陕西省西安铁一中、铁一中国际合作学校2014届高三上学期9月月考数学(理)试题
陕西省西安铁一中、铁一中国际合作学校2014届高三上学期9月月考地理试题

高三模拟考试地理试题(满分:100,考试时间:70分钟)第Ⅰ卷一、选择题:以下各小题中只有一个选项是符合题意要求的,请将其对应编号用2B铅笔在答题卡上涂黑,每题4分,共11道,总计44分。
1、2012年7月27日—8月12日,第30届夏季奥运会在英国伦敦举行。
读图1,回答1-3题。
1、在7、8月份,伦敦比北京:()A、气温高、日温差大B、风小雾大,降水多C、正午太阳高度角小D、日出晚,昼短夜长2、英国:()A、地处亚欧板块和美洲板块交界处B、西部海岸线曲折,珊瑚礁发育好C、地形以高原为主,地势西高东低D、多数河流短,含沙少,无结冰期3、途径该区域的洋流;()A、能使北美洲至欧洲的海伦航行速度加快B、造成欧洲西部地区气温升高,湿度降低C、进入到北冰洋海域,使当地能见度变好D、在与其他洋流交汇的海域不易形成渔场图2为过M点(128°E、48°N)沿经线和纬线所做相同长度的地形剖面图,读图回答4—6题。
4.若①、②两地处于同一山脉,则该山脉可能是( )A.大兴安岭B.阴山C.小兴安岭D.长白山5.M地所在省区( )A.重工业和农业发达B.农、牧过渡地带,土地退化严重C.草原面积广阔,畜牧业发达D.人口稠密,劳动力数量多6.关于M 地附近河流水文特征的叙述,正确的是()A.流量小,含沙量大B.流量大,结冰期长C.流量小,汛期只出现在夏季D.流量大,水位季节变化小图3为“甲、乙两国人口出生率与死亡率变化曲线图”。
读图,完成7-8题。
7.关于对图示信息的分析,下列推断最合理的是()A.20世纪末,乙国人口增长数量不一定多于甲国B.20世纪中期以来,乙国每年增加的人口多于甲国C.20世纪初,乙国死亡率高的原因为老龄人口多D.20世纪中期以来,乙国人口数量超过甲国8.目前甲、乙两国人口的变化可能产生的主要问题有()A.甲国的劳动力短缺 B.甲国城市化问题凸现C.甲国的生态破坏加重 D.乙国的环境污染减轻图4是“40°N某区域的地形剖面图”,右图是某地“气温变化曲线和降水柱状图”,读图回答9—11题。
2014年陕西高考理科数学试题及答案详解

2014年普通高等学校招生全国统一考试(陕西卷)理科数学试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年陕西卷(理01)】已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=【2014年陕西卷(理02)】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π.2C π.4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 【2014年陕西卷(理03)】定积分1(2)xx edx +⎰的值为( ).2Ae +.1B e +.C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x选∴,-0-1|)()2(11102∫=+=+=+【2014年陕西卷(理04)】根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n =.2(1)n B a n =-.2n n C a =1.2n n D a -=【答案】 C【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π.4B π.2C π4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A 2.5B 3.5C 4.5D【答案】 C【解析】C p 选反向解题.53C 4C 4-1.2525=== 【2014年陕西卷(理07)】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+【2014年陕西卷(理08)】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a=+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,. 【2014年陕西卷(理10)】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =- (C )33125y x x =- (D )3311255y x x =-+【答案】 A 【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′=第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).【2014年陕西卷(理11)】已知,lg ,24a x a==则x =________. 【答案】 10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,【2014年陕西卷(理12)】若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y【2014年陕西卷(理13)】设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a//,则=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a【2014年陕西卷(理14)】观察分析下表中的数据:多面体 面数(F ) 顶点数(V ) 棱数(E ) 三棱锥 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】 2+=+E V F【解析】.2+=+E V F 经观察规律,可得【2014年陕西卷(理15)】(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,则22m n +的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线s i n ()16πρθ-=的距离是【答案】 A 5 B 3 C 1 【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 【2014年陕西卷(理16)】 (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.(1) a 、b 、c 成等数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB.sinB=sin[π-(A+C)]=sin(A+C)=sin(A+C) ∴ sinA+sinC=2sin (A+C ).(II) a,b,c 成等比例,∴ b 2=2c.由余弦定理得cosB=ac ac c a ac b c a 2222222-+=++≥2122=-ac ac ac ,当且仅当a=c 时等号成立.∴ cosB 的最小值为21.【2014年陕西卷(理17)】(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.解 (I )由该四面体的三视图可知,BD ⊥DC, BD ⊥AD , AD ⊥DC, BD=DC=2,AD = 1.由题设,BC //平面EFGH, 平面EFGH ⋂平面BDC=FG, 平面EFGH ⋂平面ABC=EH,∴ BC// FG, BC//EH, ∴FG//EH. 同理EF//AD,HG//AD, ∴EF//HG, ∴四边形EFGH 是平行四边形。
陕西西安铁一中、铁一中国际合作学校2014届高三生物上学期9月月考试卷(解析版)

陕西西安铁一中、铁一中国际合作学校2014届高三生物上学期9月月考试卷(解析版)1. 在细胞到生态系统的生命系统结构层次中,细胞是最基本的生命系统。
多细胞生物依赖各种分化的细胞密切合作,共同完成一系列的生命活动,从生命系统的各个层次上分析,都存在着物质、能量和信息的输入、转变、输出等变化。
下列说法正确的是()A.细胞的体积越大,相对表面积就越大,物质运输的效率就越高B.植物叶肉细胞利用核孔实现核内外DNA、RNA和蛋白质的交换C.从生命系统的结构层次来分析,一个大肠杆菌只对应于细胞层次D.水稻生命系统结构层次为细胞→组织→器官→个体→种群→群落→生态系统→生物圈2. 对于下列各结构在生物中的叙述,不正确的是()①叶绿体②染色体③核膜④核糖体⑤细胞壁⑥拟核A.菠菜和发菜体内都含有①③④⑤ B.①~⑤在绿藻体内都存在C.除①②③外其他都在颤藻的体内存在 D.大肠杆菌和蓝藻共有的是④⑤⑥3.下列说法中,正确的项数是()①没有叶绿体的细胞一定是动物细胞②没有大液泡的细胞一定是动物细胞③有细胞壁的细胞一定不是动物细胞④有中心体的细胞一定不是植物细胞⑤有线粒体的细胞一定是真核细胞⑥能进行光合作用的细胞一定能进行呼吸作用A.2 B.3 C.4 D.54. 根据细胞的功能推测,下列叙述中不正确的是()A.汗腺细胞比肠腺细胞具有更多的核糖体 B.心肌细胞比唾液腺细胞具有更多的线粒体C.胰腺细胞比心肌细胞具有更多的高尔基体 D.蛔虫细胞与小狗细胞相比缺少线粒体5. 在植物受伤时,一种由18个氨基酸组成的多肽——系统素会被释放出来,与受体结合,活化蛋白酶抑制基因,抑制害虫和病原微生物的蛋白酶活性,限制植物蛋白的降解,从而阻止害虫取食和病原菌繁殖。
下列关于系统素的描述正确的是()A.系统素能抑制植物体内与蛋白酶有关的基因的表达B.系统素的合成与分泌与核糖体、内质网和液泡有直接关系C.系统素能与双缩脲试剂发生作用,产生紫色反应D.系统素相当于植物体内的“抗体”,能与外来的“抗原”发生特异性的结合6. 下列关于细胞内的糖类与脂质的叙述不正确的是()A.糖类是生物维持生命活动的主要能源物质,也是生物体重要的结构物质B.植物细胞中的多糖主要是淀粉和纤维素,动物细胞中的多糖主要是乳糖和糖原C.脂质中的磷脂是构成细胞膜的重要物质,所有细胞都含有D.固醇类物质在细胞的营养、调节和代谢中具有重要功能7.一系列实验证明细胞膜具有流动性。
地形剖面图的绘制及判读

方法技巧:地形剖面图的绘制及判读1.地形剖面图的绘制步骤⑴确定剖面的方向,画出剖面基线AB。
⑵确定比例尺。
垂直比例尺一般是原图的5、10、15、20倍,倍数越大,起伏越明显。
水平比例尺一般与原图一致。
在新图中绘制水平线MN,按水平比例尺的大小定出剖面范围为横坐标,按垂直比例尺的大小,绘出纵坐标。
⑶点出剖面基线AB与等高线的交点,并从每一个交点向MN线上引垂线,如上图所示,从1点至15点向MN线引垂线。
⑷根据规定的垂直比例尺找出垂线上1′点至15′点的相应高度。
⑸用平滑曲线从1′点一直连到15′点,即得出AB剖面线的地形剖面图。
⑹连接海拔相等的相邻两点时要注意分析等高线图上相应两点间的地势高低走势及两点间的海拔,从而做到准确平滑过渡。
2.地形剖面图的判读技巧确定某剖面图是沿何剖面线画出来的,主要抓住以下三看:⑴看形状:可粗略地观察剖面线与所经过的大的地形部位(如山峰、鞍部、陡崖)与剖面图是否一致;⑵看关键点的海拔:观察剖面线与等高线交点中的一些关键点,如起点、中点、终点等,看这些点在等高线图上的高度与剖面线上的高度是否一致;⑶看最高点和最低点的海拔:分析剖面线穿越的最高值等高线、最低值等高线与剖面图上的垂直高度是否相符(剖面线上最高点的高度应该小于最高等高线的高度与等高距之和,而最低点的高度应该大于最低等高线的高度与等高距之差)。
【典型例题】(2013·天津高考)某中学地理小组对下图所示区域进行考察。
读图回答下题。
在同学们绘制的地形剖面图中,依据上图甲、乙两处连线绘制的是( )思维过程从图表中获取信息答案 C练习:读某风景区等高线图,回答下题。
1.下面地形剖面图是依据等高线图中的哪一剖面线绘制的( )A.L1B.L2C.L3 D.L4读某地区等高线地形图,完成下题。
2.沿图中a-b剖面线绘制的地形剖面是下图中的( )(湖南省怀化市2015届高三上学期第一次联考)读“我国某地区等高线地形图”,回答下题。
陕西省西安市高新第一中学2024-2025学年度第一学期九年级月考数学试题

陕西省西安市高新第一中学2024-2025学年度第一学期九年级月考数学试题一、单选题1.如图,是由两个大小不同的长方体组成的几何体,则该几何体的主视图为( )A .B .C .D .2.在下列条件中,能够判定ABCD Y 为矩形的是( )A .AB AC = B .AC BD ⊥ C .AB AD = D .AC BD = 3.如果两个相似三形对应边之比1:9,那么它们的对应中线之比是( ) A .1:2 B .1:3 C .1∶9 D .1:81 4.如图,已知AB CD EF ∥∥,23AC CE =∶∶,3BD =,那么DF 的长为( )A .4B .92C .5D .1125.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A .132B .7C .152D .86.如图,在67⨯的网格中,每个小正方形的边长均为1,若点A ,B ,C 都在格点上,则sin B 的值为( )A B C .23 D 7.若()1,3A y -、()2,2B y -、()31,C y 三点都在函数1y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .123y y y <<C .213y y y >>D .132y y y << 8.如图,在矩形ABCD 中,对角线,AC BD 相交于点,O BE AC ⊥于点E .若36CE AE ==,则边AD 的长是( )A .B .C .D .6二、填空题9.若34a b =,则a b a -=.10.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个. 11.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为米.12.如图,已知在ABO V 中,点C 在AB 上,2,BC AC CO CB ==,2AOC S =△,反比例函数k y x=的图像经过点C ,则k 的值为.13.如图,在平行四边形ABCD 中,3AB =,4AD =,点E 在AD 的延长线上,且2DE =,过点E 作直线l 分别交边CD ,AB 于点M ,N .若直线l 将平行四边形ABCD 的面积平分,则线段CM 的长为 .三、解答题14.解方程:2420x x -+=.15.计算:222sin 454cos 30tan 60︒+︒-︒16.如图,已知四边形ABCD ,AD BC ∥,请用尺规作图法,在边AD 上求作一点E ,在边BC 上求作一点F ,使四边形BFDE 为菱形.(保留作图痕迹,不写作法)17.如图,已知AD •AC =AB •AE ,∠DAE =∠BAC .求证:△DAB ∽△EAC .18.从同一副扑克牌中选出四张牌,牌面数字分别为2,5,6,8.将这四张牌背面朝上,洗匀.(1)从这四张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是;(2)小明从这四张牌中随机抽出一张牌,记下牌面数字后,放回.背面朝上,洗匀.然后,小华从中随机抽出一张牌,请用画树状图或列表的方法,求小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率.19.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()1,2A -,()3,3B -,()3,1C -.(1)以点B 为位似中心,在点B 的下方画出11A BC V ,使11A BC V 与ABC V 位似,且相似比为2:1,点A ,C 的对应点分别为1A ,1C ;(2)直接写出点1A 和点1C 的坐标:1A (______,______),1C (______,______).20.如图所示,在ABC V 中,90ACB ∠=︒,CD 平分ACB ∠,DE AC ⊥于E ,DF BC ⊥于F ,求证:四边形CEDF 是正方形.21.某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?22.关于x 的一元二次方程2610x x k -+-=.(1)如果方程有实数根,求k 的取值范围;(2)如果1x ,2x 是这个方程的两个根,且221212324x x x x ++=,求k 的值. 23.新学期,小华和小明被选为升旗手,为了更好地完成升旗任务,他俩想利用测倾器和阳光下的影子来测量学校旗杆的高度PA .如图所示,旗杆直立于旗台上的点P 处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端F 处,此时,量得小华的影长2m FG =,小华身高 1.6m EF =;然后,在旗杆影子上的点D 处,安装测倾器CD ,测得旗杆顶端A 的仰角为49︒,量得0.6m CD =,6m DF =,旗台高 1.2m BP =.已知在测量过程中,点、、、B D F G 在同一水平直线上,点A P B 、、在同一条直线上,AB CD EF 、、均垂直于BG .求旗杆的高度PA .(参考数据:sin 490.8,cos490.7,tan 49 1.2︒≈︒≈︒≈)24.如图,在平面直角坐标系中,O 为坐标原点,一次函数2y x =-+的图象与反比例函数k y x=在第二象限的图象交于点(,3)A n ,与x 轴交于点B ,连结AO 并延长交这个反比例函数第四象限的图象于点C .(1)求这个反比例函数的表达式.(2)求ABC V 的面积.(3)当直线..AC 对应的函数值大于反比例函数k y x=的函数值时,直接写出x 的取值范围. 25.在Rt ABC △中,90C ∠=︒,10AC =cm ,7BC =cm ,现有动点P 从点A 出发,沿线段AC 向终点C 运动,动点Q 从点C 出发,沿线段CB 向终点B 运动,连接PQ .如果点P 的速度是2cm /s ,点Q 的速度是1cm /s .它们同时出发,当有一点到达终点时,另一点也停止运动,设运动时间为s t .(1)当t 为多少时,PQ cm ?(2)当t 为多少时,以C ,P ,Q 为顶点的三角形与ABC V 相似?26.问题提出(1)如图1,AD 是等边ABC V 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________.问题探究(2)如图2,在ABC V 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积.问题解决(3)如图3,现有一块ABC V 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP V 型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下: ①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ;②作CD 的垂直平分线l ,与CD 于点E ;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP BP、,得ABPV.请问,若按上述作法,裁得的ABPV型部件是否符合要求?请证明你的结论.。
(完整版)2014年陕西省高考数学试卷(理科)答案与解析

2014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)(2014•陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)考点:交集及其运算.专题:集合.分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选B.点评:本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)(2014•陕西)定积分(2x+e x)dx的值为()A.e+2 B.e+1 C.e D.e﹣1考点:定积分.专题:导数的概念及应用.分析:根据微积分基本定理计算即可.解答:解:(2x+e x)dx=(x2+e x)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)(2014•陕西)根据如图框图,对大于2的正数N,输出的数列的通项公式是()A.a n=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣1考点:程序框图;等比数列的通项公式.专题:算法和程序框图.分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.解答:解:由程序框图知:a i+1=2a i,a1=2,∴数列为公比为2的等比数列,∴a n=2n.故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.解答:解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)(2014•陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:应用题;概率与统计;排列组合.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.点评:本题考查概率的计算,列举基本事件是关键.7.(5分)(2014•陕西)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()xD.f(x)=3x考点:抽象函数及其应用.专题:函数的性质及应用.分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.解答:解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选D.点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假考点:四种命题间的逆否关系.专题:简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)(2014•陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.解答:解:方法1:∵y i=x i+a,∴E(y i)=E(x i)+E(a)=1+a,方差D(y i)=D(x i)+E(a)=4.方法2:由题意知y i=x i+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.点评:本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)(2014•陕西)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣x B.y=x3﹣xC.y=x3﹣x D.y=﹣x3+x考点:导数的几何意义;函数解析式的求解及常用方法.专题:函数的性质及应用;导数的概念及应用.分析:分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.解答:解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.点评:本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)(2014•陕西)已知4a=2,lgx=a,则x=.考点:对数的运算性质.专题:计算题.分析:化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.解答:解:由4a=2,得,再由lgx=a=,得x=.故答案为:.点评:本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)(2014•陕西)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.解答:解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.点评:本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题.14.(5分)(2014•陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是F+V﹣E=2.考点:归纳推理.专题:归纳法;推理和证明.分析:通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.解答:解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V ﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2点评:本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)(2014•陕西)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.解答:解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:点评:本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.(几何证明选做题)16.(2014•陕西)如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=3.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:证明△AEF∽△ACB,可得,即可得出结论.解答:解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.点评:本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.(2014•陕西)在极坐标系中,点(2,)到直线ρsin(θ﹣)=1的距离是1.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:把极坐标化为直角坐标的方法,利用点到直线的距离公式求得结果.解答:解:根据极坐标和直角坐标的互化公式x=ρcosθ,y=ρsinθ,可得点(2,)即(,1);直线ρsin(θ﹣)=1即﹣x+y=1,即x﹣y+2=0,故点(,1)到直线x﹣y+2=0的距离为=1,故答案为:1.点评:本题主要考查把极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)(2014•陕西)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间角.分析:(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.解答:(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH∥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH⊥,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.点评:本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)(2014•陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.考点:平面向量的基本定理及其意义;平面向量的坐标运算.专题:平面向量及应用.分析:(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m+n,表示出m﹣n=y ﹣x,最后结合图形,求出m﹣n的最小值.解答:解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.点评:本题考查了向量的坐标运算,关键在于审清题意,属于中档题,21.(12分)(2014•陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.考点:离散型随机变量及其分布列;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.解答:解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P()P()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.点评:本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.22.(13分)(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线.分析:(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(x p,y p),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.解答:解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(x p,y p),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得x p=,从而y p=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.点评:本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、函数与方程思想,属于难题.23.(14分)(2014•陕西)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.解答:解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.点评:本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.。
陕西省西安铁一中、铁一中国际合作学校2014届高三上学期9月月考数学(理)试题
高三模拟四考试 数学试题(理科)(满分:150分,考试时间:120分钟)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设a ,b 是单位向量,则“a ·b =1”是“a =b ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知集合{}2,0x A y y x -==<,集合{}12B x y x ==,则A B ⋂=A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞3. 双曲线22221y abx -=的一条渐近线方程为43y x =,则双曲线的离心率为A.53B.43C.54D.4. 函数()y f x =的图象在点(5,(5))P f 处的切线方程是8y x =-+,则(5)(5)f f '+=A. 12B.-1C.1D.25. 运行右图所示框图的相应程序,若输入,a b 的值分别为2l o g 3和3log 2,则输出M 的值是A.0B.1C. 2D. -16. 设{}1212331,,,3,a ∈-,则使函数ay x =的定义域为R 且为奇函数的所有a 的值为A.1,3B.1,3,13-C.1,3,23D.1,23,3,13-7. 某几何体的三视图如右图所示,根据图中标出的尺寸,可得这个几何体的体积为A.12B.C.D.8.已知等差数列{}n a 的公差0d <, 若462824,10a a a a ⋅=+=,则该数列的前n 项和n s 的最大值为 A .60B .55C .50 D.459. 如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若此点落在阴影部分的概率为14,则a 的值是A.712πB.23πC.34πD.56π10. 已知)(x f 是定义在R 上的可导函数,且)()('x f x f < 对于任意R x ∈恒成立,则A. )0()2013(),0()2(20132f e f f e f ⋅>⋅>B. )0()2013(),0()2(20132f e f f e f ⋅>⋅<C. )0()2013(),0()2(20132f e f f e f ⋅<⋅>D. )0()2013(),0()2(20132f e f f e f ⋅<⋅<第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,满分25分.11.已知向量(1,2),(2,)a b λ=-=,且a 与b 的夹角为锐角,则实数λ的取值范围是 .12. 设实数,x y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若11y z x +=+的最小值为14,则a 的值为 .13.若将()()x a x b --逐项展开得2x a x b x a b --+,则2x 出现的概率为14,x 出现的概率为12,如果将()()()()()x a x b x c x d x e -----逐项展开,那么3x 出现的概率为 .14. 已知函数()()22l o g 1,02,0x x f x x x x ⎧+>=⎨--≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是 .15.已知l g l g 0a b +=,则满足不等式2211a b a b λ+++≤的实数λ的范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)16.(本小题12分)设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的值.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到的,求()y g x =的单调递增区间.17.(本小题12分)数列}{n a 各项均为正数,其前n 项和为n S ,且满足222=-n n n a S a .(Ⅰ)求证:数列}{2n S 为等差数列,并求数列}{n a 的通项公式;(Ⅱ)设1424-=n n S b , 求数列}{n b 的前n 项和n T 的最小值.18.(本小题12分)在四棱锥P ABCD -中,侧面P C D ⊥底面A B C D ,PD CD ⊥,E 为PC 中点,底面A B C D 是直角梯形.0//,90,AB CD ADC ∠=1,AB AD PD ===2CD =.(Ⅰ)求证://BE 平面APD ;(Ⅱ)设Q 为侧棱PC 上一点,PQ PC λ=,试确定λ的值,使得平面PBD 与平面QBD 的夹角为45.19.(本小题12分)已知中心在原点O ,焦点在x 轴上,离心率为2的椭圆过点(,2.(Ⅰ)求椭圆的方程;(Ⅱ)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,且直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.20. (本小题13分)第30届奥运会已于2012年7月27日在伦敦举行,当时某学校招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm ):若身高在180cm 以上(包括180cm )定义为“高个子”,身高在180cm 以下(不包括180cm )定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中随机选3名志愿者,用X 表示所选志愿者中能担任“礼仪小姐”的人数,试写出X 的分布列,并求X 的数学期望.21.(本小题14分)已知函数)(ln )(R a xax x f ∈+=. (Ⅰ)求)(x f 的极值;(Ⅱ)若函数)(x f 的图象与函数)(x g =1的图象在区间],0(2e 上有公共点,求实数a 的取值范围;(Ⅲ)设各项为正的数列}{na 满足:*111,ln 2,n n n a a a a n N +==++∈,求证:21n n a ≤-高三模拟数学(理科)参考答案与评分标准一、选择题:(每小题5分,满分50分)11.()(),44,1-∞-⋃-; 12.1; 13.516; 14.(0,1); 15. [)1,+∞. 三、解答题:16. 解:(Ⅰ)2222()(sin cos )2cos sin cos sin212cos2f x x x x x x x x ωωωωωωω=++=++++sin 2cos 22)24x x x πωωω=++=++,依题意得2223ππω=,故ω的最小正周期为32. …………6分(Ⅱ)依题意得: 5()3()2)2244g x x x πππ⎡⎤=-++=-+⎢⎥⎣⎦,由5232()242k x k k Z πππππ--+∈≤≤, 解得227()34312k x k k Z ππππ++∈≤≤, 故()y g x =的单调增区间为: 227[,]()34312k k k Z ππππ++∈. …………12分 17.解:(Ⅰ)∵122=-n n n a S a ,∴当n≥2时,1)()(2211=-----n n n n n S S S S S ,整理得,1212=--n n S S (n≥2),又121=S , ∴数列}{2n S 为首项和公差都是1的等差数列.∴n S n =2,又0>n S ,∴n S n =.∴n≥2时,11--=-=-n n S S a n n n ,又111==S a 适合此式,∴数列}{n a 的通项公式为1--=n n a n . …………6分(Ⅱ)∵121121)12)(12(21424+--=+-=-=n n n n S b n n , ∴)12)(12(1531311+-++⨯+⨯=n n T n 1211215131311+--++-+-=n n =1221211+=+-n n n ,2112n n T n∴==+时,的最小值为23. …………12分 18.解:(I )取PD 的中点F ,连结,E F A F ,因为E 为PC 中点,∴//EF CD ,且112E F C D ==, 在梯形A B C D 中,//,1A B C D A B =,∴//,,EF AB EF AB =四边形ABEF 为平行四边形,∴//,BE AFBE ⊄平面PAD ,AF ⊂平面PAD ,∴//BE 平面PAD .…………6分(II )如图,以D 为原点建立空间直角坐标系D xyz -,则(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C P , 平面PBD 的法向量为(1,1,0),BC =- (0,2,1),,(0,1)PC PQ PC λλ=-=∈,(0,2,1)Q λλ∴-,设平面QBD 的法向量为(,,)n a b c =,(1,1,0),DB =(0,2,1)DQ λλ=-,由02(1)0n DB a b n DQ b c λλ⎧⋅=+=⎨⋅=+-=⎩,∴2(1,1,)1n λλ=--,∴0cos 452n BC n BC⋅===⋅⋅,注意到(0,1)1λλ∈∴=. …………12分19.解:(Ⅰ)由题意可设椭圆方程为22221xy ab+= (a >b >0), 则22211,2c a a b +=⎧⎪⎪⎨⎪⎪⎩ 故2,1a b ==⎧⎨⎩,所以,椭圆方程为2214x y +=.…………4分(Ⅱ)由题意可知,直线l 的斜率存在且不为0, 故可设直线l 的方程为 y =kx +m (m≠0),P (x 1,y 1),Q (x 2,y 2),由22,440,y kx m x y =++-=⎧⎨⎩消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则△=64 k 2b 2-16(1+4k 2b 2)(b 2-1)=16(4k 2-m 2+1)>0,且122814km x x k -+=+,21224(1)14m x x k-=+.…………6分 故 y 1 y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以,1212y y x x ⋅=22121212()k x x km x x m x x +++=k 2,即222814k m k-++m 2=0,又m≠0, 所以 k 2=14,即 k =12±.…………10分由于直线OP ,OQ 的斜率存在,且△>0,得0<m 2<2 且 m 2≠1.设d 为点O 到直线l 的距离,则 S △O PQ =12d | PQ |=12| x 1-x 2 | | m |=所以 S △O P Q 的取值范围为 (0,1).…………12分 20.解:(I )根据茎叶图可知,这20名志愿者中有“高个子”8人,“非高个子”12人,用分层抽样的方法从中抽出5人,则每个人被抽到的概率为51204=,所以应从“高个子”中抽1824⨯=人,从“非高个子”中抽11234⨯=人.用事件A 表示“至少有一名‘高个子’被选中”,则它的对立事件A 表示“没有一名‘高个子’被选中”,则232537()1()111010C P A P A C ===-=-=,因此至少有1人是“高个子”的概率是710;…………6分(II )依题意知,所选志愿者中能担任“礼仪小姐”的人数X 的所有可能为0,1,2,3.()34381014C P X C ===, ()124438317C C P X C ===,()214438327C C P X C ===, ()34381314C P X C ===,因此,X 的分布列如下:所以X 的数学期望01231477142EX =⨯+⨯+⨯+⨯=.…………13分 21.解:(Ⅰ)2)(ln 1)(),,0()(xa x x f x f +-='+∞的定义域为, 令a e x x f -=='10)(得,当)(,0)(,),0(1x f x f e x a >'∈-时是增函数; 当)(,0)(,),(1x f x f e x a <'+∞∈-时是减函数;∴111)()(,)(---===a a ae ef x f e x x f 极大值处取得极大值在,无极小值. …………4分 (Ⅱ)①当21e e a <-时,即时1->a ,由(Ⅰ)知),0()(1a e x f -在上是增函数,在],(21e e a -上是减函数,()11max ()a a f x f e e --∴== ,又当,(.0)(],0(2e e x x f e x a a --∈<∈当时当,0)(,2x f e x a a --==时],(.0)(],0(,02e e x x f e x a a --∈<∈=当时当时,).0()(1-∈a e x f ,∴1)()(=x g x f 与图象的图象在],0(2e 上有公共点,⇔11≥-a e .解得1,1,1≥->≥a a a 所以又.②当121-≤≥-a e e a 即时,],0()(2e x f 在上是增函数,∴2222)(],0()(e ae f e x f +=上的最大值为在, 所以原问题等价于.2,1222-≥≥+e a ea解得又1-≤a ,∴无解,综上,实数a 的取值范围是[)1,+∞. …………10分 (Ⅲ)令a =1,由(Ⅰ)知,l n 11(0),l n 1x x x x x+≤>∴≤-, 11a =,假设*1()k a k N ≥∈, 则1ln 21k k k a a a +=++>,故*1()n a n N ≥∈从而1l n 221n n n n a a a a +=++≤+1112(1)2(1)n n n a a a +∴+≤+≤≤+,即1221nnn n a a +≤∴≤-. …………14分。
陕西省西安铁一中、铁一中国际合作学校2014届高三上学期9月月考化学试题
高三模拟考试化学试题(满分100,考试时间70分钟)常用元素原子量:Zn:65 Fe:56 O:16 Na:23 Mg:24一、选择题(每小题只有一个选项正确,每题6分,共42分)1.氯化铁溶液与氢氧化铁胶体具有的共同性质是( )A.分散质颗粒直径都在l~100nm之间B.能透过半透膜C.加热蒸干、灼烧后都有氧化铁生成D.呈红褐色2.下列事实能用同一原理解释的是( )A.Cl2与Fe、Cu反应生成高价氯化物B.NH4HCO3晶体、固体I2受热均能变成气体C.SO2、Cl2均能使品红溶液褪色D.ClO 与Fe2+、H+均不能大量共存3.在一定条件下,等物质的量的氯气与碘单质反应,得到一种红棕色液体ICl,ICl有很强的氧化性。
现有下列两个反应:①2ICl+2Zn=ZnCl2+ZnI2 ②ICl+H2O=HCl+HIO下列叙述正确的是( )A.Cl2与I2生成IC1是非氧化还原反应B.反应①中,ZnI2只是氧化产物C.反应①中,当转移0.4mol电子时生成13.6gZnCl2D.反应②中,IC1既是氧化剂又是还原剂4.分子式为C3H4Cl2链状有机物的同分异构体共有(不考虑顺反异构)()A.4种B.5种C.6种D.7种5.下列溶液中,各组离子一定能大量共存的是()A.在强酸性溶液中:K+、NH4+、SO42-、ClO-B.能使石蕊试液呈蓝色的溶液中:Na+、I-、Cl-、NO3-C.在pH=1的溶液中:NH4+、Mg2+、SO32-、NO3-D.含有大量Al3+的溶液中:NH4+、Na+、Cl-、HCO3-6.下列离子方程式中正确的是()A.将SO2气体通入NaClO溶液中:SO2+2ClO-+H2O =SO32-+2HClOB .向FeBr 2溶液中通入过量Cl 2:2Fe 2++4Br -+2Cl 2 = 2Fe 3+ + 2Br 2 + 4Cl -C .向硫酸氢钾溶液中加入Ba(OH)2溶液至中性: 2H ++SO 42+Ba 2++2OH -= BaSO 4↓+2H 2OD .NH 4HCO 3溶液与过量NaOH 溶液反应:NH 4++OH -= NH 3↑+H 2O7.阿斯巴甜是目前使用最广泛的甜味剂.甜度约为蔗糖的200倍,其结构简式为:下列关于阿斯巴甜的说法正确的是A .属于糖类B .分子式为C 14H 19N 2O 5C .不能发生水解反应D .既能与酸反应又能与碱反应二、非选择题(五道题,共58分)8.(12分)已知X 是一种酸式盐,H 是常见金 属单质,F 、I 是常见非金属单质,D 为淡黄色固 体,E 、G 都是工业上重要的碱性物质,A 物质 可做耐火材料。
陕西省西安市碑林区铁一中学2024年九上数学开学统考试题【含答案】
陕西省西安市碑林区铁一中学2024年九上数学开学统考试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解关于x 的方程x 2+px+q=0时,此方程可变形为()A .224()24p p q x -+=B .224()24p q p x -+=C .224(24p p q x --=D .224()24p q p x --=2、(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3、(4分)下列各式从左到右的变形中,是分解因式的是()A .()m a b c ma mb mc ++=++B .25(5)x x x x +=+C .255(5)5x x x x ++=++D .211()a a a a +=+4、(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A .48B .63C .80D .995、(4分)若ABC DEF ∽△△,若50A ∠=︒,则D ∠的度数是()A .50︒B .60︒C .70︒D .80︒6、(4分)将正方形AOCB 和111A CC B 按如图所示方式放置,点(0,1)A 和点1A 在直线1y x =+上点C ,1C 在x 轴上,若平移直线1y x =+使之经过点1B ,则直线1y x =+向右平移的距离为().A .4B .3C .2D .17、(4分)若一个直角三角形的两直角边长分别为3和4,则下列说法不正确的是()A .这个直角三角形的斜边长为5B .这个直角三角形的周长为12C .这个直角三角形的斜边上的高为125D .这个直角三角形的面积为128、(4分)一组数据3,2,5,5,4的众数、中位数分别是()A .5,5B .5,4C .5,3D .5,2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)因式分解:x 2+6x =_____.10、(4分)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则b k 的值是_____.11、(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.12、(4分)函数2y x =的图像与6y kx =-如图所示,则k=__________.13、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x 与方差2S :甲乙丙丁x (秒)303028282S 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.三、解答题(本大题共5个小题,共48分)14、(12分)(1﹣|2﹣π)0+(﹣1)2017(2)先化简,再求值:2()(a a (a )+6,其中﹣115、(8分)如图,在矩形ABCD 中,E 是AD 上一点,MN 垂直平分BE ,分别交AD ,BE ,BC 于点M ,O ,N ,连接BM ,EN (1)求证:四边形BMEN 是菱形.(2)若AE =8,F 为AB 的中点,BF+OB =8,求MN 的长.16、(8分)如图,△ABC 中,AB =BC =5cm ,AC =6cm ,点P 从顶点B 出发,沿B →C →A 以每秒1cm 的速度匀速运动到A 点,设运动时间为x 秒,BP 长度为ycm .某学习小组对函数y 随自变量x 的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x (秒)与y (cm )的几组对应值:x 01234567891011y 0.01.02.03.04.04.54.144.55.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x 约为______时,BP =CP .17、(10分)小王开车从甲地到乙地,去时走A 线路,全程约100千米,返回时走B 路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.18、(10分)某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A 型3045B 型5070(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A 型台灯m 盏,销售完这批台灯所获利润为P ,写出P 与m 之间的函数关系式.(3)若商场规定B 型灯的进货数量不超过A 型灯数量的4倍,那么A 型和B 型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.20、(4分)直线y =2x +6经过点(0,a ),则a =_____.21、(4分)已知一次函数y=kx ﹣k ,若y 随着x 的增大而减小,则该函数图象经过第____象限.22、(4分)如图,在矩形ABCD 中,对角线AC,BD 相交于点O,若∠AOD=120°,AB=2,则BC 的长为___________.23、(4分)若多项式222(3)x mx x x +=-,则m =_______________.二、解答题(本大题共3个小题,共30分)24、(8分)甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y (个),甲加工零件的时间为x (时),y 与x 之间的函数图象如图所示.(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.(2)求甲提高加工速度后甲加工的零件数y 与x 之间的函数关系式.(3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.25、(10分)定义:对于给定的两个函数,任取自变量x 的一个值,当x<0时,它们对应的函数值互为相反数:当x≥0时,它们对应的函数值相等,我们把这样的两个函数称作互为友好函数,例如:一次函数y=x-2,它的友好函数为y=(1)直接写出一次函数y=-2x+1的友好函数.(2)已知点A(2,5)在一次函数y=ax-1的友好函数的图象上,求a 的值.(3)已知点B(m ,)在一次函数y=x-1的友好函数的图象上,求m 的值.26、(12分)如图,已知Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠BAC 的平分线分别交BC ,CD 于E 、F .(1)试说明△CEF 是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据配方法的步骤逐项分析即可.【详解】∵x2+px+q=0,∴x2+px=-q,∴x2+px+24p=-q+24p,∴224 ()24p p q x-+=.故选A.本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.2、C【解析】根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:C.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,故选B.4、C 【解析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5、A 【解析】根据相似三角形的对应角相等可得∠D=∠A .【详解】∵△ABC ∽△DEF ,∠A=50°,∴∠D=∠A=50°.故选:A .此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.6、C【解析】已知点()0,1A 和正方形AOCB ,即可得C(1,0),代入1y x =+可得y=2,所以1A (1,2),又因正方形111A CC B ,可得1B (3,2),设平移后的直线设为0()1y x x =-+,将B 代入可求得02x =,即直线1y x =+向右平移的距离为2.故选C .7、D 【解析】先根据勾股定理求出斜边长,再根据三角形面积公式,三角形的性质即可判断.【详解】解:根据勾股定理可知,直角三角形两直角边长分别为3和4,5=,周长是3+4+5=12,斜边长上的高为341255⨯=,面积是3×4÷2=1.故说法不正确的是D 选项.故选:D .本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.但本题也用到了三角形的面积公式,和周长公式.8、B 【解析】利用众数和中位数的定义分析,即可得出.【详解】众数:出现次数最多的数,故众数为5;中位数:从小到大排列,中间的数.将数据从小到大排列:2,3,4,5,5;故中位数为4;故选B本题考查了统计中的众数和中位数,属于基础题,注意求中位数时,要重新排列数字,再找中位数.二、填空题(本大题共5个小题,每小题4分,共20分)9、x (x+6)【解析】根据提公因式法,可得答案.【详解】原式=x(6+x),故答案为:x(x+6).本题考查了因式分解,利用提公因式法是解题关键.10、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴364k bk b+⎧⎨+⎩==,解得:12kb⎧⎨⎩==,此时bk=2;当k<0时,y值随x值的增大减小,∴634k bk b+⎧⎨+⎩==,解得:17kb-⎧⎨⎩==,此时bk=-1.综上所述:bk的值为2或-1.11、5 8【解析】直接利用概率公式求解.【详解】从袋中任意摸出一个球,则摸出的球是红球的概率=5 8.故答案为5 8.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.12、1【解析】首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx 求得k 值即可.【详解】∵一次函数y=2x 与y=6-kx 图象的交点纵坐标为2,∴4=2x ,解得:x=2,∴交点坐标为(2,4),代入y=6-kx ,6-2k=4,解得k=1.故答案为:1.本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x 与y=6-kx 两个解析式.13、丁【解析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为乙和丁的方差最小,但丁平均数最小,所以丁还原魔方用时少又发挥稳定.故应该选择丁同学.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(本大题共5个小题,共48分)14、(1)﹣1;(2)原式=a 2a=5﹣.【解析】(1)根据二次根式的性质、绝对值的性质、零指数幂的性质及乘方的定义分别计算各项后,再合并即可;(2)先把代数式2(a+(a )﹣a (a )+6化为最简,再代入求值即可.【详解】(1)原式=3﹣2﹣×1-1=﹣﹣1=﹣1;(2)原式=2a2﹣6﹣a2+a+6=a2+a当a=﹣1时,原式=(﹣1)2+(﹣1)=5﹣3.本题题考查了实数及二次根式的运算,熟练掌握运算法则是解本题的关键.15、(1)证明见解析;(2)MN=152.【解析】(1)先根据线段垂直平分线的性质证明MB=ME,由ASA证明△BON≌△EOM,得出ME =NB,证出四边形BMEN是平行四边形,再根据菱形的判定即可得出结论;(2)根据已知条件得到AB+BE=2BF+2OB=16,设AB=x,则BE=16﹣x,根据勾股定理得到x=6,求得BE=16﹣x=10,OB=12BE=5,设ME=y,则AM=8﹣y,BM=ME=y,根据勾股定理即可得到结论.【详解】(1)证明:∵MN垂直平分BE,∴MB=ME,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠MEO=∠NBO,在△BON与△EOM中,MEO NBOOB OEMOE NOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BON≌△EOM(ASA),∴ME=NB,又∵AD∥BC,∴四边形BMEN是平行四边形,又∵MB=ME,∴四边形BMEN是菱形;(2)解:∵O,F分别为MN,AB的中点,∴OF ∥AD ,∴∠OFB =∠EAB =90°,∵BF+OB =8,∴AB+BE =2BF+2OB =16,设AB =x ,则BE =16﹣x ,在Rt △ABE 中,82+x 2=(16﹣x)2,解得x =6,∴BE =16﹣x =10,∴OB =12BE =5,设ME =y ,则AM =8﹣y ,BM =ME =y ,在Rt △ABM 中,62+(8﹣y)2=y 2,解得y =254,在Rt △BOM 中,MO ===154,∴MN =2MO =152.本题主要考查菱形的判定及性质,勾股定理,掌握菱形的判定方法及性质,结合勾股定理合理的利用方程的思想是解题的关键.16、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1【解析】(1)根据点P 在第5秒与第9秒的位置,分别求出BP 的长,即可得到答案;(2)根据表格中的x ,y 的对应值,描点、连线,画出函数图象,即可;(3)令CP=y′,确定P 在BC 和AC 上时,得y′=-x+5或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.【详解】(1)当x=5时,点P 与点C 重合,y=5,当x=9时,点P 在AC 边上,且CP=9×1-5=4cm ,过点B 作BD ⊥AC 于点D ,则CD=12AC=3cm ,4==cm ,∴DP=CP-CD=4-3=1cm , 4.1==≈cm ,即:y=4.1.如下表:x 01234567891011y 0.01.02.03.04.05.04.54.1 4.04.14.55.0故答案为:5.0;4.1;(2)描点、连线,画出函数图象如下:(3)令CP=y′,当0≤x ≤5时,y′=-x+5;当5<x ≤11时,y′=x-5,画出图象可得:当x =2.5或9.1时,BP =PC .故答案为:2.5或9.1.本题主要考查动点问题的函数图象,理解图表的信息,掌握描点、连线,画出函数图象,理解当BP =CP 时,x 的值是函数图象的交点的横坐标,是解题的关键.17、80千米/小时【解析】设小王开车返回时的平均速度为x 千米/小时,根据题意列出分式方程,然后求解得到x 的值,再进行验根,得到符合题意的值即可.【详解】解:设小王开车返回时的平均速度为x 千米/小时,1006015x 2060x -=+,214048000x x -+=,1260,80x x ==,经检验:1260,80x x ==都是原方程的根,但是160x =,不符合题意,应舍去.答:小王开车返回时的平均速度是80千米/小时.本题主要考查分式方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系的量列出方程,然后求解,验根得到符合题意的解即可.18、(1)应购进A 型台灯75盏,B 型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A 型台灯20盏,B 型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为(100-x )盏,然后根据进货款=A 型台灯的进货款+B 型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、东偏北20°方向,距离仓库50km【解析】根据方位角的概念,可得答案.【详解】解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,故答案为:东偏北20°方向,距离仓库50km.本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.20、6【解析】直接将点(0,a )代入直线y =2x +6,即可得出a =6.【详解】解:∵直线y =2x +6经过点(0,a ),将其代入解析式∴a =6.此题主要考查一次函数解析式的性质,熟练掌握即可得解.21、【解析】试题分析:∵一次函数y=kx ﹣k ,y 随着x 的增大而减小,∴k <0,即﹣k >0,∴该函数图象经过第一、二、四象限.故答案为一、二、四.考点:一次函数图象与系数的关系.22、【解析】由条件可求得AOB 为等边三角形,则可求得AC 的长,在Rt ABC 中,由勾股定理可求得BC 的长.【详解】120AOD ∠=︒,∴60AOB ∠=︒,四边形ABCD 为矩形∴AO OC OB ==,∴AOB 为等边三角形,∴2AO OC OB AB ====,∴4AC =,在Rt ABC 中,由勾股定理可求得BC =.故答案为:.本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.23、-1【解析】利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵222(3)262+x x x x x mx --==∴6m =-,故答案为:-1.本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.二、解答题(本大题共3个小题,共30分)24、(1)在乙追赶甲的过程中,乙每小时加工零件60个;(2)3020y x =-(14x ≤≤);(3)甲加工零件的时间是85时、125时或185时【解析】(1)根据题意可以求出甲所用时间,继而可得出在乙追赶甲的过程中,乙每小时加工零件的个数;(2)根据题意和函数图象中的数据可以求出甲提高加工速度后甲加工的零件数y 与x 之间的函数关系式;(3)列一元一次方程求解即可;【详解】解:(1)甲加工100个零件用的时间为:100101430-+=(小时),∴在乙追赶甲的过程中,乙每小时加工零件的个数为:()()100404360-÷-=,答:在乙追赶甲的过程中,乙每小时加工零件60个;(2)设甲提高加工速度后甲加工的零件数y 与x 之间的函数关系式是y kx b =+,104100k b k b +=⎧⎨+=⎩,得3020k b =⎧⎨=-⎩,即甲提高加工速度后甲加工的零件数y 与x 之间的函数关系式是3020y x =-(14x ≤≤);(3)当甲、乙两人相差12个零件时,甲加工零件的时间是85时、125时或185时,理由:令30202|1|40x --=,解得,185x =,2125x =,令()30206034012x x ----=,解得,185x =即当甲、乙两人相差12个零件时,甲加工零件的时间是85时、125时或185时.本题考查的知识点是一次函数的应用,解题的关键是理解一次函数图象,能够从图象中得出相关的信息.25、(1);(2)2;(3)-1或5.【解析】(1)根据友好函数的定义解答即可;(2)因为-2<0,所以把A (-2,5)代入中即可求得a 的值;(3)分和两种情况求m 的值即可.【详解】(1)的友好函数为,(2)解:因为-2<0,所以把A (-2,5)代入中得,,∴;(3)当时,把B (m ,)代入中得,,∴;当时,把B (m ,)代入中得,∴本题是阅读理解题,根据题意正确理解友好函数的定义是解决问题的关键.26、(1)见解析(2)见解析【解析】(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.【详解】解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠B=30°,∴AC=12AB.此题主要考查了等腰三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.第21页,共21页。
陕西省西安铁一中、铁一中国际合作校2013-2014学年度高三上学期五月月考化学试卷纯Word版含解析
第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)1.下列有关物质分类或归类正确的是①混合物:石炭酸、福尔马林、水玻璃、水银②化合物:CaCl2、烧碱、聚苯乙烯、HD③电解质:明矾、胆矾、冰醋酸、硫酸钡④同系物: CH2O2、C2H4O2、C3H6O2、C4H8O2⑤有机物:酒精、油脂、蔗糖、蛋白质A.①③④ B.②④ C.②③④ D.③⑤【答案】D【解析】试题分析:①水银是Hg单质,不是混合物。
错误;② HD是单质不是化合物。
错误;③物质分类无误,正确;④ 物质的分子式符合通式CnH2n O2可能是羧酸,也可能是饱和一元羧酸与饱和一元醇形成的酯,因此不一定是同系物,错误;⑤这几种物质都是含有C元素的化合物,属于有机物。
正确。
因此分类正确的是③⑤,选项为D。
考点:考查物质的分类的知识。
2.将溶液(或气体)X逐渐加入(或通入)到一定量Y溶液中,产生沉淀的质量与加入X 的物质的量关系如下图,符合图中情况的一组物质是【解析】试题分析:A.将Ba(HCO3)2溶液加入到NaOH溶液中,会发生反应:Ba(HCO3)2+NaOH= BaCO3↓+NaHCO3;立即产生沉淀,与图像不符合。
错误。
将B. Na2CO3溶液加入到CaCl2溶液会发生反应:Na2CO3+CaCl2= CaCO3↓+2NaCl;立即产生沉淀,与图像不符合。
错误。
C.将KOH 溶液加入到Mg(HSO4)2溶液中,首先发生反应:H++OH-=H2O;当H+反应完全后,会继续加入发生反应:Mg2++2OH-=Mg(OH)2↓.当Mg2+完全时沉淀达到最大值。
与图像符合,正确。
D.把CO2气体通入到石灰水中,会发生反应:CO2+ Ca(OH)2 =CaCO3↓+H2O;产生产生沉淀;当CO2气体过量时,发生反应:CaCO3+H2O+ CO2= Ca(HCO3)2。
沉淀又逐渐溶解,最后消失。
与图像不符合。
错误。
考点:考查图像法在物质间发生反应与量的关系中的应用的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三模拟四考试 数学试题(理科)(满分:150分,考试时间:120分钟)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设a ,b 是单位向量,则“a ·b =1”是“a =b ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知集合{}2,0x A y y x -==<,集合{}12B x y x ==,则A B ⋂=A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞3. 双曲线22221y abx -=的一条渐近线方程为43y x =,则双曲线的离心率为A.53B.43C.54D.4. 函数()y f x =的图象在点(5,(5))P f 处的切线方程是8y x =-+,则(5)(5)f f '+=A. 12B.-1C.1D.25. 运行右图所示框图的相应程序,若输入,a b 的值分别为2l o g 3和3log 2,则输出M 的值是A.0B.1C. 2D. -16. 设{}1212331,,,3,a ∈-,则使函数ay x =的定义域为R 且为奇函数的所有a 的值为A.1,3B.1,3,13-C.1,3,23D.1,23,3,13-7. 某几何体的三视图如右图所示,根据图中标出的尺寸,可得这个几何体的体积为A.12B.C.D.8.已知等差数列{}n a 的公差0d <, 若462824,10a a a a ⋅=+=,则该数列的前n 项和n s 的最大值为 A .60B .55C .50 D.459. 如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若此点落在阴影部分的概率为14,则a 的值是A.712πB.23πC.34πD.56π10. 已知)(x f 是定义在R 上的可导函数,且)()('x f x f < 对于任意R x ∈恒成立,则A. )0()2013(),0()2(20132f e f f e f ⋅>⋅>B. )0()2013(),0()2(20132f e f f e f ⋅>⋅<C. )0()2013(),0()2(20132f e f f e f ⋅<⋅>D. )0()2013(),0()2(20132f e f f e f ⋅<⋅<第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,满分25分. 11.已知向量(1,2),(2,)a b λ=-= ,且a 与b的夹角为锐角,则实数λ的取值范围是 .12. 设实数,x y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若11y z x +=+的最小值为14,则a 的值为 .13.若将()()x a x b --逐项展开得2x a x b x a b --+,则2x 出现的概率为14,x 出现的概率为12,如果将()()()()()x a x b x c x d x e -----逐项展开,那么3x 出现的概率为 .14. 已知函数()()22l o g 1,02,0x x f x x x x ⎧+>=⎨--≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是 .15.已知l g l g 0a b +=,则满足不等式2211a b a b λ+++≤的实数λ的范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)16.(本小题12分)设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的值.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到的,求()y g x =的单调递增区间.17.(本小题12分)数列}{n a 各项均为正数,其前n 项和为n S ,且满足222=-n n n a S a .(Ⅰ)求证:数列}{2n S 为等差数列,并求数列}{n a 的通项公式;(Ⅱ)设1424-=n n S b , 求数列}{n b 的前n 项和n T 的最小值.18.(本小题12分)在四棱锥P ABCD -中,侧面P C D ⊥底面ABC D ,PD CD ⊥,E 为PC 中点,底面ABCD是直角梯形.0//,90,AB CD ADC ∠=1,AB AD PD ===2CD =.(Ⅰ)求证://BE 平面APD ;(Ⅱ)设Q 为侧棱PC 上一点,P Q P C λ=,试确定λ的值,使得平面PBD 与平面QBD 的夹角为45 .19.(本小题12分)已知中心在原点O ,焦点在x 轴上,离心率为2的椭圆过点(,2.(Ⅰ)求椭圆的方程;(Ⅱ)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,且直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.20. (本小题13分)第30届奥运会已于2012年7月27日在伦敦举行,当时某学校招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm ):若身高在180cm 以上(包括180cm )定义为“高个子”,身高在180cm 以下(不包括180cm )定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中随机选3名志愿者,用X 表示所选志愿者中能担任“礼仪小姐”的人数,试写出X 的分布列,并求X 的数学期望.21.(本小题14分)已知函数)(ln )(R a xax x f ∈+=. (Ⅰ)求)(x f 的极值;(Ⅱ)若函数)(x f 的图象与函数)(x g =1的图象在区间],0(2e 上有公共点,求实数a 的取值范围;(Ⅲ)设各项为正的数列}{na 满足:*111,ln 2,n n n aa a a n N +==++∈,求证:21n n a ≤-高三模拟数学(理科)参考答案与评分标准一、选择题:(每小题5分,满分50分)11.()(),44,1-∞-⋃-; 12.1; 13.516; 14.(0,1); 15. [)1,+∞.三、解答题:16. 解:(Ⅰ)2222()(sin cos )2cos sin cos sin 212cos2f x x x x x x x x ωωωωωωω=++=++++sin 2cos 22)24x x x πωωω=++=++,依题意得2223ππω=,故ω的最小正周期为32. …………6分(Ⅱ)依题意得: 5()3()2)2244g x x x πππ⎡⎤=-++=-+⎢⎥⎣⎦,由5232()242k x k k Z πππππ--+∈≤≤, 解得227()34312k x k k Z ππππ++∈≤≤, 故()y g x =的单调增区间为: 227[,]()34312k k k Z ππππ++∈. …………12分 17.解:(Ⅰ)∵122=-n n n a S a ,∴当n≥2时,1)()(2211=-----n n n n n S S S S S ,整理得,1212=--n n S S (n≥2),又121=S , ∴数列}{2n S 为首项和公差都是1的等差数列.∴n S n =2,又0>n S ,∴n S n =.∴n≥2时,11--=-=-n n S S a n n n ,又111==S a 适合此式,∴数列}{n a 的通项公式为1--=n n a n . …………6分(Ⅱ)∵121121)12)(12(21424+--=+-=-=n n n n S b n n , ∴)12)(12(1531311+-++⨯+⨯=n n T n 1211215131311+--++-+-=n n =1221211+=+-n n n ,2112n n T n∴==+时,的最小值为23. …………12分 18.解:(I )取PD 的中点F ,连结,E F A F ,因为E 为PC 中点,∴//EF CD ,且112E F C D ==, 在梯形ABCD 中,//,1A B C D A B =,∴//,,EF AB EF AB =四边形ABEF 为平行四边形,∴//,BE AFBE ⊄平面PAD ,AF ⊂平面PAD ,∴//BE 平面PAD .…………6分(II )如图,以D 为原点建立空间直角坐标系D xyz -,则(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C P ,平面PBD 的法向量为(1,1,0),BC =-(0,2,1),,(0,1)PC PQ PC λλ=-=∈,(0,2,1)Q λλ∴-,设平面Q B D 的法向量为(,,)n a b c =, (1,1,0),DB = (0,2,1)DQ λλ=-,由02(1)0n DB a b n DQ b c λλ⎧⋅=+=⎨⋅=+-=⎩,∴2(1,1,)1n λλ=-- ,∴0cos 45n BC n BC ⋅===⋅,注意到(0,1)1λλ∈∴=. …………12分19.解:(Ⅰ)由题意可设椭圆方程为22221x y ab+= (a >b >0),则22211,2c a a b =+=⎧⎪⎪⎨⎪⎪⎩ 故2,1a b ==⎧⎨⎩,所以,椭圆方程为2214x y +=.…………4分(Ⅱ)由题意可知,直线l 的斜率存在且不为0, 故可设直线l 的方程为 y =kx +m (m≠0),P (x 1,y 1),Q (x 2,y 2),由22,440,y kx m x y =++-=⎧⎨⎩消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则△=64 k 2b 2-16(1+4k 2b 2)(b 2-1)=16(4k 2-m 2+1)>0,且122814km x x k -+=+,21224(1)14m x x k-=+.…………6分 故 y 1 y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以,1212y y x x ⋅=22121212()k x x km x x m x x +++=k 2,即222814k m k-++m 2=0,又m≠0, 所以 k 2=14,即 k =12±.…………10分由于直线OP ,OQ 的斜率存在,且△>0,得0<m 2<2 且 m 2≠1.设d 为点O 到直线l 的距离,则 S △O P Q =12d | PQ |=12| x 1-x 2 | | m |=,所以 S △O P Q 的取值范围为 (0,1).…………12分 20.解:(I )根据茎叶图可知,这20名志愿者中有“高个子”8人,“非高个子”12人,用分层抽样的方法从中抽出5人,则每个人被抽到的概率为51204=,所以应从“高个子”中抽1824⨯=人,从“非高个子”中抽11234⨯=人.用事件A 表示“至少有一名‘高个子’被选中”,则它的对立事件A 表示“没有一名‘高个子’被选中”,则232537()1()111010C P A P A C ===-=-=,因此至少有1人是“高个子”的概率是710;…………6分(II )依题意知,所选志愿者中能担任“礼仪小姐”的人数X 的所有可能为0,1,2,3.()34381014C P X C ===, ()124438317C C P X C ===,()214438327C C P X C ===, ()34381314C P X C ===, 因此,X 的分布列如下:所以X的数学期望01231477142EX =⨯+⨯+⨯+⨯=.…………13分 21.解:(Ⅰ)2)(ln 1)(),,0()(xa x x f x f +-='+∞的定义域为, 令a e x x f -=='10)(得, 当)(,0)(,),0(1x f x f e x a>'∈-时是增函数;当)(,0)(,),(1x f x f ex a<'+∞∈-时是减函数;∴111)()(,)(---===a a a e e f x f e x x f 极大值处取得极大值在,无极小值. …………4分(Ⅱ)①当21e e a <-时,即时1->a , 由(Ⅰ)知),0()(1aex f -在上是增函数,在],(21e e a -上是减函数,()11max ()a a f x f e e --∴== ,又当,(.0)(],0(2e e x x f e x a a --∈<∈当时当,0)(,2x f e x a a --==时],(.0)(],0(,02e e x x f e x a a --∈<∈=当时当时,).0()(1-∈a e x f ,∴1)()(=x g x f 与图象的图象在],0(2e 上有公共点,⇔11≥-a e .解得1,1,1≥->≥a a a 所以又.②当121-≤≥-a e e a 即时,],0()(2e xf 在上是增函数,∴2222)(],0()(e ae f e x f +=上的最大值为在, 所以原问题等价于.2,1222-≥≥+e a ea解得又1-≤a ,∴无解, 综上,实数a 的取值范围是[)1,+∞. …………10分 (Ⅲ)令a =1,由(Ⅰ)知,l n 11(0),l n 1x x x x x+≤>∴≤-, 11a = ,假设*1()k a k N ≥∈, 则1ln 21k k k a a a +=++>,故*1()n a n N ≥∈从而1l n 221n n n n a a a a +=++≤+1112(1)2(1)n n n a a a +∴+≤+≤≤+ , 即1221nnn n a a +≤∴≤-. …………14分。