随机信号分析与应用第一章
随机信号分析与处理习题解答罗鹏飞.pdf

P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n , 0 < p < 1
求 X 的均值和方差。 解法一:直接按照定义计算
n
n
∑ ∑ E( X ) = mP{X = m} = mCnm pm (1− p)n−m
m=0
m=0
∑n
=m
n!
pm (1− p)n−m
第 1 章 随机变量基础
1.1 设有两个随机变量 X 和 Y,证明
fY|X ( y | x) =
f (x, y) f X (x)
,
f X |Y
(x
|
y)
=
f (x, y) fY (y)
y x+Δx
∫ ∫ f (x, y)dxdy
提示:首先证明 F ( y | x < X ≤ x + Δx) = −∞ x
02
⋅
P{ X i
=
0}
=
p
,
D(Xi )
=
E
(
X
2 i
)
−
E2(Xi)
=
p
−
p2
=
p(1 −
p)
n
随机信号分析 第一章随机信号基础2

y
o
(x,y)
x
利用分布函数,对任意实数 x1 x 2 , y1 y2 则
P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
y o
( x1, y2 ) ( x1, y1)
F ( x ) f ( t )dt
x
F(x)
=
0
x0
0 x 1
x
tdt tdt
0 1
x
0
1
(2 t )dt
1 x 2
x2
1
即
x0 0, x2 , 0 x 1 2 F ( x) x2 2x 1 , 1 x 2 2 1, x2
多维随机变量及其分布
由于从二维推广到多维一般无实质性的困难,我们重点 讨论二维随机变量 .
二维随机变量用(X,Y)表示下面着重讨论二维 r.v(X,Y),多维随机变量可类推。
二维随机变量(X,Y) X和Y的联合分布函数
一维随机变量X X的分布函数
F ( x ) P( X x )
F ( x , y) P ( X x , Y y) x, y
4.F ( x , y ) F ( x 0 , y ), F ( x , y ) F ( x , y 0 );
即F(x,y)对每个自变量都是右连续的。
5.对任意实数 x1 x2 , y1 y2
,有
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0.
随机信号与分析课后答案 王琳DOC

第一章 随机过程基础本章要点概率论、随机变量、极限定理等等是随机信号分析与处理应用的理论基础。
本章主要内容:概率,随机变量及其概率分布,随机变量函数的分布,随机变量的数字特征,特征函数等概念。
基本内容一、概率论 1、古典概型用A 表示所观察的随机现象(事件),在A 中含有的样本点(基本事件)数为A n ,则定义事件A 出现的概率()P A 为 ()An P A n=(1-1)2、几何概型用A 表示所观察的随机现象(事件),它的度量大小为()L A ,则规定事件A 出现的概率()P A 为 ()()()E L A P A L S =(1-2)3、统计概率对n 次重复随机试验C E ,事件A 在这n 次试验中出现的次数()n f A 称为频数。
用事件A 发生的频数()n f A 与试验次数n 的比值()n F A 称为频率()()()n n f A P A F A n≈=(1-3)4、概率空间对随机试验E ,试验的各种可能结果(称基本事件、样本点)构成样本空间E S (也称基本事件空间),在样本空间中的一个样本点或若干个样本点之适当集合称为事件域A (A 中的每一个集合称为事件)。
若事件A ∈A ,则()P A 就是事件A 的概率。
并称{},,E S P A 为一个概率空间,而样本空间E S ,事件域A,概率P 是构成概率空间的三个要素。
二、随机变量1、随机变量的概念 设已知一个概率空间(),,E S P A ,对E s S ∈,()X s 是一个取实数值的单值函数,则对任意实数1x ,()1X s x ≤是一个随机事件,且(){}1:s X s x ≤∈A,则称()X s 为随机变量。
显然,随机变量()X s 总是联系着一个概率空间,这将使对随机事件的研究转化为对随机变量的研究。
为了方便,此后若无特别需要将随机变量()X s 简记为X 。
2、随机变量的概率密度函数定义随机变量X 的累积概率分布函数为()()F x P X x =≤而把它的导数定义为随机变量X 的概率密度函数。
随机信号分析与处理第一讲

1
2
3
4
5
6
7
8
9
10
27
对数正态分布概率密度
高分辨率雷达杂波分布
27
1.4多维随机变量及其分布
•二维分布函数 设(X,Y)为二维随机变量,x,y为实数,定义
F ( x, y) P{ X x, Y y}
为二维随机变量的的分布函数。
y
( x, y )
随机信号分析与处理
张文明
国防科技大学电子科学与工程学院
1
1
2
张文明,博士,综合信息系统研究所副教授。 主要研究方向为雷达数据处理、电子系统仿真。 办公室:实验大楼308 电话:73491-602
2
1、课程学习的必要性
从课程研究的对象分析 根据信号的取值是否确定,可以将信号分为确定信号和随 机信号。
•定义 X(e)的随机性在e中体现,对应不同的e, X(e)的取值不同
•设离散型随机变量X的所有可能取值为xk (k 1,...,n) ,其概率为
P( X xk ) pk
X pk
19
(k 1,2,....,n)
x2
p2
... ...
x1
p1
xn
pn
离散随机变量概率分布
19
•(0,1)分布 随机变量的可能取值为0和1两个值,其概率分布为
10
12
瑞利分布概率密度=2
25
指数分布(Exponential)
e x, x 0 f ( x) 0, x 0
1.5
1
0.5
0 0
1
2
3
随机信号分析第一章

的理论与方法,必然是“张冠李戴”
t
无法得到正确的处理结果。
14
随着科学技术的进步,人们越来越发现,在自然界中所 遇到的大量信号均属于随机信号。如:
(1)-自由电子随机游动,在电阻上产生的“热噪声”。 (2)-某交叉路口每天24小时测量的噪音的分贝记录。 (3)-证卷交易所中,某股票每周涨落的记录。 (4)-反映人的生理、心理活动的“脑电波”。 (5)-反映地球物理特性的“地震信号”。 (6)-人说话时发出的“语音信号”。 (7)-雷达自动跟踪到的某飞行器的“运动轨迹”。 (8)-雷达接收到的目标信号的“幅度与相位”。
7
分析确定信号所用的数学工具有:微富积氏分变、换线、性拉代氏数变、换复、变等函等数
分析随机信号所用的数学工具有:随机概过率程论理论
上述的所有
数学工具
概率论研究的对象--随机变量 X
随机过程理论研究的对象--随机过程 X (t)
8
(一)课程的特点、地位、作用和任务:
20
教材及主要参考书
教材:随机信号分析基础(第4版) 王永德 王军 (编著)
电子工业出版社
参考教材:
李晓峰,周宁等编著 随机信号分析(第4版) 电子工业出版社
随机信号分析 赵淑清 郑薇(编著) 哈尔滨工业大学出版社
随机信号处理 陆光华 彭学愚 西安电子科技大学出版社
21
参考书籍
李晓峰,周宁等编著,随机信号分析(第4版),电子工业出版社
29
30
1.1 概率的基本概念
定义(概率的统计定义) :
在一定条件下,重复做 N 次实验, NA为 N 次实验中
事A发生的次数,如果随着
N
逐渐增大,频率
精品文档-随机信号分析基础(梁红玉)-第1章

第一章 随机变量基础
1.1 概率基本术语 1.2 随机变量及其分布 1.3 随机变量函数及其分布 1.4 随机变量及其函数的数字特征 1.5 高斯随机变量
第一章 随机变量基础
第一章 随机变量基础
1.1.1 概率空间 1. 随机现象有两个主要特点: ① 个别试验的不确定性;
② 大量试验结果的统计规律性。 概率论和数理统计是描述和 研究随机现象统计规律性的数学学科, 它们研究大量随机现 象内在的统计规律、 建立随机现象的物理模型并预测随机现 象将要产生的结果。
第一章 随机变量基础
下面对一维实随机变量做简要说明。 (1) 样本ξk是样本空间上的点, 所对应的实数xk是某个 实数集R1上的点。 因此, 一维实随机变量X(ξ)就是从原样 本空间Ω到新空间R1的一种映射, 如图1-5所示。 (2) 随机变量X(ξ)总是对应一定的概率空间(Ω, F, P)。 为了书写简便, 没有特殊要求时不必每次写出随机变量X(ξ) 的概率空间(Ω, F, P)。 (3) 随机变量X(ξ)是关于ξ的单值实函数, 简写为X。 本书规定用大写英文字母X, Y, Z, …表示随机变量, 用 相应的小写字母x, y, z, …表示随机变量的可能取值, 用 R1表示一维实随机变量的值域。 简单地说, 随机变量实际上就是样本空间为一维实数域 R1其子集的概率空间。
推广到多个事件, 设A1, A2, …,AN为同一样本空间上 的一组事件, 若对任意的M(2≤M≤N)及任意M 个互不相同的
整数i1, i2, …, iM, 满足
P( Ai1 Ai2 AiM ) P( Ai1 )P( Ai2 )P( AiM )
(1-10)
第一章 随机变量基础
3.
若事件A1, A2, …,AN两两互斥(互不相容), 即i j ,
随机信号分析第一章2010

F XY ( x , y ) FY ( y | x ) = FX ( x ) p XY ( x , y ) pY ( y | x ) = p X ( x)
n维随机变量及其分布 维随机变量及其分布
定义 n维随机变量 ( X 维随机变量
1
, X
2
,L , X
n
)
的n维(联合)分布函数为 维 联合)分布函数为
+∞ −∞
p(x) ≥ 0
性质2 概率密度函数在整个取值区间积分为1 性质2:概率密度函数在整个取值区间积分为1,即
∫
p ( x ) dx = 1
x2 x1
性质3:概率密度函数在(x 区间积分, 性质 :概率密度函数在(x1,x2)区间积分,得到该区 间的取值概率
P { x1 < X ≤ x 2 } =
1.1随机变量的概念 § 1.1随机变量的概念
抛硬币:可能出现正面或反面; 例1 抛硬币:可能出现正面或反面; 从一批产品中任取10件 例2 从一批产品中任取 件,抽到 的废品数可能是0,1,2,…,10中的一 的废品数可能是 中的一 个数; 个数; 掷色子:可能出现1,2,3,4,5,6点 例3 掷色子:可能出现 点
F XY ( x , y ) = P { X ≤ x , Y ≤ y }
(x,y)的二维联合概率密度,简称为二维概率密度 的二维联合概率密度,简称为二维概率密度 二维概率密度: 的二维联合概率密度
p XY
性质1: 性质 :
∂ F XY ( x , y ) ( x, y) = ∂x∂y
2
二维概率密度具有以下性质: 二维概率密度具有以下性质:
F ( x1 , x 2 ,L , x n ) = P{ X
随机信号分析与处理

函数 g(x) 的图像如下
解法一:根据概率分布函数的定义计算。
当 y ≤ 0 时, FY ( y) = P{Y ≤ y} = P{X < x0} + P{X > x1} = P{X < x0}+1− P{X < x1} = F (x0 ) +1− F (x1)
当 y ≤ A 时, FY ( y) = P{Y ≤ y} = P{x0 < X < x1} = FX (x1) − FX (x0 )
f X1X 2 (x1 , x2 ) J
=
y1
y
2 2
f X1X 2 ( y1 , y1 / y2 )
∫ ∫ fY2 ( y2 ) =
+∞
−∞ fY1Y2 ( y1 , y2 )dy1 =
+∞ y1 y −∞ 2
2
f X1X 2 ( y1 , y1 / y2 )dy1
在上式中令 u = y1 / y2 , 则
(2) Y1 = X 1 X 2
设
Y1 = X 1
Y2 = X 1 / X 2
对应的反函数关系为
x1 = y1 x2 = y1 / y2
∂x1
J
=
∂(x1, x2 ) ∂( y1, y2 )
=
∂y1 ∂x2
∂y1
∂x1
∂y2 ∂x2
1 =
1/ y2
∂y2
0
−
y1
/
y
2 2
= − y1
y
2 2
fY1Y2 ( y1 , y2 ) =
所以 Y 的概率分布函数为
FY ( y) = [1− FX (x1) + FX (x0 )]U ( y) + [FX (x1) − FX (x0 )]U ( y − A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/15
《随机信号分析》教学组
5
4定义的理解 :
上面两种随机过程的定义,从两个角度描 述了随机过程。具体的说,作观测时,常用定 义1,这样通过观测的试验样本来得到随机过 程的统计特性;对随机过程作理论分析时,常 用定义2,这样可以把随机过程看成为n 维随 机变量,n越大,采样时间越小,所得到的统 计特性越准确。
x1 x2 fX ( x1 , x2 ; t1 , t 2 )dx1dx2
2018/10/15
《随机信号分析》教学组
20
4 自协方差函数 若用随机过程的两个不同时刻之间的二阶 混合中心矩来定义相关函数,我们称之为自协 方差。用 K X ( t1 , t 2 )表示,它反映了任意两个时 刻的起伏值之间相关程度。
本章主要内容: 随机过程的基本概念 随机过程的数字特征 随机过程的微分和积分计算 随机过程的平稳性和遍历性 随机过程的相关函数及其性质 复随机过程 正态过程
马尔可夫链 泊松过程
2018/10/15
《随机信号分析》教学组
1
随机变量 随机过程
与时间无关
与时间相关
2018/10/15
《随机信号分析》教学组
12
为随机过程X(t)的二维概率密度
2018/10/15
《随机信号分析》教学组
3 n维概率分布 随机过程 X (t )在任意n个时刻 t1 , t2 ,, tn 的取值 X (t1 ), X (t2 ),, X (tn ) 构成n维随机变量 [ X (t1 ), X (t2 ),, X (tn )] 即为n维空间的随机矢量X。类似的,可以定 义随机过程 X (t )的n维分布函数和n维概率密度 函数为
(t ) E[ X (t )] x 2 f X ( x; t )dx
2 X 2
(t ) D[ X (t )] E[ X 2 (t )] E[( X (t ) m X (t ))2 ]
2 X
且
2018/10/15
2 X (t ) E[ X 2 (t )] m X (t ) 2
RX (t1 , t 2 ) m X (t1 )m X (t 2 )
比较自协方差和方差的关系 令
t1 t 2 t
则
2 D[ X (t )] X (t )
K X (t1 , t 2 ) K X (t , t ) E[( X (t ) mX (t ))2 ]
2018/10/15
n重
4 f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n )dx1dx2 dxn 1 5
n-m重
f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n )dxm+1dxm2 dxn f X ( x1 , x2 ,, xm ; t1 , t 2 ,, t m )
2
1.1 随机过程的基本概念及统计特性
一 定义 对接收机的噪声电压作观察
2018/10/15
《随机信号分析》教学组
3
x n ( t ),都是 x2 ( t ) , x 3 ( t ) ,…, x1 ( t ) , 1 样本函数: 时间的函数,称为样本函数。
2 随机性:一次试验,随机过程必取一个样 本函数,但所取的样本函数带有随机性。因 此,随机过程不仅是时间t 的函数,还是可 能结果的函数,记为 X ( t , ),简写成 X ( t ) 。
2018/10/15
《随机信号分析》教学组
6
理解: 1 t 和 都是变量 2 t 是变量而 固定 3 t 固定而 是变量 4 t 和 都固定
一个时间函数族
一个确知的时间函数 一个随机变量 一个确定值
2018/10/15
《随机信号分析》教学组
7
二 分类
1 按随机过程的时间和状态来分类 连续型随机过程:对随机过程任一时刻 t1 的取值 X (t1 ) 都是连续型随机变量。 离散型随机过程:对随机过程任一时刻 t1 的取值 X (t1 ) 都是离散型随机变量。
2018/10/15
《随机信号分析》教学组
9
2 按样本函数的形式来分类 不确定的随机过程:随机过程的任意样本 函数的值不能被预测。例如接收机噪声电压 波形。 确定的随机过程:随机过程的任意样本函 数的值能被预测。例如,样本函数为正弦信 号。 3 按概率分布的特性来分类
2018/10/15
《随机信号分析》教学组
6 若 X (t ), X (t ),, X (t ) 统计独立,则有
1 2 n
f X ( x1 , x2 ,, xn ; t1 , t2 ,, tn ) f X ( x1 ; t1 ) f X ( x2 ; t2 ) f X ( xn ; tn )
2018/10/15
《随机信号分析》教学组
K X (t1 , t 2 ) E[ X ( t1 ) X (t 2 )]
E[( X (t1 ) m X (t1 ))(X (t1 ) m X (t1 ))]
[ X (t1 ) m X (t1 )][X (t1 ) m X (t1 )]dx1dx2
2018/10/15
《随机信号分析》教学组
21
比较自协方差和自相关函数的关系
K X (t1 , t 2 ) E[( X (t1 ) mX (t1 ))( X (t1 ) mX (t1 ))]
E[ X (t1 ) X (t 2 )] mX (t1 ) E[ X (t1 )] m X (t 2 ) E[ X (t1 )] mX (t1 )m X (t 2 )
2018/10/15
《随机信号分析》教学组
4
3 随机过程的定义:
定义1:设随机试验E的样本空间 S { } ,若对于 每个元素 S ,总有一个确知的时间函数 X (t , ) 与它对应,这样,对于所有的 S,就可以得 到一簇时间t的函数,称它为随机过程。簇中的 每一个函数称为样本函数。
FX ( x1 , x2 ,, xn ; t1 , t2 ,, t n ) P{X (t1 ) x1 , X (t2 ) x2 ,, X (t n ) xn }
n FX ( x1 , x2 ,, xn ; t1 , t 2 ,, t n ) f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n ) x1x2 xn
《随机信号分析》教学组
17
物理意义:如果 X ( t ) 表示噪声电压,则 2 E [ X ( t )]和方差 D[ X ( t )]分别表示消耗在单 均方值 位电阻上的瞬时功率统计平均值和瞬时交流 功率统计平均值。 标准差或均方差:
D[ X ( t )]= X ( t )
2018/10/15
《随机信号分析》教学组
2018/10/15
《随机信号分析》教学组
13
性质: 1 FX ( x1 , x2 ,,,, xn ; t1 , t2 ,, ti ,tn ) 0
2 FX (, ,, ; t1 , t2 ,, tn ) 1
3
f X ( x1 , x2 ,, xn ; t1 , t2 ,, t n ) 0
1 1 E[cos(2 0t ) cos 2 ] E sin 2 0t sin 2 ] 2 1 = [1 cos 2 t E[cos 2 ] sin 2 t E[sin 2 ] 0 0 2
=
1 2
1 E[1 cos(20t 2 )] 2
18
3 自相关函数
先比较具有相同数学期望和方差的两个 随机过程。
2018/10/15
《随机信号分析》教学组
19
自相关函数用来描述随机过程任意两个时刻的 状态之间的内在联系,通常用 RX ( t1 , t 2 )描述。
RX (t1 , t 2 ) E[ X (t1 ) X (t 2 )]
14
四 随机过程的数字特征 随机变量的数字特征通常是确定值;随 机过程的数字特征通常是确定性函数。
对随机过程的数字特征的计算方法,是 先把时间t固定,然后用随机变量的分析方法 来计算。
2018/10/15
《随机信号分析》教学组
15
1 数学期望
m X (t ) E[ X (t )] xf ( x; t )dx
《随机信号分析》教学组
22
例:求随机相应止弦波 x(t ) sin(0t ) 的数字期 望,方差及自相关函数。式中, 为常数,是 2 ]上均匀分布的随机变量。 区间[0,
0
解:由题可知:
mx(t ) E[ x(t )] E[sin(0t )] E[sin 0t cos cos 0t sin ] (1)
2018/10/15
《随机信号分析》教学组
8
连续随机序列:随机过程的时间t只能取 t …..,n t,且这 某些时刻,如 t , 2 , 时得到的随机变量 X ( nt ) 是连续型随机变 量,即时间是离散的。相当于对连续型随 机过程的采样。 离散随机序列:随机过程的时间t只能取 t …..,n t,且这 某些时刻,如 t , 2 , 时得到的随机变量 X ( nt ) 是离散型随机变 量,即时间和状态是离散的。相当于采样 后再量化 。
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}