《电路原理》双语教学大纲(英文版)
电路原理双语课件

The transfer function can be written as
The transfer function H(ω) of a circuit is the frequency-dependent ratio of a phasor output Y(ω) (an element voltage or current) to a phasor input X(ω) (source voltage or current). Thus,
Vo 1/ jωC 1 H (ω ) = = = Vs R + 1/ jωC 1 + jω RC
The magnitude and phase of H(ω) are
Amplitude response 幅频特性
ω H= , φ = − tan 2 ω0 1 + (ω / ω 0 )
1
−1
where ω0 = 1/RC. At ω = 0, H = 1 and φ = 0. At ω = ∞, H = 0, and φ = − 90°. Also, at ω = ω0, H = 1/ 2 and φ = − 45°.
14.1 INTRODUCTION
In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a circuit with a constant frequency source. If we let the amplitude of the sinusoidal source remain constant and vary the frequency, we obtain the circuit’s frequency response. The frequency response of a circuit is the variation in its behavior with change in signal frequency. The sinusoidal steady-state frequency responses of circuits are of significance in many applications, especially in communications and control systems.
电路原理教学大纲

电路原理教学大纲课程名称:电路原理课程编码:020*******英文名称:Electric Circuits学时:64 学分:4适用专业:机电一体化专业课程性质:专业基础课教材:《电路》高等教育出版社邱关源主编一、课程性质与任务电路原理课程理论严密、逻辑性强、有广阔的工程背景,是电类专业必修的一门重要的专业基础课。
学习电路原理课程,对培养学生的科学思维能力,提高学生分析问题和解决问题的能力,都有重要的作用。
通过本课程的学习,应使学生掌握近代电路理论的基础知识,电路分析的基本方法和基本实验技能,为学习电子技术等课程建立必要的理论基础。
二、课程教学的基本要求:本课程主要介绍电路的基本概念、基本定理、基本定律、分析方法等内容。
通过本课程的学习,学生掌握的知识、内容及掌握的程度要求为:1. 熟练掌握电阻、独立电压源、独立电流源、受控电压源、受控电流源、电容、电感等元件的定义、性质及伏安关系,透彻理解基尔霍夫定律。
2. 掌握常用的电路等效变换分析方法。
3. 能正确列写电路的回路电流方程和结点电压方程,并对电路进行计算。
4. 能正确使用电路定理进行电路分析计算。
5.掌握动态电路的基本概念和分析方法。
6.掌握正弦交流电路的分析计算方法。
7.掌握电路的实验方法,获得实验技能的基本训练。
8.了解电路分析和设计的新方法。
三、课程内容及教学要求:第一章电路模型和电路定律教学基本内容:1. 电路和电路模型2. 电流和电压的参考方向3. 电功率和能量4. 电路元件5. 电阻元件6. 电压源和电流源7. 受控电源8. 基尔霍夫定律重点:1. 电流、电压参考方向;2. 元件、电路吸收或发出功率的表达式和计算;3. 电阻、独立电源和受控源等电路元件的伏安特性;4. 基尔霍夫定律。
难点:1. 功率计算;2. 独立电源和受控源等电路元件的伏安特性;3. 基尔霍夫电压定律。
本章主要教学要求:了解电路模型、电路元件的概念,理解电流、电压参考方向的概念,掌握元件、电路吸收或发出功率的表达式和计算;熟练掌握电阻、独立电源和受控源等电路元件的伏安特性;理解基尔霍夫定律的内容并能熟练应用该定律进行电路的分析计算。
电路原理课件讲义英文版 Chapter_4

2. 3.
Assignment
1. Solve the problems 4.7, 4.19, 4.34 in pages 155-158
2.
Steps to Apply Superposition Principle:
1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis. Repeat step 1 for each of the other independent sources. Find the total contribution by adding algebraically all the contributions due to the independent sources.
4.3 Superposition (迭加)
Superposition is based on linearity
The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone
电路原理课件讲义英文版chapter4
Chapter 4 Circuit Theorems
电路原理课件讲义英文版 Chapter_2汇总

The sum of the currents entering a node is equal to the sum of the currents leaving the node.
Case 2 (closed boundary)
Generalized: a node may be regarded as a closed surface shrunk to a point. Two dimension: a closed boundary is the same as a closed path.
In general
Potentiometer
Linear resistor: obey Ohm’s Law.
Slope R
Nonlinear resistor: does not obey Ohm’s Law.
Slope R
Conductance is the ability of an element to conduct
2.1 Introduction
To actually determine the values of these variables in a given circuit requires that we understand some fundamental laws that govern electric circuits. Basic Laws: Ohm’s Law Kirchhoff’s Law
KCL:
KCL states that the algebraic sum of currents entering a node (or a closed boundary) is zero.
电路原理 英文教材

电路原理英文教材Circuit Principles1. Introduction to CircuitsA circuit is a closed loop that allows the flow of electric current. It consists of various components such as resistors, capacitors, inductors, and voltage sources. This section will provide an overview of circuit principles.2. Basic Circuit ElementsThere are three fundamental circuit elements: resistors, capacitors, and inductors. Resistors impede the flow of electric current, capacitors store and release electrical energy, and inductors resist changes in current. This section will discuss the properties and behavior of these basic circuit elements.3. Ohm's LawOhm's Law states that the current flowing through a conductor is directly proportional to the voltage across it and inversely proportional to its resistance. This section will explain Ohm's Law and its applications in circuit analysis.4. Series and Parallel CircuitsSeries circuits have all components connected in a single loop, while parallel circuits have multiple paths for current flow. This section will discuss the properties of series and parallel circuits, including their voltage and current relationships.5. Kirchhoff's LawsKirchhoff's Laws, including Kirchhoff's Current Law (KCL) andKirchhoff's Voltage Law (KVL), are essential for analyzing complex circuits. KCL states that the sum of currents entering a node is equal to the sum of currents leaving it, while KVL states that the sum of voltages in any closed loop is zero. This sectionwill explain how to apply Kirchhoff's Laws in circuit analysis.6. Circuit Analysis TechniquesThere are various methods for circuit analysis, such as nodal analysis, mesh analysis, and Thevenin's and Norton's theorems. This section will introduce these techniques and provide examples of their applications.7. Frequency AnalysisCircuits can behave differently at different frequencies. Frequency analysis helps understand how circuits respond to different input signals. This section will cover concepts like impedance, reactance, and frequency response.8. Transient AnalysisTransient analysis examines circuit behavior during the transition from one steady-state condition to another. It involves studying capacitive and inductive effects on the circuit's response. This section will explain how to analyze transient circuits.9. AmplifiersAmplifiers are essential components in electronic systems that increase the amplitude of signals. This section will provide an overview of amplifier circuits, including common amplifier configurations and their applications.10. FiltersFilters are circuits that selectively allow or block certain frequencies. They are used in various applications, such as signal processing and communication systems. This section will discuss different types of filters, including low-pass, high-pass, band-pass, and band-stop filters.11. OscillatorsOscillators generate periodic waveforms without an input signal. They are widely used in applications such as electronic clocks, radio transmitters, and audio signal generators. This section will explain the working principles of oscillators and different oscillator circuits.12. Digital Logic CircuitsDigital logic circuits use binary signals to perform logical operations. They are the building blocks of digital systems such as computers and calculators. This section will introduce basic digital logic gates and their applications.13. Power ElectronicsPower electronics deals with the control and conversion of electrical power. It has applications in areas such as power supplies, motor drives, and renewable energy systems. This section will cover power electronic devices and their operating principles.14. Troubleshooting and SafetyThis section will provide tips for troubleshooting circuit problems and ensuring safety while working with circuits. It will covercommon issues, testing procedures, and safety precautions to follow when dealing with electric circuits.。
电路原理课程教学大纲

电路原理课程教学大纲课程名称:电路原理英文名称:The Principle of Circuit课程编号:022学时数:88其中实验(实训D学时数:课外学时数:学分数:5.5适用专业:测控技术与仪器电气工程及其自动化电子信息工程通信工程自动化自动化(试点)一'课程的性质和任务本课程是测控技术与仪器、电气工程及其自动化、电子信息工程、通信工程、自动化以及电信(试点)等专业的专业基础课。
通过对本课的学习,使学生掌握电路分析的基本理论及计算方法,为后续课程的学习打下坚实的基础。
二、课程教学内容的基本要求、重点和难点(-)电路模型和电路定律正确理解电路中电压、电流、功率等概念及方向的定义;熟练掌握基尔霍夫定律;掌握电阻串、并联电路的计算方法及电阻星形、三角形电路的等效互换;熟练掌握独立源、受控源的伏安特性及电压源、电流源的等效互换;掌握无源一端口网络输入电阻的计算方法。
重点:KCL定律、KVL定律;电压源、电流源伏安特性及其等效变换。
难点:无源一端口网络输入电阻的计算方法。
(二)电阻电路的分析熟练掌握电路分析的基本方法:节点法、网孔法、叠加定理、戴维南定理。
重点:节点法、网孔法、叠加定理、戴维南定理。
难点:节点法、网孔法、叠加定理、戴维南定理。
(三)相量法基础知识正确理解正弦量的有效值、角频率、相角、初相角、相位差等基本概念;熟练掌握正弦量的相量表示及相量运算的基本方法;熟练掌握R、L、C元件伏安特性的相量表示。
重点:正弦量的相量表示及相量运算;R、L、C元件伏安特性的相量表示。
难点:相量运算。
(四)正弦交流电路的稳态分析熟练掌握复阻抗及功率的概念;熟练掌握相量法在分析正弦交流稳态电路中的应用;掌握谐振的定义及串联谐振特点;正确理解并联谐振的定义及特点;正确理解功率因数提高的方法;正确理解最大功率传输问题。
重点:复阻抗及功率的计算;相量法在分析正弦交流稳态电路中的应用。
难点:相量法在分析正弦交流稳态电路中的应用。
应用型工科院校《电路原理》课程双语教学的研究与实践

孙雪景 (9 9 ) 17- ,女,河北石家庄人 ,吉林建筑工程学院市政与环境 工程学院,助教 ,主要 研完方向 : - 环境 工程 。( 吉林 长春  ̄o m) so
基 金 项 目 :本 文 系 2 0 吉林 省 高等教 育教 学研 究课 题 的研 究成 果 。 08年
英语 教学必 须注 重学生的多媒 体交流能力,强调 英语 的实 外语应 用能力 的提高有机 结合,培养 学生用英语思考 问题、分 用性 。要培养 学生增强英语服务 于未来 的综 合专业能力,必须 析 问题 和解决 问题的能力,提高其英语的应用水平。电路课程双 尽可能地营造 相 关的模 拟语境 ,将 英语 作为主要工具进行 专业 语教学 中的外语相对 于电路 内容本身而言只是一种辅助性教学 学习和交流。因此,有必 要将专业 的主干课程按由浅人深的顺序 手段 。因为电路课程 实施双语 教学 的最终 目的就是掌握 好电路 进行双语 教学 ,使学生以听说读写的顺序在 互动式学习中自然而 知识,其次才是提高专业外语能力,因此不能把电路双语课程当 然地 提高英 语学 习的效率 ,培 养他们使 用英语 工具 的习惯。所 作专业英语 去讲授。本文 结合笔者在 电路原理双 语教学过程 中 谓双语教学是指能在学校 里使用第 二种语言或英语 进行各门学 的实践和体会,指出了双语教学的可行 性和必要性 ,继而对双语 科 的教学 ,将 学生的英语或者 第二 语言通 过教学 过程,经过若 教学模 式进行 了深入实 际的探 讨,并着 重指 出在双语教学 中不可 干 阶段 的训 练,使之接近 母语 的表 达水平。吉林建筑 工程 学院 忽视的几个重要 因素,结合实例说明双语教学能够达到的效果 。
教学模式可以促进学生综合素质的全面提 高。
关 键 词 :双 语教 学 ;电路 课 程 ;教 学手段 作者简介 :魏立明 (94 ) 男 17~ , ,吉林省吉林市人,吉林建筑工程学院电气与电子信息工程 学院,讲 师,主要研 究方向 :电气工程 及其 自 动化 ; 成浩 (92 , 男, 吉林 延 边人 ,吉林 建 筑 工程学 院电气与电 信息工 程 学院, 副教 授 ,主要 研 究方 向 :电子信息 工程 ; 韩 17一) 子
《电路原理》教学大纲

3)电阻电路的分析方法:回路法、节点法;叠加定理、替代定理、互易定理、戴维南定理和诺顿定理;简单非线性电阻电路。
4)一阶电路的时间常数,一阶电路的零输入响应、零状态响应和全响应,求解一阶电路的经典方法和三要素法。
5)二阶电路响应性质,二阶电路动态分析,单位阶跃响应与单位冲激响应,卷积积分求动态电路的零状态响应,状态方程的列写。
2)非线性电阻电路分析(4学时)
非线性电阻,非线性电阻电路的方程的列写,非线性电阻电路的图解法,非线性电阻电路的分段线性法,非线性电阻电路的小信号分析方法。
用MOSFET构成模拟系统的基本单元——小信号放大器。
3)动态电路的时域分析(8学时)
电容和电感,动态电路中起始条件的确定。
一阶电路的时间常数,一阶电路的零输入响应、零状态响应和全响应,求解一阶电路的经典方法和三要素法,MOSFET反相器的传输延迟,含正反馈理想运算放大器电路的分析。
线性电阻电路的分析方法:支路法、回路法和节点法。
电路定理:叠加定理、替代定理、戴维南定理和诺顿定理。
非线性电阻电路的方程列写、求解非线性电阻电路的图解法、分段线性法和小信号分析方法。用MOSFET构成的小信号放大器。
电容和电感,线性动态电路(一阶电路、二阶电路)的时域分析,卷积积分,状态变量法。
正弦激励下动态电路的稳态分析,频率响应和滤波器,电路中的谐振,互感和变压器,三相电路,周期性非正弦激励下电路的稳态响应。
③邱关源,罗先觉.电路(第5版)北京:高等教育出版社,2006
④李瀚荪.简明电路分析基础.北京:高等教育出版社,2002
①Electric Circuits (8thEdition),James W. Nilson and Susan A. Riedel,Prentice Hall,2007
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Teaching ProgramCourse Code: 101C0040Course Name: Electric Circuits (Ⅰ)Weekly Hours: 4.0-0 Credits: 4.0Teaching Goal and Basic Requirements:This course introduces the principles of circuits and their role in electrical engineering, then introduces and demonstrates the power of the fundamental circuit laws and analysis methods. This is followed by an introduction to the principle of operational amplifier properties and operational amplifier circuits. The properties and applications of reactive circuit elements are introduced along with first and second order circuits. The basics of AC circuit analysis follow, the course will show how the sinusoidal steady state problem can be solved using phasor analysis. Students are prepared to analyze circuit properties with these tools and methods for each circuit type using both manual methods and PSpice tools.Content of Courses & Hours Allocation:Autumn QuarterWeek 1: Introduction; Chapter 1-- Basic concepts;Week 2: Chapter 2-- Basic laws; Chapter 3--Nodal analysis;Week 3: Chapter 3--Mesh analysis; Chapter 4--Linearity property, superposition, source transformation;Week 4: National Holiday;Week 5: Chapter 4--Thevenin’s theorem, Norton’s theorem, Maximum power transfer;Week 6: Chapter 5--Operational amplifiers; Quiz 1;Week 7: Chapter 6--Capacitors and inductors; Chapter 7--First-order circuits: Source-free circuit;Week 8: Chapter 7--Step response; Chapter 8--Second-order circuits;Week 9: Chapter 9--Sinusoids and phasors;Winter QuarterWeek 1: Chapter 10--Sinusoidal steady-state analysis; Quiz 2;Week 2: Circuit analysis with Pspice; Lab exercise--Circuit analysis with Pspice;Week 3: Chapter 11--AC power analysis: Effective or RMS value, Power factor;Week 4: Chapter 12--Three-phase circuits; Power in a system;Week 5: Chapter 13--Magnetically coupled circuits: Mutual inductance; Linear transformers, Ideal autotransformers;Week 6: Chapter 14--Frequency response: Transfer function, Resonance; Quiz 3;Week 7: New Year Holiday; Chapter 14--Passive filters; Circuit applications;Week 8: Chapter 16--The Fourier series: Average and RMS value; Review;Week 9: Review;Teaching Plan:The course grade is calculated based on:Homework 10%, Quiz 30% (two top scores from 3 quiz, 15% each), PSpice Assignment 5%, Final Exam: 55%Homework will be given full credit if the work is completed and the solutions understandable.Recommended Textbooks and Other References: (books, editors, publishing company,publishing time)1.Fundamentals of Electric Circuits,Charles K. Alexander, Matthew N.O. Sadiku,McGraw-Hill Companies Inc,2000.122.PSpice and MATLAB for Electric Circuit Analysis,Tong Mei,Machine Industry Press,2005.73.Principles of Electric Circuits,Fan Chengzhi,Sun Dun,Tong Mei,Machine Industry Press,2005.74.Electric Circuits (Four Edition),Qiu Guanyuan,High Education Press,1999.65.Electric Circuits (Six Edition),James W. Nilsson, Susan A. Riedel, Publishing House of Electronics Industry,2002.6Teaching ProgramCourse Code: 101C0050Course Name: Electric Circuits (II)Weekly Hours: 4.0-0 Credits: 2.0Teaching Goal and Basic Requirements:Transient response analysis, network functions, poles and zeros; solution of network equations using Laplace transforms, inverse transforms, convolution integral, two-port networks. Matrix formulation of circuit equations, nodal Analysis and mesh analysis. Introduction of distributed circuits, distributed circuits of finite length, traveling wave, lossless transmission line of finite length. Analysis of nonlinear circuits, linearized circuit models, small signal analysis. Circuit analysis with MATLAB.Content of Courses & Hours Allocation:Spring QuarterWeek 1: Chapter 15--Definition of Laplace transform; Properties of the Laplace transform; The inverse Laplace transform; Application to circuits; Transfer function;Week 2: The convolution integral; Network function and step response;Week 3: State variables and state equations; Circuit analysis with MATLAB;Week 4: Chapter 18--Two-port networks; Supplement 1: Matrix equations for network--Nodal Analysis;Week 5: Supplement 1: Matrix equations for network--Mesh Analysis;Week 6: Supplement 2: Distributed Circuits--Introduction, distributed circuits of finite length;Week 7: Supplement 2: Traveling wave; Lossless transmission line of finite length; Circuit analysis with MATLAB; Midterm exam;Week 8: Supplement 3: Simple nonlinear circuits--Introduction, Nonlinear resistor circuits, Small signal analysis; Review;Week 9: Review;Teaching Plan:The course grade is calculated based on:Homework 10%, Quiz 5%, Midterm 15%, MATLAB Assignment 10%, Final Exam 60%Homework will be given full credit if the work is completed and the solutions understandable.Recommended Textbooks and Other References: (books, editors, publishing company,publishing time)1.Fundamentals of Electric Circuits,Charles K. Alexander, Matthew N.O. Sadiku,McGraw-Hill Companies Inc,2000.122.Principles of Electric Circuits,Fan Chengzhi, Sun Dun, Tong Mei,Machine Industry Press,2004.73.PSpice and MATLAB for Electric Circuit Analysis,Tong Mei,Machine Industry Press,2005.74.Electric Circuits (Four Edition),Qiu Guanyuan,High Education Press,1999.65.Electric Circuits (Six Edition),James W. Nilsson, Susan A. Riedel, Publishing House of Electronics Industry,2002.6。