随机信号分析期末总复习提纲重点知识点归
《随机信号分析》复习课(第一章-第四章)

F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1
总复习(信号与线性系统必过知识点)

目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。
随机信号分析与处理(第2版)

随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。
随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。
随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。
主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。
通过对随机信号的特性分析,可以为后续的分析和处理提供基础。
第二章:随机过程本章讨论了随机过程的定义和性质。
随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。
通过对随机过程的分析,可以了解其演化规律和统计性质。
本章介绍了随机信号的表示与分解方法。
随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。
通过将随机信号进行分解,可以提取出其中的有用信息。
第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。
功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。
第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。
相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。
通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。
本章介绍了随机信号的滤波和平均处理方法。
滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。
第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。
参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。
第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。
检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。
第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。
随机信号分析基础

i1 p
(4)
a i R h ( k i ) k 0
i1
例:一阶AR模型
AR(1)的系统传输函数及描述此系统的差分方程分别为:
H(z)A1(z)1a11z1
x(n)a1x(n1)e(n)
令e(n)是一均值为零、方差为w 2的白噪声序列,x(n)是在e(n)
激励下系统所产生的输出。
X(n-1)
常 被 表 示 为 : M A (q );
输 出 数 据 序 列 x( n ) 称 “ M A 过 程 ” 。
AR模型冲激响应的自相关函数
AR(p)的 系 统 函 数 : H (z)
d0
p
1 a i z i
i1
p
亦 可 表 示 为 : H ( z ) a i H ( z ) z i d 0 (1) i1
简 记 为 A R M A 过 程 (A R:A utoregressive,M A:M oving A verage)
相 应 的 系 统 模 型 (差 分 方 程 )称 “ ARM A模 型 ”
2.1 有理分式模型
模型参数专用术语定义:
p
q
对 A R M A 模 型 : x ( n ) ai x ( n i) b je ( n j )
2 . 若 A ( z ) 常 数 ,则 A R M A (p ,q )模 型 退 化 为 :
时域的差分方程:
q
x ( n ) b ie ( n i) i 0
Z域 的 系 统 函 数 :
q
H ( z ) B ( z ) 1 b i z i i 1
称 此 类 模 型 为 “ M A 模 型 、 全 零 点 模 型 H A Z ( z )? ;
第2章 随机信号分析复习

F jF sgn F H
那么传输函数为 H j sgn e 即:
j / 2U
H e
j
/ 2 0 / 2 U /2 0
希尔伯特滤波器幅度-频率和相位-频率特性
2018/10/9 29
希尔伯特变换特例
ˆ (t ) sin t f (t ) cos t , f ˆ (t ) cos t f (t ) sin t , f
若m(t ) M ( )为截至频率为 f 的低通信号,
H 1
希尔伯特变换的物理意义是将信号f(t)的所频率 成分都相移90o,而幅度保持不变。具有这种特 性的网络称之为希尔伯特滤波器。
2018/10/9 28
即:
/ 2 0 / 2 U /2 0
H 1
本章内容
1 2
确知信号的分析 卷积与相关
3
4 5
希尔伯特变换
确定信号通过线性系统的传输 随机信号通过线性系统的传输
1
2018/10/9
信号和系统分类
一、信号的分类:
确知信号 随机信号 周期信号 非周期信号
二、系统分类
线性系统 非线性系统 时不变系统 时变系统
2018/10/9
2
信号的频谱分析
1、傅里叶级数
通常记做 f (t ) F
2018/10/9 7
特例:冲激函数δ (t)
F (t ) (t )e jt dt e j 0 1
《随机信号分析》总复习1

2020/10/24
34
2.4.2 互相关函数及其性质
联合平稳随机过程互相关函数性质
(3)若X(t)和Y(t)是联合平稳的,则 Z(t)=X(t)+Y(t) 也是平稳的,且
举例:两个均值和方差大致相同的随机过程 ,相关性差异很大
2.2.2 随机过程的数字特征
协方差函数
也是相关性的描述 K X (t1,t2 ) E{[ X (t1) mX (t1)][X (t2 ) mX (t2 )]} 如果 K X (t1,t2 ) 0 ,则称 X (t1) 和 X (t2 )不相关。
x1...xN y1yM
如果
f XY (x1,..., xN , t1,..., tN , y1,..., yM , t'1 ,..., t'M ) f X (x1,..., xN , t1,..., tN ) fY ( y1,..., yM , t'1 ,..., t'M )
则称X(t) 和Y(t) 是相互独立的
y g(x)
Y g(X)
1.6 随机变量的函数
一维随机变量函数的分布
若 g(x) 为单调连续上升函数,x g 1( y)
FY ( y)=P{Y y} P{g( X ) y}=P{X g 1( y)} FX (g 1( y))
求导,得
fY
( y)
fX
(x)
dx dy
,雅可(Jacco)比
n)
2020/10/24
20
2.2.1 随机过程的概率分布
二维概率分布:
X (t1)及 X (t2 )为同一随机过程上的随机变量
FX (x1, x2 , t1, t2 ) P{X (t1) x1, X (t2 ) x2}
(整理)通信原理复习提纲-

10级通信原理内容提纲第一章 绪论1. 通信系统的组成和各部分的功能;2. 通信系统的两个主要性能要求、在模拟和数字通信系统中分别反映为哪个指标。
3. 信源信息量的有关计算● 单个符号的信息量:I=−log 2p(x) bit ● 平均每符号的信息量:211()()()()log()/M Miiii i i H x p x I x p x p x bit symbol ====-∑∑● 信源等概时平均每符号的信息量:H(x)=log 2M bit/symbol ● 整个消息的信息量:I=N·H(x)=I 1+I 2+···+I N bit 4. 比特率、符号率、频带利用率的概念,以及有关计算 ● R b =R s ×每符号所含比特数 bit/s ,对信源有R b =R s ·H(x) ● R b =R s ·log 2M bit/s ,M 个符号等概下5. 误符号率与误比特率的概念、二者关系,以及有关计算 * 说明:本课程中,“比特(bit )”有两种含义,一是信息量单位,一是二进制的“位”,应根据具体情况判断是哪种含义。
本章内容基本,要求全面掌握。
第二章 随机信号分析本章内容注重概念、结论、参数的物理意义、必要的计算推导,特定函数的付利叶变换与反变换关系。
以下ξ(t )表示随机过程。
1. ξ(t )的概率密度函数与概率分布的关系,E[ξ(t )]、D[ξ(t )]、R(t 1,t 2)的定义及简单计算,广义平稳ξ(t )的定义及判定。
2. 平稳ξ(t )的功率谱密度与R(τ)的关系。
3. 正态分布统计特性特点,一维正态分布概率密度表达式及其参数的物理意义。
4. 白噪声及带限白噪声的功率谱密度和自相关函数的有关计算和结论。
5. 窄带随机过程的统计特性结论。
6. 平稳ξ(t )通过线性系统的统计特性结论。
本章内容,重点掌握基本概念如要点1、3、5、6,并进行相应的随机信号分析。
随机信号分析期末总复习提纲重点知识点

第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22TTx m XX X X X n n XTT jUX X X X X n X MX M f x f x x U U u Q u j m Q u u E e jM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
(P92 同一时刻、不同时刻)9、两个随机过程联合平稳的要求、性质。
P92()()()()XY YX XY YX R R C C ττττ=-=-10、复随机过程定义、自相关函数定义、复平稳定义。
P94()()(),Z R t t E Z t Z t ττ*⎡⎤+=+⎣⎦11、随机过程 “均方可微”P104、“均方可积”P106 12、平稳过程导数的分析P106。
期望、自相关函数、互相关函数()()()22()()()X X X XY YX Y dR dR d R R R R d d d τττττττττ==-=-13、高斯随机过程的一系列性质:◆高斯过程的特征函数、协方差矩阵。
◆高斯过程的线性变换、高斯过程的微分、高斯过程的积分,仍是高斯过程。
◆高斯过程的不相关=独立。
◆平稳高斯过程 宽平稳=严平稳 (2-180)14、各态历经过程的定义、及在电子技术中的物理意义。
时间均值、时间自相关定义式直流分量、直流平均功率、总平均功率、交流平均功率第三章 随机信号的频域分析 最重要的知识点: 维纳—辛钦定理⑴平稳过程,()()XX G R ωτ↔⑵两个联合平稳的实随机过程,()()()()12j XYXY j XY XYG R e d R G e d ωτωτωτττωωπ∞--∞∞-∞⎧=⎪⎨⎪=⎩⎰⎰◆实随机过程功率谱密度()X G ω是非负、实、偶函数 ◆互谱密度的性质 ()()()XY YX YX G G G ωωω*==-◆2(),0()2()()0,01()02()1()()2X X X X X X X G F G U F G F G ωωωωωωωωωωωω≥⎧==⎨<⎩⎧≥⎪⎪⇒=⎨⎪⎪⎩-<是非函数偶负的实§3.3 白噪声⑴定义:平稳随机过程、均值为零、功率谱密度在整个频率轴(,)-∞+∞上均匀分布 (三个条件)⑵白噪声的自相关函数是一个面积等于功率谱密度的冲激函数()()()20()0X X P E X t R G ωδ⎡⎤===⎣⎦⑶白噪声带宽无限⑷白噪声不同时刻的状态互不相关、正交(如果是高斯。
)第四章 随机信号通过线性系统的分析§4.1 线性系统的基本理论 稳定的物理可实现系统 §4.2 随机信号通过线性系统 时域分析()()()()()(0)()()()()()()X Y X Y Y XY X YX X Y m h d R R h h P R R R m R h R h ττττττττττττ∞==**-==*=*-⎰频域分析 输入信号()X t 宽平稳,输出信号()Y t 也宽平稳,且()Y t 与()X t 联合平稳()22(0)(0)()()()()()()()()()()()()11()()()22Y X Y X X XY X YX X Y Y X m m H H h d G G H G H H G H G G H G P G d H G d ττωωωωωωωωωωωωωωωωωππ∞∞∞-∞-∞=⋅===-=⋅⎧⎨=-⋅⎩==⎰⎰⎰§4.3 色噪声的产生与白化滤波器掌握设计方法()()()()222()()()(),Y X G G H H j s H s H s H s H s ωωωωω⎧=⇒⎪⎪==-⎨⎪⎪⎩三个步骤:分解选择零极点都在左半平面§4.4 白噪声通过线性系统⑴白噪声通过线性系统后,白噪声通过线性系统后输出的功率谱密度完全由系统的频率特性所决定。
2001()()((22))2j Y N R h u h u du e N H d ωττωτωπ∞∞-∞=+=⎰⎰22(0)()()22Y Y N N P R h u du H d ωωπ∞∞===⎰⎰⑵等效噪声带:用一个频率响应为矩形的理想系统来代替实际系统max ()I YK H ω=⎧⎪⎨=⎪⎩P P 输入为同一白噪声时等效原则: 22max m x 0a 0()(22)Y Y I e e H N N H πωπωωω∆∆⋅⇒===P P P频域法22max|()|()eH d H ωωωω∞∆=⎰低通22|()|(0)H d H ωω∞=⎰ 带通2200|()|()H d H ωωω∞=⎰时域法22max()()e h u duH ωπω∞∆=⎰低通 带通220()()()()2Y X N G G H H ωωωωω==-∞<<∞22()e h t dt πω∞∞=∆⎰0202()t e j h u duωωπ∞∞-=∆⎰X t输入物理可实现系统线性系统的结论:双侧随机信号()1、若输入()Y t也是宽平稳的,且输入与输出联合X t是宽平稳的,则系统输出()平稳2、若输入()Y t也是严平稳的。
X t是严平稳的,则输出()3、若输入()Y t也是宽各态历经的X t是宽各态历经的,则输出()4、若线性系统输入为高斯过程,则输出为高斯分布5、若系统输入信号的等效噪声带宽远大于系统的带宽,则输出接近于高斯分布(输入白噪声的情况)第六章 窄带随机信号㈠Hilbert 变换及其性质。
()()[][]()()()()11ˆˆˆ()()()()sgn()()ˆ()()()()()2()()ˆˆ()()cos sin cos sgn()sin sin sgn()cos sin cos st s t st S j S t s t s t js t s t S S U st s t H H H a t t a t t H t tH t tH a t t a t t ωωωπωωωωωωω-=*⇔=-=+⇔==-=-⎧=⎡⎤⎧Ω=Ω⋅Ω⎪⎪⎣⎦⎨⎨Ω=-Ω⋅Ω=-⎡⎤⎪⎪⎩⎣⎦⎩㈡随机过程的“解析形式”、及性质及其复指数形式()()ˆˆˆˆˆˆˆ()()()()()()()ˆˆ()()()()()sgn ()()sgn ()ˆ()2()2()()()4()()()()()o X X X XX X XX XXX X XXXX X X X X X X j X X A X t X t jXt R R G G R R R R G j G G j G R R R jR G G U R R e G G ωτττωωττττωωωωωωττττωωωττω=+=⎧⎪⎨=⎪⎩⎧==-⎪⎨=-=⎪⎩⎧⎡⎤==+⎪⎣⎦⎨=⎪⎩=↔=0()A ωω-课件。