高中物理微积分应用(完美)
高中物理微积分应用(完美)

高中物理中微积分思想伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。
微积分是建立在实数、函数和极限的基础上的。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一。
在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。
在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即2021at t v x +=。
【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s ,所以汽车由刹车到停车行驶的位移kmt t t a t v dt at v dt t v x 025.0)10()2()()(50252050050=-=+=+==⎰⎰小结:此题是一个简单的匀变速直线运动求位移问题。
微积分在物理中的应用举例

微积分在物理中的应用举例
微积分,作为数学中的重要分支,不仅仅是一种抽象的理论,而在现实世界中有着广泛的应用。
特别是在物理学领域,微积分的应用更是无处不在。
本文将通过几个具体的例子来说明微积分在物理中的应用。
运动学中的微积分应用
在研究物体的运动时,我们需要对其位置、速度和加速度进行分析。
而微积分正是运动学中经常使用的工具之一。
例如,对于一个运动的物体,我们可以通过微积分来求解其在不同时刻的位置,速度和加速度之间的关系。
通过对这些关系进行分析,可以更好地理解物体的运动规律。
力学中的微积分应用
在力学中,微积分可被用来分析受力物体的运动。
例如,通过对牛顿第二定律的微积分分析,我们可以得出物体在不同时间下的轨迹和速度变化。
此外,微积分还可以帮助我们计算物体受力时的加速度,从而更好地理解物体的受力情况。
热力学中的微积分应用
在研究热力学问题时,微积分同样扮演着重要角色。
例如,通过微积分可以分析热传导过程中物体温度的变化规律。
此外,微积分还可以用来解决热力学系统中的复杂方程,从而帮助我们更好地理解热力学系统的特性。
结论
通过以上几个例子,我们可以看到微积分在物理学中的重要性和广泛应用。
无论是运动学、力学还是热力学,微积分都扮演着至关重要的角色,帮助我们更好地理解和解决物理学中的问题。
因此,微积分的学习和应用对于物理学研究具有重要意义。
微积分在物理中的应用举例

微积分在物理中的应用举例微积分是一门研究变化的数学学科,它在物理学中有着广泛的应用。
物理学家们利用微积分的工具和概念描述自然现象、建立模型、解决问题。
下面将通过几个具体的例子来说明微积分在物理学中的应用。
1. 运动学中的速度与加速度在物理学中,我们经常需要描述物体的运动状态,包括速度和加速度。
速度是位置随时间的变化率,而加速度则是速度随时间的变化率。
这些概念可以通过微积分来表达和计算。
例如,一个物体的位移可以表示为速度关于时间的积分,而速度则可以表示为加速度关于时间的积分。
微积分使得我们能够准确描述和分析物体的运动规律。
2. 牛顿第二定律牛顿第二定律是描述力和物体运动之间关系的基本定律,它可以用微积分来推导和解释。
根据牛顿第二定律,物体的加速度与作用在物体上的合力成正比,通过微积分可以将这个关系表达为一个微分方程。
通过对微分方程的求解,我们可以得到物体在不同情况下的运动方程,从而预测物体的运动轨迹和速度变化。
3. 电场力和电势能在电动力学中,微积分也广泛应用于描述电场力和电势能。
电场力是描述电荷之间相互作用的力,而电势能则是电场力做功的能量。
微积分可以帮助我们计算电场力和电势能之间的关系,以及在不同电场分布下的电势能变化。
这种分析对于研究电路中电荷流动、电场能量转换等现象非常重要。
总结微积分在物理学中的应用是十分广泛的,它为物理学提供了强大的工具和方法。
通过微积分,我们可以更深入地理解自然现象,推导和解释物理原理,建立物理模型并做出预测。
以上是仅仅是几个微积分在物理学中应用的例子,实际上微积分在物理学中的应用远不止这些,它在整个物理学研究中都扮演着重要的角色。
微积分在高中物理中的应用

121微积分在高中物理中的应用邓圭恩微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
微积分是指求函数曲线的切线斜率、求函数图形的面积、求图形的体积的一种方法和过程,在高中物理概念、物理定律都包涵微积分的思想。
本文分析了微积分在高中物理的一些具体应用,目的是理解微积分思想的同时也能熟练地运用微积分来解决物理中的问题。
数学作为物理学中的重要工具,它即能准确而又简洁地表达物理概念和规律,也能为物理提供思维语言和方法。
运用数学方法解决物理问题是高中阶段学习目标之一,高中生掌握求导和积分的思想及方法,是为物理学习提供了即方便实用又强大的工具。
1微积分在高中动力学中的应用 1.1利用微积分解决变速运动问题在高中阶段,变速运动问题往往是许多同学的难点,很多变速运动问题的模型都很难建立,对许多同学甚至是教师的思维能力都是一个很大的考验。
但微积分知识和思想能帮助大家用更简洁普适的模型来解决这方面的问题,比如对于下面这一道题:例2:狐狸沿半径R 的圆轨道以恒定速率v 奔跑,在狐狸出发的同时,猎犬从圆心O 出发以相同的速率v 追击过程中,圆心、猎犬和狐狸始终连成一直线。
(1)建立相应坐标系,求出猎犬运动的轨道方程,并画出轨道曲线。
(2)判断猎犬能否追上狐狸。
这道题是一道经典的物理竞赛题,现在也是被选入许多高校的自招理论试题,其经典解法有很多,但绝大多数都复杂冗长,很多同学并不能很好的理解。
而如果我们选用微积分的方法,就会得到很容易为大家所接受,也较容易的解法了。
取圆心O 为坐标原点,从O 到狐狸的初始位置设置极轴,建立极坐标系。
我们先得到猎犬切向、径向加速度、速度与猎犬所在的r、θ的关系狐狸的圆运动角速度为:Rv dt d ==ωθ当狐狸在θ角位置时,圆心O、猎犬D 及狐狸F 共线,如图所示故猎犬的横向速度为猎犬的径向与切向速度为:r Rv dt d rv ==θθ,vRr v v v r 22221-=-=θ 径向与切向加速度为:R r R v v dtd r dt d dt dr r a 122222-⋅==+⋅=ωθθθv r a R r dt dr dr dv r dt dv dt d r d r d r r r 22222222)(-=-⋅=-=-=ωωθθ 由r R v v r d dr r22-==θθ积分:⎰⎰=-θθθ022d r R dr r 可得猎犬的轨道方程为: θ=Rr arcsin 即θsin R r =猎犬的轨道曲线如图中虚线所示。
微积分在高中物理教学及高考中的应用

微积分在高中物理教学及高考中的应用
微积分是一门重要的数学课程,在高中物理教学及高考中有重要的应用。
首先,在高中物理教学中,微积分可以帮助学生理解物理学的深层次的概念和原理。
例如,在力学和弹性中,知道力和位移之间的关系,学生需要用到微积分,例如需要用到曲率来计算曲线上力的变化情况,或者用梯度和位移之间的关系来分析影响力的改变等。
此外,散度和积分也在物理学中有实际的应用,例如在电动力学中,学生可以运用微积分的知识确定电流的变化情况。
其次,在高考中,微积分也是非常重要的科目之一,它不但是数学竞赛中的重要科目,而且也在高考的多项科目中得到了普遍的应用。
例如,在物理学中,考生可以利用提高后的微积分知识分析曲线上的力、磁力场和重力场等问题;在电动力学中,考生可以运用微积分知识计算电势和电压;在力学中,考生可以利用微积分知识求出运动弹性曲线;在热力学中,考生可以利用梯度来分析热力学问题;而在化学中,考生可以利用积分来分析反应的反应速率等。
总之,在高考中,微积分的应用是不可分割的部分。
最后,微积分在高中物理教学及高考中的应用,不仅可以扩大学生们在物理学和化学中的知识面,而且可以提高学生的数学水平,从而增强学生的理解和解决问题的能力。
因此,在高中物理教学及高考中,加强对微积分的学习和学术研究是非常有必要的。
综上所述,在高中物理教学及高考中,微积分有着重要的应用,它可以帮助学生更深入地理解物理学和化学中的问题,同时提高学生
的数学水平,从而增强学生的理解和解决问题的能力。
因此,加强对微积分的学习及学术研究,有助于提高高中物理教学及高考中的教学水平。
微积分在高中物理中的应用

微积分在高中物理中的应用一、非匀变速直线运动的位移计算一小球以速度v 做直线运动,其速度随时间变化规律为22+-=t v ,求小球在0—1s 内的位移。
由题意可知,小球的速度并不是均匀变化的,无法运用匀变速直线运动的公式计算位移,现在尝试运用微积分的思想来解决问题。
试想,将[0,1]这段时间分为n 个时间段:[0,n 1],[n 1,n 2],…,[nn 1-,1] 每个时间段的长度为 nn t t t t t i i 101=-=-=∆- 当Δt 很小时,在[t 1-i ,t i ]上,v(t)的变化很小,可以认为物体近似的以速度v(t 1-i )做匀速运动,在这一段时间上物体的位移t t v x i i ∆≈∆-)(1在[0,1]上物体的总位移∑∑=-=∆=∆=n i i n i it t v x x 111)(∑=-⎪⎭⎫ ⎝⎛+⋅=n i i n n t x 12121- ()[]()()22111131-26121n 1-2121n 1-2111110-3222322+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+--=+-+⋯++=+⋅⎪⎭⎫ ⎝⎛--⋯-⋅⎪⎭⎫ ⎝⎛-⋅=n n n n n n nn n n n n 所以,n 越大即t ∆越小时,时间段[0,1]分得越细,∑=∆n i i x 1与x 的近似程度就越好,当∞→n 时,两者之差趋向于零,即3522111131-lim lim 11=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=∆=∞→=-∞→∑x n n x tv x n ni i n 所以,小球在0—1s 内的位移为35m 由此可以看出利用微积分思想可以解决非匀速直线运动的位移问题。
此过程比较麻烦,也可以直接使用牛顿—莱布尼茨公式。
二、变力作功在弹簧的弹性限度内,将其从平衡位置拉到距平衡位置l m 处,已知弹簧劲度系数为k ,求此过程中拉力F 所做的功W 。
在弹性限度内,拉力F 与弹簧拉伸长度成正比()kx x F =所以 20202121kl kx dx kx W ll ===⎰ 拉力F 所做的功为221kl三、交变电流有效值的计算求正弦式交变电流t I i m ωsin =的有效值解: 设电流的有效值为I ,则i W Rt I =2将t I i m ωsin =等号两边同时平方得到t I i m ω222sin =Rt I Q 2=令 T t =所以在半个周期内TRI W t t RI W dt t RI W dt t I R W dt t I R W m i T m i T m i Tmi Tm i 2202202202222412sin 412122cos 2122cos 1sin =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-==⎰⎰⎰ωωωωω所以 TR I W Rt I m i 2241==2221m I I =2mI I = 正弦式交流电的有效值为2mI I =。
微积分在物理学中的应用

微积分在物理学中的应用微积分是数学的一个重要分支,它研究函数的变化和变化率,是物理学中不可或缺的工具。
微积分的应用范围广泛,尤其在物理学中,它发挥着重要的作用。
本文将介绍微积分在物理学中的几个重要应用。
一、速度和加速度的计算在物理学中,速度和加速度是描述物体运动的重要概念。
微积分可以帮助我们计算速度和加速度。
假设一个物体在时间t内的位移为s(t),那么速度v(t)可以通过求位移函数的导数来计算,即v(t) =ds(t)/dt。
同样地,加速度a(t)可以通过求速度函数的导数来计算,即a(t) = dv(t)/dt。
微积分的求导运算可以帮助我们精确地计算速度和加速度,从而更好地理解物体的运动规律。
二、曲线的长度和曲率的计算在物理学中,我们经常需要计算曲线的长度和曲率。
微积分可以帮助我们解决这些问题。
对于一条曲线C,我们可以将其分割成无数个小线段,然后计算每个小线段的长度,再将这些长度相加,就可以得到曲线的长度。
这个过程可以通过微积分中的积分运算来实现。
同样地,曲率描述了曲线的弯曲程度,可以通过微积分中的导数运算来计算。
微积分的这些运算使得我们能够准确地计算曲线的长度和曲率,从而更好地理解曲线的性质。
三、力和功的计算在物理学中,力和功是描述物体受力和做功的重要概念。
微积分可以帮助我们计算力和功。
假设一个物体在位移s下受到力F的作用,那么力可以通过求位移函数的导数来计算,即 F = dW(s)/ds。
同样地,功可以通过力和位移的乘积来计算,即W = ∫Fds。
微积分的这些运算使得我们能够准确地计算力和功,从而更好地理解物体受力和做功的过程。
四、体积和质量的计算在物理学中,体积和质量是描述物体性质的重要概念。
微积分可以帮助我们计算体积和质量。
对于一个具有复杂形状的物体,我们可以将其分割成无数个小体积,然后计算每个小体积的大小,再将这些大小相加,就可以得到物体的体积。
同样地,质量可以通过微积分中的积分运算来计算。
高中物理微积分应用(完美)

Q0→Q1
q ③根据电容电量公式Q=CU,有Q1=CU=CRi ,那么q= Q0- CRi ; ④联立上式,有i=== - CR ⑤进行公式变形,令x= - ,则有i= - CR= 同学们思考一下,i应该是什么函数,才能满足i= ?,或者说什么函数 的导数等于函数本身? 我们观察到,只有y=Cex形式的函数才满足i= 关系,C为待定常数。 故可以知道,i = Cex = Ce-t/CR 当t=0 时,U0= , i0= = ;而把t=0 代人,得i = Ce-t/CR=C;故C=
我们解决物理问题。
导数
㈠ 物理量的变化率
我们经常对物理量函数关系的图像处理,比如v-t图像,求其斜率可
以得出加速度a,求其面积可以得出位移s,而斜率和面积是几何意义上
的微积分。我们知道,过v-t图像中某个点作出切线,其斜率即a=.
t
v
下面我们从代数上考察物理量的变化率:
【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t2,
①(△t+C)=C
②C·△t=0 ③f(△t)=f(0)
④ f(t+△t)=f(t)
⑤=1
『附录』常用等价无穷小关系()
① ;② ;③ ;④ ;⑤
㈢ 导数
前面我们用了极限“”的表示方法,那么物理量y的变化率的瞬时值z
可以写成:
z=,并简记为z=,称为物理量y函数对时间变量t的导数。物理上经常
用某物理量的变化率来定义或求解另一物理量,如v=、a=、i=、ε=N
小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直 线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像, 找“面积”就可以。或者,利用定积分就可解决.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们解决物理问题。
导数
㈠ 物理量的变化率
我们经常对物理量函数关系的图像处理,比如v-t图像,求其斜率可
以得出加速度a,求其面积可以得出位移s,而斜率和面积是几何意义上
的微积分。我们知道,过v-t图像中某个点作出切线,其斜率即a=.
t
v
下面我们从代数上考察物理量的变化率:
【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t2,
式:
⑴ 导数的四则运算
①=±
③=
②=·v + u·
⑵ 常见函数的导数
①=0(C为常数); ④=-sint;
②=ntn-1 (n为实数); ⑤=et;
③=cost;
⑶ 复合函数的导数
在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自
变量。
=·
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以
L(弧长)=α(弧度)x r(半径) (弧度制)
又因为车在A、B两点以速率v作圆周运动,所以:
综合以上各式得: F= 圆周运动向心力公式 故摩擦力对车所做的功: 【微积分解】物体在轨道上受到的摩擦力,从最低点运动到最高点摩擦 力所做的功为 小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到
小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直 线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像, 找“面积”就可以。或者,利用定积分就可解决.
2、解决变力做功问题
v 恒力做功,我们可以利用公式直接求出;但对于变力做功,我们如
何求解呢? 例2:如图所示,质量为m的物体以恒定速率v沿半径为R的竖直圆轨道 运动,已知物体与竖直圆轨道间的摩擦因数为,求物体从轨道最低点运 动到最高点的过程中,摩擦力做了多少功。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实 就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微 元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速 直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相 加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变 速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”, 即。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系,从开 始刹车到停车的时间t=5s, 所以汽车由刹车到停车行驶的位移
①求出t时刻的速度v ②写出合力F与位移x的关系 ③验证简谐运动中质点的机械能守恒。
【练】2、某矩形线框面积为S,匝数为N,处于磁感应强度为B的匀强 磁场中,如图所示,线框绕PQ轴以角速度ω匀速转动,从水平位置开 始计时,在t时刻:①写出磁通量Ф的表达式②求出线框产生的感应电 动势ε P Q θ 三:微分和积分 ㈠ 简单问题 【例】电容器是一种存储电荷的元件,它的基本工作方式为充电和放 电,我们先考察电容器放电时的情况。某电容为C的电容器,其已充 电的电量为Q0,若让该电容与另一个阻值为R的的电阻串联起来,该 电容器将会放电,其释放的电能转化电阻的焦耳热(内能)。试讨 论,放电时流过电阻R的电流随时间t 的变化关系如何? 分析:①根据电荷守恒定律,当通过电阻R的电量为q时,电容器的电量
一场源点荷为Q,在距Q为r的A点有一点电荷为q,此A处电势φ=kQ/r
【例】问均匀带电的立方体角上一点的电势是中心的几倍。
分析:
①根据对称性,可知立方体的八个角点电势相等;将原立方体等分为八
个等大的小立方体,原立方体的中心正位于八个小立方体角点位置;而
根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即
第三次,我们把时间段平均分为4段,每段时间△t=;
…………
第N次,我们把时间段平均分为N+1段,每段时间△t=;
…………
一直这样进行下去,我们知道,△t越来越小,虽然它不为零,但永
远逼近零,我们称它为无穷小,记为△t→0。或者,用数学形式表示
为 △t=0。其中“”表示极限,意思是△t的极限值为0。常规计算:
1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt;但变速直线运动,那
么物体的位移如何求解呢? 例1、汽车以10m/s的速度行驶,到某处需要减速停车,设汽车以等减速 2m/s2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式 就可以求 得汽车走了0.025公里。 a=-2m/s2
㈡ 无穷小 当△t取很小时,可以用V=求瞬时速度,也可用i=求瞬时电流,用
ε=求瞬时感应电动势。下面,我们来理解△t: △t是很小的不为零的正数,它小到什么程度呢?可以说,对于我们
任意给定一个不为零的正数ε,都比△t大,即:ε>△t 。或者从动态 的角度来看,给定一段时间t,我们进行如下操作:
第一次,我们把时间段平均分为2段,每段时间△t=; 第二次,我们把时间段平均分为3段,每段时间△t=;
大立方体的中心点电势:U1=8U2=2 Ckρa2
;即U0=U1
【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已
知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量
(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者
将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助
【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在 不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单 的用来求。
.
x y O
mg mg NA NB B A
可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置A和 B,设OA、OB与水平直径的夹角为θ。在的足够短圆弧上,△S可看作 直线,且摩擦力可视为恒力,则在A、B两点附近的△S内,摩擦力所做 的功之和可表示为:
等,甚至不限于对时间求导,如F=、Ex=、ρ=等。
这个dt(也可以是dx、dv、dm等)其实相当于微元法中的时间微元
△t,当然每次这样用来求物理量变化率的瞬时值太繁琐了,毕竟微元
法只是草创时期的微积分。
如果能把常见导数计算的基本规律弄懂,那么我们可以简单快速地
求解物理量变化率的瞬时值(导数)了。同学们可以课后推导以下公
变形为i= - CR,即以上解法中的微分方程。
微分与导数有什么关系呢?对某自变量为时间t的函数F(t),它的
极其微小的变化,我们记它为微分dF,它与时间微分dt满足关系式:
dF=dt,其中为F对t的导数。
下面是常见的微分公式与微分运算法则:
在△t的时间内,通过电阻R的电量为△q。虽然电流随时间发生变
化,但在很短的时间△t内,可以认为电流几乎不变,当成恒定电流处
理,故有△q= i△t 。对电容有Q=CU=CiR,△Q=CR△i;由电量守
恒,△Q= -△q ,故-i△t=CR△i,然后把“△”形式改写成微积
分语言的“d”形式,就有-idt=CRdi (dt和di称之为微分),数学
中间变量对自变量的导数——称为链式法则。
在简谐振动中,在单位时间内物体完成全振动的次数叫频率,用f表
示,频率的2π倍叫角频率,即ω =2πf
【练】1、某弹簧振子在X轴上做直线运动,其位移x与时间t的关系为 x=Asinωt,即,质点在坐标原点附近往复运动,最大位移为A(A称 为振幅),周期为(ω称为角频率),物理上把这种运动叫简谐运 动。请完成以下几问:
所以,流过电阻R的电流随时间t 的变化关系为:i = e-t/CR 【练】对于上例电容器放电问题,试讨论,放电时电容器的电量Q随 时间t 的变化关系如何?
㈡微分 1、从上面式子可以看出,理论上虽然我们说是要经过无穷长的时间电 容才放完电,电流为零,但实际上只需要电流减少足够小时,电流计就 检测不到有电流了。 2、对于i= - CR或i= ,我们称之为微分方程,最直观的解决方法是观 察有哪些函数满足该微分方程的函数关系,当然,我们要注意比如上题 中的t=0 之类的初始条件。 3、一般来说,微积分可以帮助同学们深刻理解物理概念和公式,但微 元法可以帮助同学们更细致地明了物理过程。下面我们用微元法的方式 来处理这个问题。
高中物理中微积分思想 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比 如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成 就,创立了微积分。 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的 数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重 要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难 研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最 终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细 分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积 分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最 伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。
①(△t+C)=C
②C·△t=0 ③f(△t)=f(0)
பைடு நூலகம்
④ f(t+△t)=f(t)
⑤=1
『附录』常用等价无穷小关系()
① ;② ;③ ;④ ;⑤
㈢ 导数
前面我们用了极限“”的表示方法,那么物理量y的变化率的瞬时值z
可以写成:
z=,并简记为z=,称为物理量y函数对时间变量t的导数。物理上经常
用某物理量的变化率来定义或求解另一物理量,如v=、a=、i=、ε=N
的。利用微积分思想,把物体的运动无限细分,在每一份位移微元内, 力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运 动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知 道。
在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速 度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有 它的共性。作为大学知识在高中的应用,虽然微积分高中不要求,但他 的思想无不贯穿整个高中物理。“微积分思想”丰富了我们处理问题的手 段,拓展了我们的思维。我们在学习的时候,要学会这种研究问题的思 想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。