画立体图形,由视图到立体图形

合集下载

小学六年级立体图形三视图及展开图

小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。

比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。

对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。

(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。

二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”、“你”、“前”分别表示正方体的________________________。

【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。

【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。

【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。

如何画好立体图形

如何画好立体图形

如何画好立体图形对于初中的同学来说,虽然通过在小学里对立体图形的学习有了一定的空间想象力,但要准确的画出几何体的三视图,并不是件很容易的事情.为此,可采用如下方法:(一) 从正投影的角度想象几何体的三视图在学习的画立体图形的三视图,采取的实际上是常见的正投影的方法,即当光线与投影面垂直时的投影.人在阳光下产生影子,物体在光线的照射下也会产生投影,如图1,在自上而下垂直于平面的光线的照射下,线段AB 的位置不同可分别得到的投影为一点、和它等长的线段、比它小的线段.因此,当想象不出几何体的三视图时,可以想象在物体的后面有一个投影面,有一束光线以垂直于投影面的角度照射物体,在投影面上形成的影子即相应的视图.例如: 初学画三视图的同学,很容易把图2中的几何体的正视图画成图3的样子.但是,从投影的角度就很容易画成图4的样子.图345图 1图 2(二)用45º线的方法形成对应因为三视图中的正视图和俯视图都反映几何体的长,所以在画三视图时,正视图和俯视图在长上应保持一致,同理,正视图和左视图应在高上保持一致,左视图和俯视图应在宽上保持一致.在这几种保持一致的对应上,左视图和俯视图的一致比较难掌握,而画45º线的方法则可以使它们之间保持很好的一致.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”;3.在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;4.为表示出旋转几何体(圆柱、圆锥、球等)的对称轴,可在视图中加画点划线。

《几何画板》在数学教学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。

同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。

因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革──用计算机辅助教学,改善人们的认知环境──越来越受到重视。

由视图到立体图形(教案)

由视图到立体图形(教案)

4.2.2由视图到立体图形教学设计师:“盲人摸象”是大家非常熟悉的成语故事,在实际生活中,如果我们对一个事物没有做到全面了解,那么我们很有可能犯盲人一样的错误,对于数学学习也一样。

师:如果你看到左下图中的长方形,你会想到什么立体图形?其实,视图为长方形的立体图形有很多。

一、由视图画立体图形的方法师:上节课我们学习了从立体图形的三个不同角度画出所看到的平面图形。

现在,根据物体的三视图你能否来描述物体的形状呢?这一点一般来说是比较困难的。

让我们先看一些较为简单的、熟悉的物体的视图。

例 1 下图所示的是一些立体图形的三视图,请根据视图说出立体图形的名称。

(1)(2)解:(1)该立体图形是长方体,如下图所示。

(2)该立体图形是圆锥,如下图所示。

由视图画立体图形的画法:从主视图观察,画出物体的前面。

从俯视图观察,画出物体的上面。

从左(右)视图观察,画出物体的左(右面)。

二、三视图的对应关系试一试:你能想出物体的形状吗?例2 请根据视图画出立体图形。

解:该立体图形如下图所示。

1、左视图是圆的立体图形可能是___________________。

2、请根据三视图画出立体图形。

3、如图是几个小立方体所搭成的立体图形的俯视图,小正方形中的数字表示在该位置上小立方体的个数,请画出这个立体图形的正视图和左视图。

解:(1)该立体图形的正视图和左视图如下图所示。

解:(2)该立体图形的正视图和左视图如下图所示。

用小方块搭成一个几何体,使它的正视图和俯视图如图所示,它最少需要多少个小立方块,最多需要多少个小立方块?。

由三视图还原立体图形-PPT课件

由三视图还原立体图形-PPT课件
由三视图还原立体图形
例1:根据三视图中主视图、俯视图和左视图, 说出立体图形的名称。
隐藏主视图 隐藏俯视图
隐藏左视图
隐藏圆柱
隐藏三棱柱
隐藏长方体
三视图
隐藏主视图 隐藏点
隐藏左视图
隐藏俯视图
隐藏圆锥
隐藏三棱锥
三视图
圆柱无中轴
三视图
隐藏几何体
三视图
隐藏几何体
三视图
隐藏几何体 显示对象
H
例2:根据物体的三视图,描述物体的形状.
移动点 移动点 还原系列2个动作
三视图
移动点 移动点 线段系列2个动作
隐藏对象
移动隐藏几何体
三视图
隐藏对象
A
B
C
三视图
A
B
C
隐藏几何体
显示对象
三视图
隐藏几何体
根据下面的三视图,说出这个几何体是由几个正方体怎么组合而成的.
建筑物的形状
某建筑物模型的三视图如图所示,请你描述建造的建筑物是什么样 子的?共有几层?模型一共需要多少个小正方体?
反馈练习
隐藏对象
显示点 移动点 移动点 系列2个动作

立体图形的直观图_课件

立体图形的直观图_课件

立体几何中常用中学学过的平行投影(斜投影)来画空间图形 的直观图,这种画法叫斜二测画法.
投影规律
平行性不变,但形状、长度、夹角会改变 ;平行直线段或同一直线上的两条线段的比 不变; 在太阳光下,平行于地面的直线在地面上的 投影x轴和y轴,两轴相交于点O;
② 作x'轴,y'轴,两轴相交于O',且使∠x'O'y'=45'或135' ;
③ 已知图中平行于x轴的线段仍与x'轴平行,且保持原长度不
变;平行于y轴的线段仍与y'轴平行,长度变为原来的一半;
④ 连接其余线条,擦去多余的辅助线.
斜二测画法的主要作用是为了画空间几何体

四个步骤:取面、画轴、平行性、长
(1)矩形;
(2)平行四边形:
(3)正三角形;
(4)正五边形.
斜二测画法画几何体的主要步骤 :
四个步骤:取面、画轴、平行性、长 度
2.已知长方体的长、 宽、高分别是3cm, 2cm, 1. 5 cm,用斜 二测画法画出它的直观图.
分析:画棱柱的直观图,通常将其底 面水平放置.利用斜二测画法画画出 底面,再画出则棱,就可以得到棱 柱的直观图.长方体是一种特殊的棱 柱,为画图简便,可取经过长方体 的一个顶点的三条棱所在直线作为x 轴、y轴、z轴.
(3)画侧棱.在心轴正半轴上取线段AA'.使AA'=1.5cm.过B,C,D各点分别 作二轴的平行线,在这些平行线上分别截取1.5 cm长的线段BB', cC', DD'. (4) 成图.顺次连接A'. B'. C". D',并加以整理(去掉辅助线,将被遮挡的部 分改为虚线)。就得到长方体的直观图了.

由视图到立体图形(教案)

由视图到立体图形(教案)

4.2 画立体图形—由视图到立体图形内容:华东师大版·七年级数学·上册教材第131--134页教学目标:1.掌握由物体的三视图辨认出物体形状的方法.2.在探索平面图形与空间几何体的相互转换的活动过程中,初步建立空间观念,发展几何直觉.3.尝试从不同角度寻求解决问题的方法,通过对解决问题过程的反思,获得解决问题的经验.4.通过观察、操作、归纳、类比、推断等教学活动,体验数学活动充满着探索性与创造性,增强自信心和克服困难的意志力,并从交流中获益,培养自主意识和协作学习的精神.教学重点:根据三视图描述基本几何体.教学难点:根据三视图描述实物原型.教学过程一、知识回顾1、通过_________可以把一个物体转化为平面的图形2、正视图是指__________________________的图形,俯视图是指_______________________的图形,侧视图是指_____________________________ 的图形。

3、如图所示,是由几个小立方块搭成的几何体的俯视图,正方形上的数字表示该位置上的小立方块的个数,请画出它的正视图和左视图。

4、试画出粉笔的三视图.二、自主探究观察右边的平面图形,大家可以联想到什么立体图形?结论:根据一个平面图形可以联想到许多的立体图形,要准确判断一个立体图形就必须用三视图的各个图形来综合判断。

三、实践应用探究1、下面是一些立体图形的三视图,请根据图形说出立体图形的名称并画出立体图形。

(1)正视图左视图俯视图(2)正视图正视图俯视图解:(1)长方体(2)圆锥探究2、一个物体的三视图是下面三个图形,请说出该物体形状。

正视图左视图俯视图探究3、如图,是一个常见的机械零件的三视图,请猜想,它可能是什么?答案:六角螺丝帽探究4、三视图如图所示的组合体,共有多少个小正方体组成?答案:12个探究5、一个由几块相同的小正方体搭成的立体图形的正视图和俯视图,如图所示这个立体图形中共有几块小正方体?答案:或7个;或8个;或9个四、小结。

画立体图形PPT教学课件


(1)俯
视3
3

12 3
(2)

3 42视

21
3、一个仓库里堆积着正方体的货箱若干,要搬运 这些箱子很困难,可仓管员要落实箱子的数量, 就想出 一个办法:将这堆货物的三视图画出来。 你能根据三视图帮他清点一下箱子的数量吗?
正 视 图
左 视 图
俯 视 图
4、用小立方体搭一个几何体,使得它的正视图
• 3、生理负荷与练习密度和课的进行相吻合,使其 具有计划性和科学性。
• 4、课后的目标反馈能及时了解学生的学习状况。
五、教材技术要点、易出现错误、纠正方法:
• 1、技术要点:后蹬充分,髋部前送。体现在“松、大、 快、前”动作放松,步幅大,频率快,向前摆臂摆腿效果 好。
• 2、易犯错误:曲线跑;八字脚 • 3、纠正方法:A、沿直线跑时要求两眼平视前方,身体重
0刚 柔 并 济 不 低 头我们 心 中 有天 地
四 方 水 土 养 育 了我们 中 华 武 术 魂
中国古代书法家(一)
1、王羲之 2、欧阳询 3、柳公权 4、颜真卿 5、赵孟頫
弓站 似 一 棵


少 林 武当


3 2 _1
摇分
坐如
太极 八 卦
2. 3 _ 5 _.6__.1__7__._ 6. - ..
钟走 路 一阵 风 连 环掌
2. _3 _5___6 7 6 -
中 华有 神

___
xx x 0
一大 片
___
xx xx x 0
枪挑 一条 线
___
清风 剑在 手 第
xx xx xx x
一、 指导思想:
本课以《体育与健康》过渡性大纲为依据,以“健康第一”的 指导思想为宗旨,以学生为主体,教师为主导。培养学生的创 造性潜能为教学方法,以快速跑、游戏为主要内容,达到愉悦 身心,体验成功,掌握技能的教学目标。

【最全PPT】立体图形的三视图


从上面看
正面方向
再变一变!
注意三种图的变化:
从正面看
从左面看
正面方向
从上面看
我的地盘我做主!
分小组用小正方体自由摆出各种不同的立体图形,并 画出它们的三视图.
拓展提高:1、下图中的三视图表示哪个几何体?
从上面看
从正面看
从左面看
能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形
从上面看
从正面看
从左面看
从上面看
从正面看
从左面看
从正面看 从左面看 经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;
分小组用小正方体自由摆出各种不同的立体图形,并画出它们的三视图. 在几何中,我们通常选择从正面、上面、左面三个方向观察物体。
从上面看
从左面看
左视图
从正面看
俯视图
看得见的轮廓线画成实线
主视图
基础练习2
从上面看 从左面看
从正面看
主视图
左视图
俯视图
从上面看
自主尝试
从左面看
主视图 俯视图
左视图
变一变!
我们把从正面看到的图形叫做主视图,从左面看到的图形叫左视图,从上面看到的图形叫做俯视图.
能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形
1---- -3
2--------6 5---------4
这样就把一个立体图形用几个平面图形来描述
我们把从正面看到的图形叫做主视图,从左面看到的图形叫左视图,从上面看到的图形叫做俯视图.
5、 有一个正方体,在它的各个面上分别涂了白、红、黄、兰、绿、黑六种颜色。

由三视图想象立体图形3


课堂练习: 由三视图想象实物的形状:
由物知图——利用正方体组合提升空间想象力 如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
(1)
(2)
(3)
(4)
做一做:由几个相同的小立方块搭成的几何体的 俯视图如图所示。方格中的数字表示该位置的小 方块的个数.请画出这个几何体的三视图。
2.锥体——有两个视图是三角形. 3.台体
圆台——有两个视图是等腰梯形
棱台——有两个视图是梯形 4.球——三个视图都是圆
上节课我们讨论了由立体图形(实物)画出三视图, 下面我们讨论由三视图想象出立体图形(实物)。
分析:由三视图想象立体图形时,要分别根据主视图、俯视图 和左视图想象立体图形的前面、上面和左侧面,然后再综合起 来考虑整体图形。
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题)
直三棱柱
(第6题)
6.一个直棱柱的主视图和俯视图如图所示.描述这 个直棱柱的形状,并补画它的左视图.
直五棱柱,底面是五边形
7、右图是由一些相同的小正方体构成的几何 体的 三视图,则构成这个几何体的小正方体 的个数是【 】 A.5 B.6 C.7 D.8
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?

3.2 立体图形的视图 1.由立体图形到视图

华东师大版 七年级上册
第3章 图形的初步认识 3.2 立体图形的视图 1.由立体图形到视图
学 1.通过丰富的实例,了解中心投影和平行投影的概 习 念; 目 2.会画直棱柱、圆柱、圆锥、球的主视图、左视图、 标 俯视图,能判断简单物体的视图.
新课学习
知识点1 投影 例1 投影:光线照射物体,在某个平面上得到的影子叫做 物体的投影.
分类 中心投影
平行投影
正投影
图例
分类
中心投影
平行投影
正投影
概念
由点光源照射形 成的投影
由 平行 光⁠ 线形成的投影
投影线 垂直 ⁠ 于投影面的平行 投影
垂直于地面的物体 离光源距离近时,
太阳光线可近
正投影是特殊的
注意 影子短;离光源远 似看成平行光 平行投影
时,影子长
线
练1-1 下列选项中,表示两棵树在同一时刻的阳光下的影 子的是( B )
12345
3. 如图,日晷仪也称日晷,主要是根据日影的位置,以指定 当时的时辰或刻数,晷针在晷面上所形成的投影属于 平

行 投影.
12345
4. 如图,右边是由四个相同的小长方体堆成的物体,试 指出左边三个平面图形分别是这个物体的三视图中的 哪个视图.
左视图 俯视图
主视图
12345
5. 画出如图所示的立体图形的三视图. 解:三视图如答图所示.
知识点2 几何体的视图 例2 如图,主视图:从前往后看物体得到的视图; 俯视图:从 上 往 下 看物体得到的视图; 左视图:从 左 往 右 看物体得到的视图. 主视图、俯视图、左视图统称为三视图.
练2 (1)画出如图所示的圆柱的三视图; 解:如答图.
(2)画出如图所示的正方体的三视图. 解:如答图.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 找出与下图中各三视图对应的立体图 形,将号码填入括号中
3
4
1
2
2你能根据下面的三视图画出它的原立体图形吗?
正视图
俯视图
左视图
原图形
2你能根据下面的三视图画出它的原立体图形吗?
正视图
俯视图
左视图
原图形
1、由四个小长方形搭成的物体,它的俯视图如图所 示。问这个物体有几种搭法?试分别画出来。
画立体图形
——由视图到立体图形
1、如果你看到下图你会想到什么立体图形?
2、试举出俯视图是圆的立体图形。
答:圆柱、球、 圆锥。
3、下面是一些立体图形的三视图,你知道它们 分别是什么图形的三视图吗?
主视图
左视图
俯视图 长方体
主视图
左视图
俯视图
圆锥体
主视图
左视图
俯视图
四棱锥
读图时,无法根据某一个视图确定 其空间形状,因此必须将有关视图联系 起来分析,找出各个视图之间的关系, 从而长方形搭成的物体,它的俯视图如图所 示。问这个物体有几种搭法?试分别画出来。
还有几种放法哦! 剩下的放法你来告诉我!
怎样根据三视图描述物体的形状呢?
一般先从俯视图结合正视图推测原物体 的大体轮廓,再由侧视图展开联想。要尽可 能准确地运用“长对正,高平齐,宽相等” 的原则,使物体现出庐山真面目!
作业
相关文档
最新文档