随机信号分析期末总复习提纲重点知识点

合集下载

《随机信号分析》复习课(第一章-第四章)

《随机信号分析》复习课(第一章-第四章)

F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1

随机信号分析基础

随机信号分析基础

i1 p
(4)
a i R h ( k i ) k 0
i1
例:一阶AR模型
AR(1)的系统传输函数及描述此系统的差分方程分别为:
H(z)A1(z)1a11z1
x(n)a1x(n1)e(n)
令e(n)是一均值为零、方差为w 2的白噪声序列,x(n)是在e(n)
激励下系统所产生的输出。
X(n-1)
常 被 表 示 为 : M A (q );
输 出 数 据 序 列 x( n ) 称 “ M A 过 程 ” 。
AR模型冲激响应的自相关函数
AR(p)的 系 统 函 数 : H (z)
d0
p
1 a i z i
i1
p
亦 可 表 示 为 : H ( z ) a i H ( z ) z i d 0 (1) i1
简 记 为 A R M A 过 程 (A R:A utoregressive,M A:M oving A verage)
相 应 的 系 统 模 型 (差 分 方 程 )称 “ ARM A模 型 ”
2.1 有理分式模型
模型参数专用术语定义:
p
q
对 A R M A 模 型 : x ( n ) ai x ( n i) b je ( n j )
2 . 若 A ( z ) 常 数 ,则 A R M A (p ,q )模 型 退 化 为 :
时域的差分方程:
q
x ( n ) b ie ( n i) i 0
Z域 的 系 统 函 数 :
q
H ( z ) B ( z ) 1 b i z i i 1
称 此 类 模 型 为 “ M A 模 型 、 全 零 点 模 型 H A Z ( z )? ;

第二章 随机信号分析

第二章 随机信号分析

第二章 随机信号分析2.1 确知信号的频谱分析 一.付立叶变换任一信号有两种表示方法:时域表示法)(t f :信号的大小随时间的变化。

频域表示法)(w F :信号的振幅和相位随频率成分的变化。

两种表示法互相对应,记做:)()(w F t f ↔。

变换式为:dw e w F t f jwt ⎰∞∞-=)(21)(πe w F dt e tf w F w j jwt )()()()(θ--∞∞-==⎰|)(|w F 为模,表示幅度谱;)(w θ为幅角,表示相位谱。

二.付氏变换的性质若)()(w F t f i i ↔注:抽样函数xx Sa )(=四.功率谱密度和能量谱密度1.功率信号:时间无限的信号,具有无限的能量,但平均功率有限。

2.能量信号:时间有限的信号,信号能量有限,在全部时间内的平均功率为0。

3.信号的功率(能量):电压(电流)f (t) 加在单位电阻上消耗的功率(或能量)。

信号的瞬时功率(能量)为)(2t f ,总功率(能量)为⎰∞∞-dt t f )(2。

4.能量信号的能量和能量谱密度⎰⎰⎰∞∞-∞∞-∞∞-=-==dw w F dw w F w F dt t f E 22|)(|21)()(21)(ππ(实函数时,F(-w)=F *(w) )定义:能量谱密度2|)(|)(w F w =ξ,能量⎰⎰∞∞-∞∞-==df f dw w E )()(21ξξπ5.无限非周期信号的平均功率和功率谱密度 用f T (t)代表无限信号f (t)在(-T/2, T/2)上的截断函数,只要T 有限,f T (t)就有能量:⎰⎰∞∞-∞∞-==dw w F dt t f E T T 22|)(|21)(π当T ∞时,其平均功率为:dw Tw F dt t f TP T T TT T T 2222|)(|21)(1limlim⎰⎰∞∞-∞→-∞→==π定义:功率谱密度Tw F w S T T f 2|)(|)(lim∞→=平均功率⎰⎰∞∞-∞∞-==df f S dw w S P f f )()(21π5.无限周期信号的平均功率和功率谱密度 功率谱密度∑∞-∞=-=n T nf nw w Cw S )(||2)(2δπ, 平均功率∑∞-∞==n nCP 2||C n 为各个频率点的幅度,|C n |2为nw T 分量的平均功率五.信号通过线性系统1.系统的传递函数 以冲激函数δ(t)作为激励,通过系统后的响应h (t)为该系统的传递函数2.线性系统——满足叠加定理若激励f 1 (t)和f 2 (t)的响应分别是r 1 (t)和r 2 (t),则激励af 1 (t)+bf 2 (t) 的响应是ar 1 (t)+br 2 (t)。

[自然科学]第2章随机信号分析

[自然科学]第2章随机信号分析
1 T2 lim T xt dt a a x f x dx T T 2 2 1 T2 2 2 2 x a f x dx lim x t a dt T T T 2 T 1 2 R lim xt xt dt R T T T 2
t 所有样本函数在时刻t 的函数值的平均,
E t xf x, t dx at

也称集平均,以区别时间平均的概念。
第 二 章 随 机 信 号 分 析
§2.2 随机过程的一般表达
方差定义 2 t :(偏离均值的程度)
Dt Et E t
f n x1 , xn ; t1 , t 2 ,t n
对于一维的情况来说,一维概率密度函数 与时间无关。即 f x 二维概率密度函数只与时间间隔 有关, 即 f x1 x2 ,
第 二 章 随 机 信 号 分 析
§2.3 平稳随机过程
平稳随机过程的统计特性: (1) 均值(数学期望)
第 二 章 随 机 信 号 分 析
§2.5 高斯过程
高斯过程又称正态随机过程,是一种普遍 存在又十分重要的随机过程。通信信道中的噪 声,通常是一种高斯过程。 先看一维分布的情况。 高斯过程在给定任一时刻上,则是一高斯随 机变量 ,其概率密度函数为:
f x x a 2 1 exp 2 2 2
a ~ 均值 常量 2 ~ 方差 exp ~ 以e为底的指数函数
第 二 章 随 机 信 号 分 析
§2.5 高斯过程
f x
1 2
a
x
高斯概率密度函数曲线
则 称服从高斯分布(也称正态分布)的 随机变量。

《随机信号分析》总复习1

《随机信号分析》总复习1

2020/10/24
34
2.4.2 互相关函数及其性质
联合平稳随机过程互相关函数性质
(3)若X(t)和Y(t)是联合平稳的,则 Z(t)=X(t)+Y(t) 也是平稳的,且
举例:两个均值和方差大致相同的随机过程 ,相关性差异很大
2.2.2 随机过程的数字特征
协方差函数
也是相关性的描述 K X (t1,t2 ) E{[ X (t1) mX (t1)][X (t2 ) mX (t2 )]} 如果 K X (t1,t2 ) 0 ,则称 X (t1) 和 X (t2 )不相关。
x1...xN y1yM
如果
f XY (x1,..., xN , t1,..., tN , y1,..., yM , t'1 ,..., t'M ) f X (x1,..., xN , t1,..., tN ) fY ( y1,..., yM , t'1 ,..., t'M )
则称X(t) 和Y(t) 是相互独立的
y g(x)
Y g(X)
1.6 随机变量的函数
一维随机变量函数的分布
若 g(x) 为单调连续上升函数,x g 1( y)
FY ( y)=P{Y y} P{g( X ) y}=P{X g 1( y)} FX (g 1( y))
求导,得
fY
( y)
fX
(x)
dx dy
,雅可(Jacco)比
n)
2020/10/24
20
2.2.1 随机过程的概率分布
二维概率分布:
X (t1)及 X (t2 )为同一随机过程上的随机变量
FX (x1, x2 , t1, t2 ) P{X (t1) x1, X (t2 ) x2}

(整理)通信原理复习提纲-

(整理)通信原理复习提纲-

10级通信原理内容提纲第一章 绪论1. 通信系统的组成和各部分的功能;2. 通信系统的两个主要性能要求、在模拟和数字通信系统中分别反映为哪个指标。

3. 信源信息量的有关计算● 单个符号的信息量:I=−log 2p(x) bit ● 平均每符号的信息量:211()()()()log()/M Miiii i i H x p x I x p x p x bit symbol ====-∑∑● 信源等概时平均每符号的信息量:H(x)=log 2M bit/symbol ● 整个消息的信息量:I=N·H(x)=I 1+I 2+···+I N bit 4. 比特率、符号率、频带利用率的概念,以及有关计算 ● R b =R s ×每符号所含比特数 bit/s ,对信源有R b =R s ·H(x) ● R b =R s ·log 2M bit/s ,M 个符号等概下5. 误符号率与误比特率的概念、二者关系,以及有关计算 * 说明:本课程中,“比特(bit )”有两种含义,一是信息量单位,一是二进制的“位”,应根据具体情况判断是哪种含义。

本章内容基本,要求全面掌握。

第二章 随机信号分析本章内容注重概念、结论、参数的物理意义、必要的计算推导,特定函数的付利叶变换与反变换关系。

以下ξ(t )表示随机过程。

1. ξ(t )的概率密度函数与概率分布的关系,E[ξ(t )]、D[ξ(t )]、R(t 1,t 2)的定义及简单计算,广义平稳ξ(t )的定义及判定。

2. 平稳ξ(t )的功率谱密度与R(τ)的关系。

3. 正态分布统计特性特点,一维正态分布概率密度表达式及其参数的物理意义。

4. 白噪声及带限白噪声的功率谱密度和自相关函数的有关计算和结论。

5. 窄带随机过程的统计特性结论。

6. 平稳ξ(t )通过线性系统的统计特性结论。

本章内容,重点掌握基本概念如要点1、3、5、6,并进行相应的随机信号分析。

随机信号分析期末总复习提纲重点知识点

随机信号分析期末总复习提纲重点知识点

第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。

(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。

(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。

随机信号期末复习知识点总结

随机信号期末复习知识点总结

1、随机实验的特点,满足什么特征?
随机试验须满足下面三个特征
(1)、可在相同条件下重复进行;
(2)、每次试验可能结果(Possible result)不唯一,并能事先确定所有可能结果;
(3)、每次试验结果不确定。

2、概率的定义?
1事件是随机的。

赋予事件出现可能性的度量(Measure),称为概率(Probability)。

“可能性的度量值”是大数试验情形下的统计比例值
P(A) ¼
试验中A出现的次数/总试验次数=nA/n n 足够大
2更一般的定义由概率的公理化定义给出:
3定义若定义在事件域F 的一个集合函数P 满足如下三条件:
(1)、非负性:对任何事件A均有P(A) 大等于0 成立。

即P(A) 大等于0;
(2)、归一性:必然事件(Certain event) 概率为1。

P(­) = 1;
(3)、可加性:若事件A;B 2 F互斥(Mutually exclusive),即A并B =空,则P(A[
B) = P(A) + P(B)。

则称P 为概率。

3、随机变量之间的“不相关、正交、独立”(各自定义、相关系数定义)?
相互关系:两个随机变量相互独立必定互不相关,反之不一定成立正交与不相关、独立没有明显关系
4、概率分布函数
5、概率密度函数
6、数学期望
三、正交与无关
正交(Orthogonal):EfXY g = 0
线性无关(Uncorrelated)或互不相关:EfXY g = mXmY or cov(X; Y ) = 0。

统计独立=)互不相关;但是,互不相关=)= 统计独立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。

(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。

(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。

(P92 同一时刻、不同时刻)9、两个随机过程联合平稳的要求、性质。

P92()()()()XY YX XY YX R R C C ττττ=-=-10、复随机过程定义、自相关函数定义、复平稳定义。

P94()()(),Z R t t E Z t Z t ττ*⎡⎤+=+⎣⎦11、随机过程 “均方可微”P104、“均方可积”P106 12、平稳过程导数的分析P106。

期望、自相关函数、互相关函数()()()22()()()X X X XY YX Y dR dR d R R R R d d d τττττττττ==-=-13、高斯随机过程的一系列性质:◆高斯过程的特征函数、协方差矩阵。

◆高斯过程的线性变换、高斯过程的微分、高斯过程的积分,仍是高斯过程。

◆高斯过程的不相关=独立。

◆平稳高斯过程 宽平稳=严平稳 (2-180)14、各态历经过程的定义、及在电子技术中的物理意义。

时间均值、时间自相关定义式直流分量、直流平均功率、总平均功率、交流平均功率第三章 随机信号的频域分析 最重要的知识点: 维纳—辛钦定理⑴平稳过程,()()XX G R ωτ↔⑵两个联合平稳的实随机过程,()()()()12j XYXY j XY XYG R e d R G e d ωτωτωτττωωπ∞--∞∞-∞⎧=⎪⎨⎪=⎩⎰⎰◆实随机过程功率谱密度()X G ω是非负、实、偶函数 ◆互谱密度的性质 ()()()XY YX YX G G G ωωω*==-◆2(),0()2()()0,01()02()1()()2X X X X X X X G F G U F G F G ωωωωωωωωωωωω≥⎧==⎨<⎩⎧≥⎪⎪⇒=⎨⎪⎪⎩-<是非函数偶负的实§3.3 白噪声⑴定义:平稳随机过程、均值为零、功率谱密度在整个频率轴(,)-∞+∞上均匀分布 (三个条件)⑵白噪声的自相关函数是一个面积等于功率谱密度的冲激函数()()()20()0X X P E X t R G ωδ⎡⎤===⎣⎦g⑶白噪声带宽无限⑷白噪声不同时刻的状态互不相关、正交 (如果是高斯。

)第四章 随机信号通过线性系统的分析§4.1 线性系统的基本理论 稳定的物理可实现系统 §4.2 随机信号通过线性系统 时域分析()()()()()(0)()()()()()()X Y X Y Y XY X YX X Y m h d R R h h P R R R m R h R h ττττττττττττ∞==**-==*=*-⎰频域分析 输入信号()X t 宽平稳,输出信号()Y t 也宽平稳,且()Y t 与()X t 联合平稳()22(0)(0)()()()()()()()()()()()()11()()()22Y X Y X X XY X YX X Y Y X m m H H h d G G H G H H G H G G H G P G d H G d ττωωωωωωωωωωωωωωωωωππ∞∞∞-∞-∞=⋅===-=⋅⎧⎨=-⋅⎩==⎰⎰⎰§4.3 色噪声的产生与白化滤波器掌握设计方法()()()()222()()()(),Y X G G H H j s H s H s H s H s ωωωωω⎧=⇒⎪⎪==-⎨⎪⎪⎩三个步骤:分解选择零极点都在左半平面§4.4 白噪声通过线性系统⑴白噪声通过线性系统后,白噪声通过线性系统后输出的功率谱密度完全由系统的频率特性所决定。

2001()()((22))2j Y N R h u h u du e N H d ωττωτωπ∞∞-∞=+=⎰⎰22(0)()()22Y Y N N P R h u du H d ωωπ∞∞===⎰⎰⑵等效噪声带:用一个频率响应为矩形的理想系统来代替实际系统max ()I YK H ω=⎧⎪⎨=⎪⎩P P 输入为同一白噪声时等效原则: 22max m x 0a 0()(22)Y Y I e e H N N H πωπωωω∆∆⋅⇒===P P P 频域法22max|()|()eH d H ωωωω∞∆=⎰低通22|()|(0)H d H ωω∞=⎰ 带通2200|()|()H d H ωωω∞=⎰时域法22max()()e h u duH ωπω∞∆=⎰低通 带通220()()()()2Y X N G G H H ωωωωω==-∞<<∞()220()e h t dt h t dt πω∞∞⎡⎥=∆⎤⎢⎣⎦⎰⎰()02020()t e j h u duh t e dt ωωπ∞∞-=⎡⎤⎢⎥⎣∆⎦⎰⎰X t输入物理可实现系统线性系统的结论:双侧随机信号()1、若输入()Y t也是宽平稳的,且输入与输出联合X t是宽平稳的,则系统输出()平稳2、若输入()Y t也是严平稳的。

X t是严平稳的,则输出()3、若输入()Y t也是宽各态历经的X t是宽各态历经的,则输出()4、若线性系统输入为高斯过程,则输出为高斯分布5、若系统输入信号的等效噪声带宽远大于系统的带宽,则输出接近于高斯分布(输入白噪声的情况)第六章 窄带随机信号㈠Hilbert 变换及其性质。

()()[][]()()()()11ˆˆˆ()()()()sgn()()ˆ()()()()()2()()ˆˆ()()cos sin cos sgn()sin sin sgn()cos sin cos st s t st S j S ts t s t js t s t S S U st s t H H H a t t a t t H t tH t tH a t t a t t ωωωπωωωωωωω-=*⇔=-=+⇔==-=-⎧=⎡⎤⎧Ω=Ω⋅Ω⎪⎪⎣⎦⎨⎨Ω=-Ω⋅Ω=-⎡⎤⎪⎪⎩⎣⎦⎩%%%g g㈡随机过程的“解析形式”、及性质及其复指数形式()()ˆˆˆˆˆˆˆ()()()()()()()ˆˆ()()()()()sgn ()()sgn ()ˆ()2()2()()()4()()()()()o X X X XX X XX XXX X XX XXX X X X X Xj X X A X t X t jXt R R G G R R R R G j G G j G R R R jR G G U R R e G G ωτττωωττττωωωωωωττττωωωττω=+=⎧⎪⎨=⎪⎩⎧==-⎪⎨=-=⎪⎩⎧⎡⎤==+⎪⎣⎦⎨=⎪⎩=↔=%%%%%%%%0()A ωω-。

相关文档
最新文档