【高考数学】含有三角函数的导数大题

【高考数学】含有三角函数的导数大题
【高考数学】含有三角函数的导数大题

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.

2.(2019秋?汕头校级期末)已知函数f (x )=x cos x ﹣2sin x +1,g (x )=x 2e ax (a ∈R ).

(1)证明:f (x )的导函数f '(x )在区间(0,π)上存在唯一零点;

(2)若对任意x 1∈[0,2],均存在x 2∈[0,π],使得g (x 1)≤f (x 2),求实数a 的取值范围.

注:复合函数y =e ax 的导函数y '=ae ax .

3.(2020?开封一模)已知函数,a ∈R ,e 为自然对数的底数.

(1)当a =1时,证明:?x ∈(﹣∞,0],f (x )≥1;

(2)若函数f (x

)在

上存在两个极值点,求实数a 的取值范围.

4.(2020?遂宁模拟)已知函数

(1)求曲线y =f (x )在点(0,f (0))处的切线方程;

(2)若函数g (x )=a (lnx ﹣x )+f (x )﹣e x sin x ﹣1有两个极值点x 1,x 2(x 1≠x 2).且不等式g (x 1)+g (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.

5.(2018秋?济宁期末)已知函数f (x )=(x ﹣a )cos x ﹣sin x ,g (x )=x 3

﹣ax 2,a ∈R (Ⅰ)当a =1时,求函数y =f (x )在区间(0,)上零点的个数;(Ⅱ)令F (x )=f (x )+g (x ),试讨论函数y =F (x )极值点的个数.

6.(2019

秋?五华区校级月考)已知函数

,f '(x )为f (x )的导数.(1)证明:f (x )在定义域上存在唯一的极大值点;

(2)若存在x 1≠x 2,使f (x 1)=f (x 2),证明:x 1x 2<4.

7.(2019秋?五华区校级月考)定义在[﹣π,+∞)的函数f (x )=e x ﹣cos x 的导函数为g (x ).证明:

(1)g (x )在区间(﹣π,0)存在唯一极小值点;

(2)f (x )有且仅有2个零点.

(1)当a =1时,证明:?x ∈(﹣∞,0],f (x )≥1;

1.(2020?开封一模)已知函数f (x )=a ?e ﹣

x +sin x ,a ∈R ,e 为自然对数的底数.二.解答题(共10小题)

含有三角函数的导数题目

8.(2019秋?遂宁月考)已知函数,(1)讨论f(x)在上的单调性.

(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.

9.(2019秋?肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).

(1)讨论f(x)的导函数f′(x)零点的个数;

(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.

10.(2019秋?江岸区校级月考)已知函数,f'(x)是f(x)的导函数.

(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;

(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.

一.选择题

二.解答题(共10小题)

1.(2020?开封一模)已知函数f (x )=a ?e ﹣

x +sin x ,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:?x ∈(﹣∞,0],f (x )≥1;

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.

【分析】(1)求出f ′(x )=﹣e ﹣x +cos x ,得出f ′(x )≤0,则f (x )在(﹣∞,0]上

单调递减,结论可证.

(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,

)上有两个不等实数根,分离参数得a =e x cos x 在(0,)上有两个不等实数根;设g (x )=

e x cos x ,讨论函数g (x )的单调性即可解决;

【解答】解:(1)当a =1时,f (x )=e ﹣

x +sin x ,f ′(x )=﹣e ﹣x +cos x ,当x ≤0时,﹣e ﹣x ≤﹣1,则f ′(x )≤0(x ≤0)

所以f (x )在(﹣∞,0]上单调递减,f (x )≥f (0)=1;

所以:?x ∈(﹣∞,0],f (x )≥1;

(2)函数f (x )在(0,

)上存在两个极值点;则f ′(x )=0在(0

)上有两个不等实数根;即f ′(x )=﹣ae ﹣x +cos x =0在(0,

)上有两个不等实数根;即a =e x cos x 在(0,)上有两个不等实数根;

设g (x )=e x cos x ,则g ′(x )=e x (cos x ﹣sin x );当

时,g ′(x )>0,g (x )单调递增;当时,g ′(x )<0,g (x )单调递减;

又g (0)=1,,

故实数a的取值范围为:

【点评】本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.

2.(2019秋?汕头校级期末)已知函数f(x)=x cos x﹣2sin x+1,g(x)=x2e ax(a∈R).(1)证明:f(x)的导函数f'(x)在区间(0,π)上存在唯一零点;

(2)若对任意x1∈[0,2],均存在x2∈[0,π],使得g(x1)≤f(x2),求实数a的取值范围.

注:复合函数y=e ax的导函数y'=ae ax.

【分析】(1)设h(x)=f′(x),然后对h(x)求导,结合导数与单调性的关系可判断h(x)的单调性,然后结合零点判定定理可证,

(2)依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,结合导数可分别求解最值,即可求解.

【解答】解:(1)设h(x)=f′(x)=cos x﹣x sin x﹣2cos x=﹣cos x﹣x sin x,

∴h′(x)=sin x﹣sin x﹣x cos x=﹣x cos x

当x时,h′(x)<0;当x时,h′(x)>0;

所以h(x)在(0,)单调递减,在()单调递增.

又h(0)=﹣1<0lh()=﹣,h(π)=1>0,

故f′(x)在区间(0,π)上存在唯一零点.

(2)记f(x)在区间[0,π]上的最大值为f(x)max,g(x)在区间[0,2]上的最大值为g(x)max.

依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,

由(Ⅰ)知,f′(x)在(0,π)只有一个零点,设为x0,

且当x∈(0,x0)时,f′(x)<0;当x∈(x0,π)时,f′(x)>0;,

所以f(x)在(0,x0)单调递减,在当(x0,π)时单调递增.

又f(0)=1,f(π)=1﹣π<0,所以当x∈[0,π]时,f(x)max=1.

故应满足g(x)max≤1.

因为g(x)=x2e ax,所以g′(x)=(ax2+2x)e ax=x(ax+2)e ax.

①当a=0时,g(x)=x2,对任意x∈[0,2],g(x)max=g(2)=4,不满足g(x)max

≤1.

②当a≠0时,令g′(x)=0,得x=0或x=﹣.

(ⅰ)当﹣≥2,即﹣1≤a<0时,在[0,2]上,g′(x)≥0,所以g(x)在[0,2]上单调递增,g(x)max=g(2)=4e2a.

由4e2a≤1,得a≤﹣ln2,所以﹣1≤a≤﹣ln2.

(ⅱ)当0<﹣<2,即a<﹣1时,上,g′(x)<0,g(x)单调递减.g(x)max=.

由≤1,得a≤﹣或a≥,所以a<﹣1.

(ⅲ)当﹣<0,即a>0时,显然在[0,2]上,g′(x)≥0,g(x)单调递增,于是g (x)max=g(2)=4e2a,此时不满足g(x)max≤1.

综上,实数a的取值范围是(﹣∞,﹣ln2].

【点评】本题主要考查了函数的导数与单调性关系,函数零点判定定理及恒成立与存在性问题与最值求解的相互转化,体现了分类讨论思想与转化思想的应用.3.(2020?开封一模)已知函数,a∈R,e为自然对数的底数.(1)当a=1时,证明:?x∈(﹣∞,0],f(x)≥1;

(2)若函数f(x)在上存在两个极值点,求实数a的取值范围.

【分析】(1)把a=1代入,直接用导数法证明即可;(2)对f(x)求导,,对a进行讨论,判断函数f(x)的极值,确定a的范围.

【解答】解:(1)当a=1时,,则,

当x∈(﹣∞,0]时,0<e x≤1,则,又因为cos x≤1,

所以当x∈(﹣∞,0]时,,仅x=0时,f'(x)=0,

所以f(x)在(﹣∞,0]上是单调递减,所以f(x)≥f(0)=1,即f(x)≥1.

(2),因为,所以cos x>0,e x>0,

①当a≤0时,f'(x)>0恒成立,所以f(x)在上单调递增,没有极值点.

②当a>0时,在区间上单调递增,

因为,f'(0)=﹣a+1.

当a≥1时,时,f'(x)≤f'(0)=﹣a+1≤0,

所以f(x)在上单调递减,没有极值点.

当0<a<1时,f'(0)=﹣a+1>0,所以存在,使f'(x0)=0,

当时,f'(x)<0,x∈(x0,0)时,f'(x)>0,

所以f(x)在x=x0处取得极小值,x0为极小值点.

综上可知,若函数f(x)在上存在极值点,则实数a∈(0,1).

【点评】本题考查了导数的综合应用及极值点引出的含参问题,综合性高,难度较大.4.(2020?遂宁模拟)已知函数

(1)求曲线y=f(x)在点(0,f(0))处的切线方程;

(2)若函数g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1有两个极值点x1,x2(x1≠x2).且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

【分析】(1)求出f′(x)=e x sin x+e x cos x+x,求出切线的斜率,切点坐标,然后求解切线方程.

(2)化简g(x)=,求出导函数,通过g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,列出不等式组,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立,转化求解即可.

【解答】解:(1)因为,所以f′(x)=e x sin x+e x cos x+x,=f′(0)=1,又f(0)=1,

所以k

故所求的切线方程为y﹣1=1×(x﹣0),即x﹣y+1=0.

(2)因为g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1=

所以,

由题意g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,

则,

不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于

恒成立

=所以,

令(a>4),则,

所以在(4,+∞)上单调递减,

所以y<2ln2﹣3,所以λ≥2ln2﹣3.

【点评】本题考查函数与方程的应用,函数的导数以及函数的最值的求法,切线方程的求法,考查分析问题解决问题的能力,是难题.

5.(2018秋?济宁期末)已知函数f(x)=(x﹣a)cos x﹣sin x,g(x)=x3﹣ax2,a∈R (Ⅰ)当a=1时,求函数y=f(x)在区间(0,)上零点的个数;

(Ⅱ)令F(x)=f(x)+g(x),试讨论函数y=F(x)极值点的个数.

【分析】(1)先对函数求导,然后结合导数与单调性的关系可判断单调性,结合零点判定定理可求.

(2)先求导,再分类讨论即可求出函数的单调区间和极值

【解答】解:(1)a=1时,f(x)=(x﹣1)cos x﹣sin x,

∴f′(x)=(﹣x+1)sin x,

x∈(0,),sin x>0,

当0<x<1时,f′(x)>0,f(x)单调递增,当1<x<时,f′(x)<0,f(x)单调递减,

当x=1时,函数取得最小值f(1)=﹣sin1<0,

而f(0)=﹣cos1<0.f()=﹣1<0,

故函数f(x)在区间(0,)上零点的个数为0,

(2)函数F(x)=(x﹣a)cos x﹣sin x x3﹣ax2,

∴F′(x)=(x﹣a)(x﹣sin x),

令F′(x)=0,解得x=a,或x=0,

①若a>0时,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,

当x>a时,F′(x)>0恒成立,故F(x)在(a,+∞)上单调递增,

当0<x<a时,F′(x)<0恒成立,故F(x)在(0,a)上单调递减,

故有2个极值点,

②若a<0时,当x>0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,

当x<a时,F′(x)>0恒成立,故F(x)在(﹣∞,a)上单调递增,

当a<x<0时,F′(x)<0恒成立,故F(x)在(a,0)上单调递减,

故有2个极值点,

③当a=0时,F′(x)=x(x﹣sin x),

当x>0时,F′(x)>0恒成立,故F(x)在(0,+∞)上单调递增,

当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,

∴F(x)在R上单调递增,无极值.

【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题

6.(2019秋?五华区校级月考)已知函数,f'(x)为f(x)的导数.(1)证明:f(x)在定义域上存在唯一的极大值点;

(2)若存在x1≠x2,使f(x1)=f(x2),证明:x1x2<4.

【分析】(1)求出,判断函数的单调性,说明在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,推出结果.

(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,利用代换是判断函

数的单调性推出,结合对数均值不等式

,推出x1x2<4.

【解答】证明:(1),

当x≥2时,,,

,“=”不能同时取到,所以f'(x)<0;

当0<x<2时,,所以f'(x)在(0,2)上递减,

因为,,

所以在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);

当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,

所以x0是f(x)在定义域(0,+∞)上的唯一极值点且是极大值点.

(2)存在x1≠x2,使f(x1)=f(x2),即,得.

设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,g(x)在(0,+∞)上递增,

不妨设x1>x2>0,则g(x1)>g(x2),即x1﹣sin x1>x2﹣sin x2,x1﹣x2>sin x1﹣sin x2,

所以,得,

根据对数均值不等式,可得,x 1x2<4.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.

7.(2019秋?五华区校级月考)定义在[﹣π,+∞)的函数f(x)=e x﹣cos x的导函数为g(x).证

明:

(1)g(x)在区间(﹣π,0)存在唯一极小值点;

(2)f(x)有且仅有2个零点.

【分析】(1)结合导数与单调性的关系,先求解函数的单调性,然后求解函数极值,(2)结合导数与单调性关系及零点判定定理进行讨论即可求解.

【解答】解:(1)∵g(x)=e x+sin x,

则g′(x)=e x+cos x,

容易得出,g′(x)=e x+cos x在[﹣π,0)上单调递增,

又g′(﹣π)<0,g′(0)>0,

结合零点存在定理可知,存在唯一的x0∈(﹣π,0)使得g′(x)=0,

若x∈(﹣π,0),g′(x)<0,g(x)单调递减,

若x∈(x0,0),g′(x)>0,g(x)单调递增,

故g(x)存在唯一的极小值点,

(2)由(1)可知g(x)在(﹣π,0)上存在唯一的极小值点x0,

∴g(x0)=e<0,

又g(0)=1>0,g(﹣π)=e﹣π>0,

结合零点存在定理可知,存在唯一的x1∈(﹣π,x0),使得g(x1)=0,

存在唯一的x2∈(x0,0),使得g(x2)=0,

故当x∈(﹣π,x1)∪(x2,0)时,g(x)>0,此时f(x)单调递增,

当x∈(x1,x2)时,g(x)>0,此时g(x)单调递减,

则f(x1)>f(﹣π)>0,f(x2)<f(0)=0,

由零点存在性定理可知,存在唯一m∈(x1,x2),使得f(m)=0,

故函数f(x)在[﹣π,0]上尤其仅有x=m与x=0两个零点,

当x∈(0,+∞)时,e x>1≥cos x,则f(x)>0,

故f(x)在(0,+∞)上没有零点,

综上可得,f(x)有且仅有两个零点.

【点评】本题主要考查了函数的极值及零点存在条件的应用,体现了分类讨论及转化思想的应用,属于中档试题.

8.(2019秋?遂宁月考)已知函数,(1)讨论f(x)在上的单调性.

(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.

【分析】(1)对a分大于零和小于零两种情况讨论,利用导数即可求出函数f(x)在

上的单调性;

(2)由(1)知a>0时f(x)的最大值为,从而求出a=2,又因为

f(x)在上单调递增,且f(0)=﹣1<0,,所以f(x)在内有且仅有1个零点.再讨论当x时,函数f(x)存在一个极值点x0,利用导数得到f(x)在上无零点,f(x)在(x0,π)内有且仅有1个零点,所以函数f(x)在(0,π)内有2个零点.

【解答】解:(1)f'(x)=a(sin x+x cos x),

当a<0,时,sin x>0,cos x>0,

∴f'(x)<0,f(x)单调递减,

当时,sin x>0,cos x>0,

∴f'(x)>0,f(x)单调递增,

综上得:当a<0,f(x)在单调递减;a>0时,f(x)在单调递增;

(2)由(1)知a>0时f(x)的最大值为

由得a=2,

∴f(x)=2x sin x﹣1,又∵f(x)在上单调递增;

且f(0)=﹣1<0,,

∴f(x)在内有且仅有1个零点.

当时,

令g(x)=f'(x)=2(sin x+x cos x),g'(x)=2(2cos x﹣x sin x)<0,∴g(x)在

内单调递减,

且,g(π)=﹣2π<0,∴存在,使得g(x0)=0,∴①当时,f'(x)>0,f(x)在单调递增,

∴时,,

∴f(x)在上无零点,

②当x∈(x0,π)时,f'(x)<0,f(x)在(x0,π)内单调递减,

又∵f(x0)>0,f(π)=﹣1<0,

∴f(x)在(x0,π)内有且仅有1个零点,

综上所求:函数f(x)在(0,π)内有2个零点.

【点评】本题主要考查了利用导数研究函数的单调性和零点,是中档题.9.(2019秋?肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).

(1)讨论f(x)的导函数f′(x)零点的个数;

(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.

【分析】(1)先对函数求导,结合为偶函数,问题可转化为先研究x≥0,结合导数与单调性的关系及函数的零点判定定理可求,

(2)结合导数先判断函数的单调性,结合零点判定定理可求.

【解答】解:(1),

令,x∈R,g(x)为偶函数,先研究x≥0,

则g'(x)=x﹣sin x,g''(x)=1﹣cos x≥0,

∴g'(x)在[0,+∞)为递增函数,

且g'(0)=0,∴g'(x)≥0,即g(x)在[0,+∞)为单调递增函数,

当g(0)=1﹣a>0,即a<1,g(x)没有零点,

当g(0)=1﹣a=0,即a=1,g(x)有1个零点,

当g(0)=1﹣a》<0,即a>1,,

∴当,g(x)>0,

∴当,g(x)在[0,+∞)有1个零点,

∴g(x)为偶函数,在(﹣∞,0]也有有1个零点.

综上:a<1,f'(x)没有零点;

a=1,f'(x)有1个零点;

a>1,f'(x)有2个零点.

(2)

①当a≤1时,由(1)知f'(x)≥0,f(x)在[0,+∞)为单调递增函数,f(x)≥f(0)

=0,

②当a>1时,f'(2a)=cos2a﹣a+2a2=cos2a+a2+a(a﹣1)>0,f'(0)=1﹣a<0,由零点存在性定理知?x0∈(0,2a)使得f'(x0)=0,

且在(0,x0),f'(x)<0,即f(x)单调递减,f(x)<f(0)=0与题设不符.

综上可知,a≤1时,f(x)≥0,

【点评】本题考查了导数的综合应用及零点判定定理的应用,属于中档题.

10.(2019秋?江岸区校级月考)已知函数,f'(x)是f(x)的导函数.

(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;

(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.【分析】(1)先求出f'(x),分析出当x∈(0,π)时,f'(x)为增函数,且

,,得到f'(x)在(0,π)上有唯一零点,又因为当x∈[π,+∞)时,,所以f'(x)在[π,+∞)上没有零点,从而得出f'(x)在(0,+∞)上有唯一零点;

(2)不妨设0<x1<x2,由f(x1)=f(x2)得=

,即.设g(x)=x﹣sin x,利用导数得到g(x)在(0,+∞)为增函数,从而,再证明:.从而得出,即.

【解答】证明:(1)当m=2时,,,

当x∈(0,π)时,f'(x)为增函数,且,

∴f'(x)在(0,π)上有唯一零点,

当x∈[π,+∞)时,,

∴f'(x)在[π,+∞)上没有零点,

综上知,f'(x)在(0,+∞)上有唯一零点;

(2)不妨设0<x1<x2,由f(x1)=f(x2)得=

∴,

设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,故g(x)在(0,+∞)为增函数,

∴x2﹣sin x2>x1﹣sin x1,从而x2﹣x1>sin x2﹣sin x1,

∴=,

∴,

下面证明:,

令,则t>1,即证明,只要证明,(*)

设,则,∴h(t)在(1,+∞)单调递减,

当t>1时,h(t)<h(1)=0,从而(*)得证,即,

∴,即.

【点评】本题主要考查了利用导数研究函数的零点,利用导数研究函数的单调性,是中档题.

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

高中数学三角函数练习题

高一数学第一次月考试题 一. 选择题(每题5分,共60分) 1.函数)6 2sin(2π +=x y 的最小正周期是( ) A .π4 B .π2 C .π D .2 π 2.0sin300=( ) A .1 2 B . 32 C .-12 D .-32 3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠ AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 4.如果sin α-2cos α 3sin α+5cos α =-5,那么tan α的值为( ) A .-2 B .2 D .-2316

5.函数)2 52sin(π+=x y 的图象的一条对称轴方程是( ) A .2 π-=x B .4 π-=x C .8 π = x D .4 5π= x 6.将函数y =sin(x -π 3)的图象上所有点的横坐标伸长到原来的2 倍(纵坐标不变),再将所得的图象向右平移π 3个单位,得到的图象 对应的解析式是( ) A .y =sin 1 2x B .y =sin(12x -π 2) C .y =sin(12x -π 6 ) D .y =sin(2x -π 6 ) 7.已知α是第二象限角,且4tan =-3 α,则( ) A .4sin =-5α B .4sin =5α C .3cos =5α D .4cos =-5 α 8.已知3 cos +=25πθ?? ???,且3,22 ππθ? ? ∈ ??? ,则tan θ=( ) A .43 B .-43 C .34 D .-34 9.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|< π 2 )的部分图象如

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高三文科数学三角函数专题测试题

A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 在△ABC 中,AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2=2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数 1.已知函数 f (x ) = 4 c os x s in(x + (Ⅰ)求 f (x ) 的最小正周期; ) -1. 6 (Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值. 6 4 2、已知函数 f (x ) = sin(2x + ) 3 + sin(2x - 3 + 2 cos 2 x - 1, x ∈ R . (Ⅰ)求函数 f (x ) 的最小正周期; (Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值. 4 4 3、已知函数 f (x ) = tan(2x + ), 4 (Ⅰ)求 f (x ) 的定义域与最小正周期; ? ? (II )设∈ 0, ? ,若 f ( ) = 2 cos 2, 求的大小 ? ? 4、已知函数 f (x ) = (sin x - cos x ) sin 2x . sin x (1) 求 f (x ) 的定义域及最小正周期; (2) 求 f (x ) 的单调递减区间. 5、 设函数 f (x ) = cos(2x + + sin 2 x . 2 4 (I )求函数 f (x ) 的最小正周期; ( II ) 设 函 数 1 g (x ) 对 任 意 x ∈ R , 有 g (x + 2 = g (x ) , 且 当 x ∈[0, ] 时 , 2 g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式. 2 2 ) )

3 + = 6、函数 f (x ) = A sin(x - 称轴之间的距离为 , 2 ) +1( A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6 (1)求函数 f (x ) 的解析式; (2)设∈(0, ) ,则 f ( ) = 2 ,求的值. 2 2 7、设 f ( x ) = 4cos( ωx - π )sin ωx + cos 2ωx ,其中> 0. 6 (Ⅰ)求函数 y = f ( x ) 的值域 (Ⅱ)若 y = f ( x ) 在区间?- 3π , π? 上为增函数,求 的最大值. ?? 2 2 ?? 8、函数 f (x ) = 6 cos 2 x + 2 3 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且?ABC 为正三角形. (Ⅰ)求的值及函数 f (x ) 的值域; 8 3 (Ⅱ)若 f (x 0 ) 5 ,且 x 0 ∈(- 10 2 , ) ,求 f (x 0 1) 的值. 3 3 9、已知 a , b , c 分别为?ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0 (1)求 A ; (2)若 a = 2 , ?ABC 的面积为 ;求b , c . 10、在 ? ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C . = 2 ,sin B = 5 3 (Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求? ABC 的面积.

相关文档
最新文档