PLC机械手基本控制设计

合集下载

机械手的PLC控制-PLC课程设计

机械手的PLC控制-PLC课程设计

一、要求机械手的PLC控制1.设备基本动作:机械手的动作过程分为顺序的8个工步:既从原位开始经下降、夹紧、上升、右移、下降、放松、上升、左移8个动作后完成一个循环(周期)回到原位。

并且只有当右工作台上无工件时,机械手才能从右上位下降,否则,在右上位等待。

2.控制程序可实现手动、自动两种操作方式;自动又分为单工步、单周期、连续三种工作方式。

3.设计既有自动方式也有手动方式满足上述要求的梯形图和相应的语句表。

4. 在实验室实验台上运行该程序。

二参考1. “PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”2. “机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

3.“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式时手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

注解:“PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”例中只有手动和自动(连续)两种操作模式,使用顺序控制法编程。

PLC 机型选用CPM2A-40型,其内部继电器区和指令与CPM1A系列的CPM有所不同。

“机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

本例中的程序是用三菱公司的F1系列的PLC指令编制。

有手动、自动(单工步、单周期、连续)操作方式。

手动方式与自动方式分开编程。

参考其编程思想。

“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式有手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

用CPM1A编程。

这里“误操作禁止”是指当自动(单工步、单周期、连续)工作方式时,按一次操作按钮自动运行方式开始,此后再按操作按钮属于错误操作,程序对错误操作不予响应。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计基于PLC的机械手控制设计,是一种智能化的机械手控制方法,它利用PLC 控制器进行逻辑控制,使机械手能够自主地完成多种工作任务。

本文将介绍本方法的具体实现过程,包括机械结构设计、PLC程序设计以及控制算法设计。

一、机械结构设计机械结构是机械手的核心,合理的机械结构设计将为实现机械手的自主运动提供必要的保障。

机械手一般由控制系统、机械部分和执行机构三部分组成。

机械部分一般包含基座和移动结构,执行机构包括手臂和手指。

这里我们以一款三轴机械手为例进行介绍。

1. 机械手构造机械手采用了一种比较简单的三轴结构,主要有三个关节——一个旋转关节和两个平移关节。

机械手的底座固定在工作台上,三个关节通过模拟伺服电机的方式进行控制。

2. 机械手控制器机械手采用PLC控制器进行逻辑控制,PLC控制器由三个部分组成:输入接口、中央处理器和输出接口。

输入接口用于读取传感器信号,输出接口用于控制执行机构,中央处理器则用于控制机械手的运动。

二、PLC程序设计机械手的PLC程序设计主要分为四个部分:程序初始化、数据采集、运动控制和异常处理。

1.程序初始化机械手程序初始化主要包括程序开头的自诊断和状态检测,并根据检测结果自动执行不同的控制程序。

自诊断可以避免因器件故障等原因引起的机械手操作异常。

2.数据采集机械手需要收集外部环境数据和操作数据。

外部环境数据包括工作物品的坐标、大小、形状等信息,操作数据包括机械手应该执行的命令。

在采集数据时,机械手需要通过传感器或外部设备接口实现。

3.运动控制机械手的运动控制分为机械手移位运动和执行机构运动两个部分。

机械手移位运动需要根据采集到的工作物品信息以及执行机构的操作命令来控制机械手的运动轨迹。

执行机构运动控制则是将机械手的控制信号转换为电机运动信号。

4.异常处理机械手运动过程中可能会出现异常情况,例如碰撞、误差等,需要通过对异常情况的处理来保证机械手的安全和可靠性。

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计
基于PLC的机械 手控制系统设计
2024-04-29
• 项目背景与意义 • 整体方案设计 • 硬件选型 • 程序设计 • PLC仿真 • 项目总结与展望
目录
Part
01
项目背景与意义
机械手控制系统优势
效率高、准确高
高生产自动化程度,有利于 提高材料的传送、工件的装 卸、刀具的更换以及机器的 装配等的自动化程度,提高 生产效率,降低生产成本
改善劳动条件
避免人身事故,代替人安全 地在高温、高压、低温、低 压、有灰尘、噪声、臭味、 有放射性或有其它毒性污染 以及工作空间狭窄等场合中 完成工作。
自动化程度高,成本低
采用PLC控制系统,实现远 程监控和自动调节,提高运 维效率,降低了人工成本。
Part
02
整体方案设计
系统硬件设计
plc选型 机械手的位置反馈是开关量控制,所需的I/0点数量并不多,所以使用一般 的小型plc的选择就可以了。由于所需要的 I/0 点数分别为 20 点和12 点, 因此本设计选用西门子S7-226来实现控制
2)通过下面一排拉杆模拟PLC输入信号,通过观察Q点输出亮灯情况检查程序。
组态制作
新建一个工程,触摸屏的类型选择TPC7062TD
2)制作主页面。
组态制作
在设备窗口中添加-通用串口父设备和西门子_S7200PPI
2)双击西门子_S7200PPI,增加设备通道,并且连接对应的数据库,是PLC与触摸屏互相通信。
Part
03
硬件选型
plc硬件接线图简图
选型与配置方案
PLC控制器
使用一般的小型plc的选择就可以 了。由于所需要的 I/0 点数分别 为 20 点和12 点,因此本设计选 用西门子S7-226来实现控制。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计机械手是由一组等效于人类手臂和手腕的机器人装置组成的机器人系统。

机械手广泛应用于生产线上的自动化生产中,能够执行各种任务,如抓取、搬运、装配和检测等。

在机械手系统中,控制系统是至关重要的组成部分,其中PLC控制系统是目前最常用的方案之一。

本文将介绍基于PLC的机械手控制设计方案,包括系统组成、工作原理、控制流程和注意事项等方面。

一、系统组成基于PLC的机械手控制系统包括以下几个组成部分:1. 机械手:包括机械臂、手腕、手指等组成部分,能够完成各种任务的工作。

2. 传感器:用于检测机械手的位置、速度、力量等参数,从而实现机械手的精确控制。

3. PLC:将传感器检测到的信号转换为数字控制量,控制机械手的移动和操作。

4. 电机驱动器:根据PLC信号控制电机的启停、速度和转动方向等。

5. 电源和通信线:为系统提供能量和通信所需的线路。

二、工作原理1. 将任务输入PLC系统:首先,将需要完成的任务输入PLC控制系统,如要求机械手从A点移动到B点,然后从B点抓取物品,最终将物品运输到C点等。

2. PLC分析任务并发出指令:PLC会根据输入的任务信息,分析机械手的当前位置和运动状态,并给出相应的指令,控制机械手的行动。

3. 传感器感知机械手状态变化:在机械手移动过程中,传感器会感知机械手的位置、速度和力量等参数,并反馈给PLC系统。

4. PLC根据传感器反馈调整控制策略:PLC会根据传感器反馈的信息,调整机械手的控制策略,保证机械手能够准确地完成任务。

5. 电机驱动器控制电机运动:PLC通过控制电机驱动器对电机进行启停、转速和转向等操作,从而控制机械手的移动和抓取等操作。

6. 任务完成反馈:当任务完成后,PLC会发出相应的反馈信息,以说明任务已经顺利完成。

三、控制流程1. 确定任务:首先需要确定需要机械手完成的任务,并将任务信息输入PLC系统。

2. 置初值:设置机械手的起始位置和状态,并将其作为控制的初始状态。

基于plc控制的机械手设计

基于plc控制的机械手设计

基于PLC控制的机械手设计引言PLC(可编程逻辑控制器)是一种被广泛应用于工业自动化系统的控制器。

它以可编程的方式控制工业过程中的各种设备和机械。

机械手是一种常见的自动化设备,广泛应用于工业领域。

本文将介绍基于PLC控制的机械手设计,包括系统的硬件组成、PLC程序设计和系统的工作原理。

硬件组成基于PLC控制的机械手系统包括以下硬件组成部分:1.PLC控制器:PLC控制器是系统的核心部分,负责接收和处理输入信号,并控制输出设备的操作。

常见的PLC控制器有西门子、施耐德等品牌。

2.机械手:机械手是系统的执行部分,负责完成各种任务,如抓取、搬运等。

它通常由电动机、传动装置、执行器等组成。

3.传感器:传感器用于检测和监测系统的状态和环境变量。

常见的传感器有接近传感器、压力传感器、温度传感器等。

4.输入设备:输入设备用于向系统提供操作信号和参数设置,如按钮、开关等。

5.输出设备:输出设备用于显示系统状态或输出结果,如指示灯、显示屏等。

PLC程序设计PLC程序是由一系列指令组成的,用于控制PLC控制器。

以下是基于PLC控制的机械手系统的PLC程序设计步骤:1.确定系统的需求和功能:首先需要确定机械手的具体需求和功能,如抓取物体的方式、搬运的速度等。

2.设计输入和输出信号:根据系统需求,确定输入和输出信号的类型和数量。

输入信号可以是按钮的状态、传感器的检测结果等,输出信号可以控制机械手的运动和执行动作。

3.设计PLC程序逻辑:根据系统需求和硬件组成,设计PLC程序的逻辑。

逻辑可以使用Ladder Diagram、Function Block Diagram等可视化编程语言进行描述。

4.编写PLC程序:根据设计的逻辑,使用PLC编程软件编写PLC程序。

编写过程中需要考虑安全性、可靠性和性能等方面。

5.调试和测试:将编写好的PLC程序下载到PLC控制器中,并进行调试和测试。

调试过程中需要检查各个输入和输出设备是否正常工作,是否满足系统的需求和功能。

机械视觉机械手PLC控制系统的设计

机械视觉机械手PLC控制系统的设计

机械视觉机械手PLC控制系统的设计简介本文档旨在介绍机械视觉机械手PLC控制系统的设计。

该系统结合了机械视觉技术和PLC控制技术,实现了高效准确的机械操作。

以下将对系统的原理、设计要点和应用场景进行详细阐述。

原理机械视觉机械手PLC控制系统的基本原理是通过机械视觉技术实时获取图像信息,对图像进行处理和分析,然后将处理结果传递给PLC控制器,实现对机械手的精确控制。

系统通过识别和定位目标物体,计算出适当的机械操作参数,并将其反馈给PLC控制器,从而驱动机械手执行相应的操作。

设计要点在设计机械视觉机械手PLC控制系统时,需要注意以下几个要点:1. 视觉传感器选择:选择适合的机械视觉传感器,能够满足系统对图像获取和处理的需求。

常见的视觉传感器包括CCD摄像头、CMOS摄像头等。

2. 图像处理算法:针对不同的应用场景,选择合适的图像处理算法。

常用的算法包括边缘提取、目标识别、图像匹配等。

3. 系统集成:将机械视觉系统与PLC控制器进行无缝集成。

确保数据的准确传输和实时响应,以实现精确的机械操作。

4. 系统调试和优化:在系统完成初步搭建后,进行调试和优化工作。

通过对系统运行过程的监测和数据分析,不断优化算法和参数,提高系统的稳定性和性能。

应用场景机械视觉机械手PLC控制系统的设计在许多领域都有广泛的应用,包括但不限于以下几个方面:1. 工业自动化:机械视觉机械手PLC控制系统可以应用于自动化生产线上的物料分拣、装配和检测等操作,提高生产效率和产品质量。

2. 仓储物流:系统可以用于仓储物料的归类、堆垛和搬运等工作,减少人工操作,提高物流效率。

3. 医疗领域:系统可用于医疗器械的装配和精确定位,保证手术和治疗的安全和精准度。

4. 机器人技术:机械视觉机械手PLC控制系统是机器人技术的重要组成部分,可以应用于各种机器人操作,如抓取、放置、装配等。

总结机械视觉机械手PLC控制系统的设计通过结合机械视觉技术和PLC控制技术,实现了高效准确的机械操作。

PLC实验——机械手控制

PLC实验——机械手控制

1. 机械手控制
搬运纸箱的机械手结构示意图如图1所示, 它的气动系统原理图如图2所示。

机械手的主要运动机构是升降气缸和回转气缸。

升降挡铁初始时处于行程开关SQ1处, 吸盘在A处正上方。

系统启动后, 如果光电开关TD检测出A处有纸箱, 则升降气缸使机械手的升降杆下降, 当升降挡铁碰到行程开关SQ2时, 吸盘恰好接触到纸箱上表面, 继续让升降杆下降, 以挤出吸盘和纸箱表面围成的空腔内的空气, 形成负压。

持续几秒钟, 升降杆停止下降, 升降气缸使升降杆上升, 吸盘带着纸箱上升, 当升降挡铁碰到SQ1时, 停止上升。

回转气缸使回转臂顺时针转180°, 吸盘运动至B处正上方, 回转挡铁碰到行程开关SQ4时停止回转, 吸盘下降, 当升降挡铁碰到SQ2时, 停止下降, 并且停止几秒钟, 这时, 电磁阀HF3开启, 吸盘放松纸箱。

之后, 吸盘上升, 当升降挡铁碰到SQ1时, 吸盘逆时针转180°回到A处正上方, 回转挡铁碰到行程开关SQ3时停止回转, 如果TD未检测出A处有纸箱, 则机械手停止等待;若TD检测出A处有纸箱, 则机械手重复上述工作过程。

机械手的I/O连接图、流程图、梯形图分别如图2、图3、图4所示。

图1 机械手
图2 I/O连接图图3 流程图
图4 梯形图。

机械手PLC控制系统设计与装调

机械手PLC控制系统设计与装调

机械手PLC控制系统设计与装调机械手是一种用来代替人工完成重复性、繁琐或危险工作的机械装置。

PLC控制系统是一种可编程逻辑控制器,能够实现自动化控制和监控设备的功能。

机械手PLC控制系统设计与装调是指利用PLC控制系统来控制机械手的运动和动作。

1.系统需求分析:根据机械手的任务和要求,分析系统所需的功能和性能,确定系统的控制策略。

2.硬件设计:根据系统需求,设计PLC控制系统的硬件部分,包括选择适当的PLC、输入输出模块、传感器等设备,并进行布置和连线。

3.软件设计:根据机械手的动作和任务,设计PLC控制系统的软件部分,包括编写PLC程序、设置逻辑关系和时序控制等。

4.程序调试:将编写好的PLC程序烧写到PLC中,并进行调试和测试。

通过观察机械手的运动和动作,检查是否符合系统需求。

5.故障排除:在调试过程中,如果发现机械手运动不正常或出现故障,需要进行故障排除和修复,确保系统正常运行。

6.系统调试:将机械手与PLC控制系统进行连接,并进行整体调试和测试。

通过检查机械手的运动轨迹和动作正确性,验证系统是否满足设计要求。

在机械手PLC控制系统设计与装调过程中1.确保PLC控制系统性能和稳定性:选择适当的硬件设备,确保其性能能够满足系统需求;合理设计PLC程序,避免死循环和死锁等问题;对系统进行充分测试和调试,排除潜在的故障。

2.确保机械手安全和可靠运行:考虑机械手的载荷、速度、加速度等因素,设计合理的控制策略,确保机械手的安全运行;设置传感器和限位开关等装置,监控机械手的位置和状态,及时停止或调整其运动。

3.确保系统兼容性和扩展性:设计PLC控制系统时,考虑到未来可能的扩展需求和变化,留出足够的余地;选择具有通信接口和扩展模块等功能的PLC,方便与其他设备进行联动和协同控制。

4.提高系统的可操作性和可维护性:设计PLC程序时,考虑到操作人员的使用和维护需求,使系统界面友好且易于操作;合理安排PLC程序的模块结构和注释,便于后续维护和修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.0引言ﻫ本文以某物流控制中的机械手控制为例,分析了PLC与步进驱动装置的控制方法,本系统涉及的主要硬件是S7-200 PLC和SH-2H057步进驱动器。

(1)S7-200 PLC系列是西门子公司的可编程控制器,这一系列产品可以满足多种多样的自动化控制要求,由于具有紧凑的设计、良好的扩展性、低廉的价格以及强大的指令,使得S7-200 PLC可以满足小规模的控制要求。

此外,丰富的CPU类型和电压等级使其在解决用户的工业自动化问题时,具有很强的是适用性。

1台S7-200 PLC包括一个单独的S7-200CPU,或者带有各种各样的可选扩展模块。

S7-200 CPU模块包括一个中央处理单元(CPU)、电源以及数字量I/O点,这些都被集成在一个紧凑、独立的设备中。

l CPU负责执行程序和存储数据,以便对工业自动化控制任务或过程进行控制;l 输入和输出是系统的控制点:输入部分从现场设备中采集信号,输出部分则控制泵、电机、以及控也过程中的其他设备;l 电源向CPU 及其所连接的任何设备提供电力;l通讯端口允许将S7-200 CPU同编程器或其他一些设备连起来;ﻫl 状态信号灯显示了CPU 的工作模式(运行或停止),本机I/O的当前状态,以及检查出来的系统错误;ﻫl通过扩展模块可提供其通讯性能;l通过扩展模块可增加CPU的I/O点数(CPU 221不扩展);ﻫl 一些CPU有内置的实时时钟,或添加实时时钟卡;ﻫlEEPROM卡可以存储CPU程序,也可以将一个CPU中的程序送到另一个CPU中;2)SH l 通过可选的插入式电池盒可延长RAM中的数据存储时间;ﻫl最大I/O配置。

ﻫ(-2H057驱动器输入信号共有三路,他们是:步进脉冲信号CP、方向电平信号DIR、脱机电平信号FREE.他们在驱动器内部分别通过270Ω的限流电阻接入光耦的负输入端,且电路形式完全相同,三路光耦的正输入端为OPTO端,三路输入信号在驱动器内部接成共阳方式,所以OPTO端需接外部系统的VCC端,如果VCC是+5伏,可直接接入;否则需在外部另加限流电阻,保证给驱动器内部光耦提供8-15mA的驱动电流。

l 步进脉冲信号CPﻫ步进脉冲信号CP用于控制步进电机的位置和速度,也就是说:驱动器每接受一个CP脉冲就驱动步进电机旋转一个步角度,CP脉冲的频率改变则同时是步进电机的速率改变,控制CP脉冲的个数,则可以使步进电机精确定位。

这样就可以很方便的达到步进电机调速和定位的目的。

本驱动器的CP信号为低电平有效,要求CP信号的驱动电流为8-15mA,对CP脉冲宽度也有一定要求,一般不小于5μs。

l方向电平信号DIRﻫ方向电平信号DIR用于控制步进电机的旋转方向。

此端为高电平时,电机为一个转向;次端为低电平时,电机为另一个转向。

电机换向必须在电机停止后再进行,并且换向信号一定要在前一个方向的最后一个CP脉冲结束后以及下一个方向的第一个CP脉冲前发出。

l脱机电平信号FREE当驱动器上电后,步进电机处于锁定状态(未施加CP脉冲时)或运行状态(施加CP脉冲),但用户想手动调整电机而又不想关闭驱动器电源,这时可以用到此信号,此信号低电平有效,电机处于自由无力矩状态;当此信号为高电平或悬空不接时,取消脱机状态。

l步进电机简介SH-2H057型驱动器用于驱动二相或四相混合式步进电机(亦称感应子式),此驱动器一般驱动60号机座以下电机。

电机的出线方式不同,与驱动器的连接也不同。

本系统使用的电机为二相四根线电机,可以直接和驱动器相连。

见图1的机械手电机驱动模块原理图。

2.0系统工作工程本系统的机械手部分由底盘、立杆、手臂、手组成,其中底盘由一个步进电机驱动,可顺逆时针旋转;立杆由一个步进电机驱动,可上下移动;手臂由一个步进电机驱动,可前后伸缩;手由气泵控制,可抓紧和放松。

在相应位置都有位置检测信号用于定位。

参见图1。

(1) 出货过程从复位位置启动,根据要求到相应出货台(1,2,3号货台),此时底盘转动到要求位置,立柱下降,手臂伸出,定位后手抓货物,立柱上升,同时手臂回收(以免运行中与其它设备相撞),然后到相应出货台(左,或右出货台),立柱下降,手臂伸出,手打开,把货物放在相应出货台上。

(2) 进货过程从复位位置启动,根据要求到相应出货台(左,或右出货台),此时底盘转动到要求位置,立柱下降,手臂伸出,定位后手抓货物,立柱上升,同时手臂回收(以免运行中与其它设备相撞),然后到相应出货台(1,2,3号货台),立柱下降,手臂伸出,手打开,把货物放在相应出货台上。

3.0系统设计思想ﻫ步进控制电路设计思想,PLC继电器式输出模块工作速度较低,故采用高频脉冲方波发生器,给出步进脉冲,其振荡频率按步进电机速度设置,步进量的控制采用位置检测,根据位置检测信号用PLC的输出点切断进给电机,实现步进电机的停车, 其程序流程图如图2所示。

在整个机械手运行控制过程中,采用限位开关以及面板操作开关以及系统逻辑开关作为输入点,整个系统中底盘有5个限位开关,分别作为5个位置的定位输入点,立柱有4个限位开关,分别为1个复位开关、一号位限位输入量、上限位、下限位。

手臂有3个限位开关:手臂复位限位数入点、手臂前限位、手臂后限位。

抓手限位开关,为抓手复位输入点。

一共13个限位开关完成全部的控制输入。

各限位开关分布情况见图1,由于在整个控制过程中全部是通过控制步进电机驱动模块再驱动步进电机执行。

这里对用集成脉冲输出触发步进电机驱动器原理进行说明。

S7-200 PLC(CPU226)的Q0. 0和Q0.1分别对升/降步进电机、前/后步进电机发送脉冲;CPU 226的Q0.2对转盘步进电机发送脉冲。

而步进电机的正/反转则分别是CPU226的Q0.4和Q0.5分别对升/降步进电机、前/后步进电机实行控制;CPU226 的Q0.6和Q0.7分别对转盘步进电机正反、抓手气泵开关实行控制。

ﻫ机械手PLC程序的设计编写采用了STEP7-Micro/WIN32软件的数据表(STL)的形式。

程序设计修改方便,设计完成可联机调试,没有问题再把步进电机接上。

上位机监控软件采用北京亚控的组态王软件,通过变量映射实现组态软件的变量与PL C的寄存器的动态连接,从而实现了上位机对PLC的监控。

4.0 结束语本机械手控制系统结构紧凑,动作可靠,使用方便,已较好地应用于我校的科研教学中.随着社会生产不断进步和人们生活节奏不断加快,人们对生产效率也不断提出新要求。

由于微电子技术和计算软、硬件技术的迅猛发展和现代控制理论的不断完善,使机械手技术快速发展,其中气动机械手系统由于其介质来源简便以及不污染环境、组件价格低廉、维修方便和系统安全可靠等特点,已渗透到工业领域的各个部门,在工业发展中占有重要地位。

本文讲述的气动机械手有气控机械手、XY轴丝杠组、转盘机构、旋转基座等机械部分组成。

主要作用是完成机械部件的搬运工作,能放置在各种不同的生产线或物流流水线中,使零件搬运、货物运输更快捷、便利。

一、四轴联动简易机械手的结构及动作过程ﻫ机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。

ﻫ其运动控制方式为:(1)由伺服电机驱动可旋转角度为360°的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360°的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。

ﻫ其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。

ﻫ步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。

二、控制器件选型ﻫﻫ为达到精确控制的目的,根据市场情况,对各种关键器件选型如下: ﻫ1.步进电机及其驱动器机械手纵轴(Y轴)和横轴(X轴)选用的是北京四通电机技术有限公司的42BYG250C型两相混合式步进电机,步距角为0.9°/1.8°,电流1.5A。

M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。

所选用的步进电机驱动器是SH-20403型,该驱动器采用10~40V直流供电,H桥双极恒相电流驱动,最大3A的8种输出电流可选,最大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。

驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据各自情况在10~40VDC 之间选择。

一般来说较高的额定电源电压有利于提高电机的高速力矩,但却会加大驱动器的损耗和温升。

本驱动器最大输出电流值为3A/相(峰值),通过驱动器面板上六位拨码开关的第5、6、7三位可组合出8种状态,对应8种输出电流,从0.9A到3A以配合不同的电机使用。

本驱动器可提供整步、改善半步、4细分、8细分、16细分、32细分和64细分7种运行模式,利用驱动器面板上六位拨码开关的第1、2、3三位可组合出不同的状态。

ﻫ2.伺服电机及其驱动器ﻫ机械手的旋转动作采用松下伺服电机A系列小惯量MSMA5AZA1G,其额定输出50W、100/200V共用,旋转编码器规格为增量式(脉冲数2500p/r、分辨率10000p/r、引出线11线);有油封,无制动器,轴采用键槽连接。

该电机采用松下公司独特算法,使速度频率响应提高2倍,达到500Hz;定位超调整定时间缩短为以往松下伺服电机产品V系列的1/4。

具有共振抑制功能、控制功能、全闭环控制功能,可弥补机械的刚性不足,从而实现高速定位,也可通过外接高精度的光栅尺,构成全闭环控制,进一步提高系统精度。

具有常规自动增益ﻫ益调整两种自动增益调整方式,还配有RS-485、RS-232C通信口,调整和实时自动增ﻫ使上位控制器可同时控制多达16个轴。

伺服电机驱动器为A系列MSDA5A3A1A,适用于小惯量电动机。

ﻫﻫ3.直流电机ﻫﻫ可回旋360°的转盘机构有直流无刷电机带动,系统选用的是北京和时利公司生产的57BL1010H1无刷直流电机,其调速范围宽、低速力矩大、运行平稳、低噪音、效率高。

无刷直流电机驱动器使用北京和时利公司生产的BL-0408驱动器,其采用24~48V直流供电,有起停及转向控制、过流、过压及堵转保护,且有故障报警输出、外部模拟量调速、制动快速停机等特点。

相关文档
最新文档