart=0:0.001:0.1;s=3*sin(1e3*t);%正弦信号(幅度分布)figure(1);subplot(3,1,1),plot(t,s),grid on;title('原正弦信号');xlabel('t/s');ylabel('s');s1=fft(s);subplot(3,1,2),plot(t,abs(s1)),grid on;title('正弦信号幅度谱');xlabel('t/s');ylabel('s_fft');n=100;f=100;window=boxcar(length(s));[p1,f1]=periodogram(s,window,n,f)subplot(3,1,3),plot(f1,10*log10(p1));xlabel('f/Hz');ylabel('Gs');title('正弦信号功率谱');(2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性;MATLAB源代码:clccleart=0:0.001:0.1;s=3*sin(1e3*t);%正弦信号(幅度分布)y1=awgn(s,10,'measured');r=(1/(pi*pi))*10e6;c=(1/16)*10e-4;hw=1/(1+1i*2*pi*r*c);h1=abs(hw);f1=fft(y1);f11=fftshift(f1);y2=f11*h1;a2=ifft(y2,length(t));fs=100;n=100;window=boxcar(length(a2));[p2,f2]=periodogram(a2,window,n,fs);figure(1);subplot(3,1,1),plot(t,y2),grid on;xlabel('t/s');ylabel('u/v')title('复合信号通过RC积分电路波形')subplot(3,1,2),plot(t,abs(y2)),grid on;xlabel('t/s');ylabel('s_fft');title('复合信号通过RC积分电路幅度谱');subplot(3,1,3),plot(f2,10*log10(p2));xlabel('f/Hz');ylabel('Ga');title('复合信号通过RC积分电路功率谱');(3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性;MATLAB源代码:clccleart=0:0.001:0.1;s=3*sin(1e3*t);%正弦信号(幅度分布)y1=awgn(s,10,'measured');f=0:length(t)-1/200:10;f1=fft(y1);f11=fftshift(f1);g=(heaviside(f+20)-heaviside(f-20));y3=f11*g;a3=ifft(y3,length(t));n=100;fs=100;window=boxcar(length(y3));[p3,f3]=periodogram(a3,window,n,fs);figure(1);subplot(3,1,1),plot(t,abs(y3)),grid on;xlabel('t/s');ylabel('u/v');title('复合信号理想低通系统波形');subplot(3,1,2),plot(t,abs(f11));title('复合信号理想低通系统幅度谱');xlabel('t/s');ylabel('a3_fft');subplot(3,1,3),plot(f3,10*log10(p3)),grid on;title('复合信号通过理想低通系统功率谱');第三章3.11 上机题:利用Matlab程序设计一正弦型信号、高斯白噪声信号。
随机信号分析大作业

随机信号分析大作业2016.12.6希尔伯特变换及其应用一、背景及意义在通信系统中,经常需要对一个信号进行正交分解,即分解为同相分量和正交分量。
由于希尔伯特变换可以提供90度的相位变化而不影响频谱分量的幅度,即对信号进行希尔伯特变换就相当于对该信号进行正交移相,使它成为自身的正交对。
因此,希尔伯特在通信领域获得了广泛应用。
对HHT采样频率、终止准则、曲线拟合、边界处理以及模态混叠等问题进行了分析,并基于HHT的时间特征尺度概念,提出了一种新的边界处理方法:边界局部特征尺度延拓法,较好地改善了边界效应对EMD分解的影响。
将HHT用于电力系统的信号处理,并根据HHT的信号突变检测性能,提出了一种超高压输电线路的EMD故障测距方法。
仿真实验表明,该方法能很好地实现故障定位及测距。
物理意义:希尔伯特可看成一种滤波,其本质上是对所有输入信号的90度相移器;对于稳定的实因果信号,其傅立叶变换的实部和虚部满足希尔伯特变换关系,同时其对数幅度谱和相位谱之间也满足此关系,前提是该信号为最小相位信号。
工程意义:对于自由度为一维的条信号,比如PAM,其等效基带信号是实的,这意味着对应的基带频谱是共轭对称的,即一半的频谱是冗余的,那么就可以将频谱滤除一半再进行传输,这就形成了所谓的单边带调制(SSB)。
而理论上,一个信号和其Hilbert 变化后的值相加,就可以得到所谓解析信号,该信号只保留原信号的正频谱。
而单边带调制虽然节省传输频率,但为了进行边带滤波,必须进行复杂的频谱成形,发送和接收的复杂度都比较高,相干载波的相位误差所造成的影响大。
所以,选择PAM信号进行频谱滤除的滤波器具有一定的滚降,即保留部分PAM信号中的冗余频谱,这样就成为VSB调制。
二、希尔伯特变换的发展现状近年来,随着现代信号的向前发展,人们从不同的研究领域和应用角度出发,提出了拓展经典Hilbert变换,提出了分数阶Hilbert变换,拓展了它的应用范围。
西电数字信号处理大作业

西电数字信号处理⼤作业第⼆章2.25 已知线性时不变系统的差分⽅程为若系统的输⼊序列x(x)={1,2,3,4,2,1}编写利⽤递推法计算系统零状态响应的MATLAB程序,并计算出结果。
代码及运⾏结果:>> A=[1,-0.5];>> B=[1,0,2];>> n=0:5;>> xn=[1,2,3,4,2,1];>> zx=[0,0,0];zy=0;>> zi=filtic(B,A,zy,zx);>> yn=filter(B,A,xn,zi);>> figure(1)>> stem(n,yn,'.');>> grid on;2.28图所⽰系统是由四个⼦系统T1、T2、T3和T4组成的,分别⽤单位脉冲响应或差分⽅程描述为T1:其他T2:其他T3:T4:编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。
代码及结果如下:>> a=0.25;b=0.5;c=0.25;>> ys=0;>> xn=[1,zeros(1,99)];>> B=[a,b,c];>> A=1;>> xi=filtic(B,A,ys);>> yn1=filter(B,A,xn,xi);>> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1];>> h3=conv(h1,h2);>> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31;>> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys);>> yn=filter(D,C,yn2,xi); >> n=0:99;>> figure(1)>> stem(n,yn,'.');>> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');2.30 利⽤MATLAB画出受⾼斯噪声⼲扰的正弦信号的波形,表⽰为其中v(n)是均值为零、⽅差为1的⾼斯噪声。
随机信号大作业

随机信号⼤作业随机信号⼤作业02111465 冯英旺1.⽤matlab编程产⽣随机初相信号X(t)=5cos(t+a)(其中a是区间(0,2π)上均匀分布的随机变量)的三个样本函数。
解:程序如下:a=unifrnd(0,2*pi,1,10);t=0:0.1:10;for j=1:3x=5*cos(t+a(j));plot(t,x);hold onendxlabel('t');ylabel('x(t)');gridon;axis tight;运⾏结果:2.利⽤matlab程序设计⼀正弦型信号加⾼斯⽩噪声的复合信号。
分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。
解:设正弦信号为x=sin(2*pi*10*t)先画出复合信号曲线程序如下:clear all;fs=100;fc=10;n=201;t=0:1/fs:2;x=sin(2*pi*fc*t);y=awgn(x,10);plot(t,y,'r');title('复合信号曲线');ylabel('y');xlabel('t/20pi');grid;通过理想低通系统后的曲线和频谱图,程序如下:y1=conv2(y,sin(10*t)/(pi*t)); plot(t,y1,'r');title('通过低通系统复合信号曲线');ylabel('y1');xlabel('t/20pi');grid;Fy=fftshift(fft(y1));f1=(0:200)*fs/n-fs/2;plot(f1,abs(Fy),'r');title('复合信号通过理想低通系统频谱图'); ylabel('Fy(jw)');xlabel('w');grid;功率谱,源程序如下:P=Fy.*conj(Fy)/length(Fy);plot(f1,P,'r');title('复合信号通过理想低通系统功率谱'); ylabel('Gy(w)');xlabel('w');grid;3.利⽤matlab程序分别设计⼀正弦型信号,⾼斯⽩噪声信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。
(1)试用Matlab编程产生其三个样本函数。
MATLAB代码如下clcclearm=unifrnd(0,2*pi,1,10);for k=1:3t=1:0.1:10;X=5*cos(t+m(k));plot(t,X);hold onendxlabel('t');ylabel('X(t)');grid on;axis tight;二、利用Matlab 程序设计一正弦信号加高斯白噪声的复合信号。
1. 分析复合信号的功率谱密度,幅度分布特性;2. 分析复合信号通过RC 积分电路后的功率谱密度和相应的幅度分布特性;3. 分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性;问题分析1).正弦信号的频率、采样信号的频率、信噪比分别设定为fc、fs、 N,并利用awgn函数得出加入高斯白噪声的复合信号的波形,通过画出幅度的分布直方图得出幅度分布的初步特性。
并利用傅里叶变换得出复合信号的频谱特性,之后再利用xcorr函数得出复合信号的自相关系数,并通过自相关系数的傅里叶变换得到功率谱密度曲线图。
并且分别设定了两组fc、fs、 N数据得出结果 2).复合信号通过RC电路时,分别求得它的暂态和稳态分量得出此时的信号,再利用1)中的方法进行求解,此处多设定了电阻R、电容C的参数,并且分别设定了两组fc、fs、 N、R、C数据得出结果。
3).复合信号通过低通滤波电路时,利用fir1和fir1ter函数得出低通滤波后的信号,再利用1)中的方法进行求解,分别设定了两组fc、fs、 N数据得出结果1)MATLAB程序代码如下:clear;clc;fc=input('请输入正弦信号频率fc='); fs=input('请输入采样信号频率fs='); N=input('请输入2的指数N=');t=0:1/fs:2;n=2*fs+1;x=sin(2*pi*fc*t);y=awgn(x,2);subplot(4,1,1);hist(y,100);title('y信号的幅度分布直方图'); ylabel('频率/组距');xlabel('组距'); grid on;hold on;FY=fft(y);FY1=fftshift(FY);f=(0:n-1)*fs/n-fs/2;subplot(4,1,2);plot(f,abs(FY1),'k--');title('y信号的频谱特性曲线'); ylabel('F(jw)');xlabel('w');grid on;[C,a]=xcorr(y,'unbiased');subplot(4,1,3);plot(C,'r-');title('y信号的自相关函数曲线');ylabel('Ry');xlabel('个数');grid;FY2=fft(C);FY3=fftshift(FY2);subplot(4,1,4);plot(a*0.25,abs(FY3),'g:');title('y信号的功率谱密度曲线');ylabel('G(w)');xlabel('w');grid on;取数据如下:正弦信号频率fc=10采样信号频率fs=1002的指数N=10运行程序得出图形如图一至图四所示:图一复合信号的幅度分布直方图图二复合信号的频谱特性曲线图三复合信号的自相关函数曲线图四复合信号的功率谱密度曲线2)MATLAB程序代码如下:clear;clc;fc=input('请输入正弦信号频率fc=');fs=input('请输入采样信号频率fs=');N=input('请输入信噪比N=');R=input('请输入电路的电阻R=');C=input('请输入电路的电容C=');t=0:1/fs:2;n=2*fs+1;T=R*C;uc0=4;um=1;w=2;Zc=1/j/w/C;x=um*sin(2*pi*fc*t);y=awgn(x,2);absH=abs(Zc/(R+Zc));phiH=angle(Zc/(R+Zc));ucst=absH*um*sin(2*pi*fc*t+phiH)+y-x; ucp0=ucst(1);uctr=(uc0-ucp0)*exp(-t/T);uc=uctr+ucst;subplot(5,1,1);plot(t,uc,'k-',t,uctr,'r:',t,ucst,'b--');grid on;title('RC电路的信号波形图');ylabel('U');xlabel('t');grid on;subplot(5,1,2);hist(uc,100);title('RC电路信号的幅度分布直方图'); ylabel('频率/组距');xlabel('组距');grid on;hold on;FY=fft(uc);FY1=fftshift(FY);f=(0:n-1)*fs/n-fs/2;subplot(5,1,3);plot(f,abs(FY1),'k--');title('RC电路信号的频谱特性曲线');ylabel('F(jw)');xlabel('w');grid on;[C1,a]=xcorr(uc,'unbiased');subplot(5,1,4);plot(C1,'r-');title('RC电路信号的自相关函数曲线'); ylabel('Ry');xlabel('个数');grid;FY2=fft(C1);FY3=fftshift(FY2);subplot(5,1,5);plot(a*0.25,abs(FY3),'b:');title('RC电路信号的功率谱密度曲线'); ylabel('G(w)');xlabel('w');grid on;取数据如下:正弦信号频率fc=10采样信号频率fs=100信噪比N=10电路的电阻R=2电路的电容C=0.5运行程序得出图形如图五至图九所示:图五RC电路的信号波形图图六RC电路信号的幅度分布直方图图七RC电路信号频谱特性曲线图八RC电路信号的自相关函数曲线图九RC电路信号的功率谱密度曲线3)MATLAB程序代码如下:clear;clc;fc=input('请输入正弦信号频率fc=');fs=input('请输入采样信号频率fs=');N=input('请输入信噪比N=');t=0:1/fs:2;n=2*fs+1;x=sin(2*pi*fc*t);y=awgn(x,2);subplot(6,1,1);plot(t,y);xlabel('t/s');ylabel('U');fs=5000;n=32;Wn=0.24;b=fir1(n,Wn);y0=filter(b,1,y);subplot(6,1,2);plot(t,y0);title('低通滤波后信号的幅度分布直方图'); xlabel('t');ylabel('U');subplot(6,1,3);hist(y0,100);title('低通滤波后信号的幅度分布直方图'); ylabel('频率/组距');xlabel('组距');grid on;hold on;FY=fft(y0);FY1=fftshift(FY);f=length(FY1);subplot(6,1,4);plot(f,abs(FY1),'k--');title('低通滤波后信号的频谱特性曲线'); ylabel('F(jw)');xlabel('w');grid on;[C2,a]=xcorr(y0,'unbiased');subplot(6,1,5);plot(C2,'r-');title('低通滤波后信号的自相关函数曲线'); ylabel('Ry');xlabel('个数');grid;FY2=fft(C2);FY3=fftshift(FY2);subplot(6,1,6);plot(a*0.25,abs(FY3),'b:');title('低通滤波后信号的功率谱密度曲线'); ylabel('G(w)');xlabel('w');grid on;取数据如下正弦信号频率fc=10采样信号频率fs=100信噪比N=10得出图形如图十至图九所示图十复合信号的波形图图十一低通滤波后信号波形图图十二低通滤波后信号幅度分布直方图图十三低通滤波后信号频谱特性曲线图十四低通滤波后信号自相关函数曲线图十五低通滤波后信号功率谱密度曲线。