【高考数学】含有三角函数的导数大题

合集下载

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.函数y=的定义域是.【答案】{x|kπ-<x≤kπ+,k∈Z}【解析】由1-tanx≥0,即tanx≤1,结合正切函数图象可得,kπ-<x≤kπ+,k∈Z,故函数的定义域是{x|kπ-<x≤kπ+,k∈Z}.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.7.已知函数上有两个零点,则的值为()A.B.C.D.【答案】D【解析】,由于,故,由于函数在区间上有两个零点,所以,所以,所以,故选D.【考点】1.三角函数的图象;2.三角函数的对称性8.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.9.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图像的一条对称轴,则下列各式中符合条件的解析式是()A.B.C.D.【答案】D【解析】由题意可得,则据此可知答案选D.【考点】函数的图像与性质.11.中,角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.【答案】(Ⅰ);(Ⅱ);【解析】(Ⅰ)主要利用三角形中内角和定理、三角恒等变换来求;(Ⅱ)通过余弦定理、解方程组可求;试题解析:(Ⅰ)∵∴,∴,∴或∴(II)∵∴,即①又,∴,即②由①②可得,∴又∴,∴【考点】解三角形中内角和定理以及余弦定理的使用、三角恒等变换等知识点,考查学生的计算能力.12.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.13.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系14.函数的最小正周期为.【答案】【解析】根据题意,由于即为其周期,故答案为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。

【高考数学】含有三角函数的导数大题

【高考数学】含有三角函数的导数大题

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.2.(2019秋•汕头校级期末)已知函数f (x )=x cos x ﹣2sin x +1,g (x )=x 2e ax (a ∈R ).(1)证明:f (x )的导函数f '(x )在区间(0,π)上存在唯一零点;(2)若对任意x 1∈[0,2],均存在x 2∈[0,π],使得g (x 1)≤f (x 2),求实数a 的取值范围.注:复合函数y =e ax 的导函数y '=ae ax .3.(2020•开封一模)已知函数,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x)在上存在两个极值点,求实数a 的取值范围.4.(2020•遂宁模拟)已知函数(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若函数g (x )=a (lnx ﹣x )+f (x )﹣e x sin x ﹣1有两个极值点x 1,x 2(x 1≠x 2).且不等式g (x 1)+g (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.5.(2018秋•济宁期末)已知函数f (x )=(x ﹣a )cos x ﹣sin x ,g (x )=x 3﹣ax 2,a ∈R (Ⅰ)当a =1时,求函数y =f (x )在区间(0,)上零点的个数;(Ⅱ)令F (x )=f (x )+g (x ),试讨论函数y =F (x )极值点的个数.6.(2019秋•五华区校级月考)已知函数,f '(x )为f (x )的导数.(1)证明:f (x )在定义域上存在唯一的极大值点;(2)若存在x 1≠x 2,使f (x 1)=f (x 2),证明:x 1x 2<4.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f (x )=e x ﹣cos x 的导函数为g (x ).证明:(1)g (x )在区间(﹣π,0)存在唯一极小值点;(2)f (x )有且仅有2个零点.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.二.解答题(共10小题)含有三角函数的导数题目8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.一.选择题二.解答题(共10小题)1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.【分析】(1)求出f ′(x )=﹣e ﹣x +cos x ,得出f ′(x )≤0,则f (x )在(﹣∞,0]上单调递减,结论可证.(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根,分离参数得a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,讨论函数g (x )的单调性即可解决;【解答】解:(1)当a =1时,f (x )=e ﹣x +sin x ,f ′(x )=﹣e ﹣x +cos x ,当x ≤0时,﹣e ﹣x ≤﹣1,则f ′(x )≤0(x ≤0)所以f (x )在(﹣∞,0]上单调递减,f (x )≥f (0)=1;所以:∀x ∈(﹣∞,0],f (x )≥1;(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根;即f ′(x )=﹣ae ﹣x +cos x =0在(0,)上有两个不等实数根;即a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,则g ′(x )=e x (cos x ﹣sin x );当时,g ′(x )>0,g (x )单调递增;当时,g ′(x )<0,g (x )单调递减;又g (0)=1,,;故实数a的取值范围为:【点评】本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.2.(2019秋•汕头校级期末)已知函数f(x)=x cos x﹣2sin x+1,g(x)=x2e ax(a∈R).(1)证明:f(x)的导函数f'(x)在区间(0,π)上存在唯一零点;(2)若对任意x1∈[0,2],均存在x2∈[0,π],使得g(x1)≤f(x2),求实数a的取值范围.注:复合函数y=e ax的导函数y'=ae ax.【分析】(1)设h(x)=f′(x),然后对h(x)求导,结合导数与单调性的关系可判断h(x)的单调性,然后结合零点判定定理可证,(2)依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,结合导数可分别求解最值,即可求解.【解答】解:(1)设h(x)=f′(x)=cos x﹣x sin x﹣2cos x=﹣cos x﹣x sin x,∴h′(x)=sin x﹣sin x﹣x cos x=﹣x cos x当x时,h′(x)<0;当x时,h′(x)>0;所以h(x)在(0,)单调递减,在()单调递增.又h(0)=﹣1<0lh()=﹣,h(π)=1>0,故f′(x)在区间(0,π)上存在唯一零点.(2)记f(x)在区间[0,π]上的最大值为f(x)max,g(x)在区间[0,2]上的最大值为g(x)max.依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,由(Ⅰ)知,f′(x)在(0,π)只有一个零点,设为x0,且当x∈(0,x0)时,f′(x)<0;当x∈(x0,π)时,f′(x)>0;,所以f(x)在(0,x0)单调递减,在当(x0,π)时单调递增.又f(0)=1,f(π)=1﹣π<0,所以当x∈[0,π]时,f(x)max=1.故应满足g(x)max≤1.因为g(x)=x2e ax,所以g′(x)=(ax2+2x)e ax=x(ax+2)e ax.①当a=0时,g(x)=x2,对任意x∈[0,2],g(x)max=g(2)=4,不满足g(x)max≤1.②当a≠0时,令g′(x)=0,得x=0或x=﹣.(ⅰ)当﹣≥2,即﹣1≤a<0时,在[0,2]上,g′(x)≥0,所以g(x)在[0,2]上单调递增,g(x)max=g(2)=4e2a.由4e2a≤1,得a≤﹣ln2,所以﹣1≤a≤﹣ln2.(ⅱ)当0<﹣<2,即a<﹣1时,上,g′(x)<0,g(x)单调递减.g(x)max=.由≤1,得a≤﹣或a≥,所以a<﹣1.(ⅲ)当﹣<0,即a>0时,显然在[0,2]上,g′(x)≥0,g(x)单调递增,于是g (x)max=g(2)=4e2a,此时不满足g(x)max≤1.综上,实数a的取值范围是(﹣∞,﹣ln2].【点评】本题主要考查了函数的导数与单调性关系,函数零点判定定理及恒成立与存在性问题与最值求解的相互转化,体现了分类讨论思想与转化思想的应用.3.(2020•开封一模)已知函数,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(﹣∞,0],f(x)≥1;(2)若函数f(x)在上存在两个极值点,求实数a的取值范围.【分析】(1)把a=1代入,直接用导数法证明即可;(2)对f(x)求导,,对a进行讨论,判断函数f(x)的极值,确定a的范围.【解答】解:(1)当a=1时,,则,当x∈(﹣∞,0]时,0<e x≤1,则,又因为cos x≤1,所以当x∈(﹣∞,0]时,,仅x=0时,f'(x)=0,所以f(x)在(﹣∞,0]上是单调递减,所以f(x)≥f(0)=1,即f(x)≥1.(2),因为,所以cos x>0,e x>0,①当a≤0时,f'(x)>0恒成立,所以f(x)在上单调递增,没有极值点.②当a>0时,在区间上单调递增,因为,f'(0)=﹣a+1.当a≥1时,时,f'(x)≤f'(0)=﹣a+1≤0,所以f(x)在上单调递减,没有极值点.当0<a<1时,f'(0)=﹣a+1>0,所以存在,使f'(x0)=0,当时,f'(x)<0,x∈(x0,0)时,f'(x)>0,所以f(x)在x=x0处取得极小值,x0为极小值点.综上可知,若函数f(x)在上存在极值点,则实数a∈(0,1).【点评】本题考查了导数的综合应用及极值点引出的含参问题,综合性高,难度较大.4.(2020•遂宁模拟)已知函数(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1有两个极值点x1,x2(x1≠x2).且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.【分析】(1)求出f′(x)=e x sin x+e x cos x+x,求出切线的斜率,切点坐标,然后求解切线方程.(2)化简g(x)=,求出导函数,通过g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,列出不等式组,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立,转化求解即可.【解答】解:(1)因为,所以f′(x)=e x sin x+e x cos x+x,=f′(0)=1,又f(0)=1,所以k切故所求的切线方程为y﹣1=1×(x﹣0),即x﹣y+1=0.(2)因为g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1=所以,由题意g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,则,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立又====所以,令(a>4),则,所以在(4,+∞)上单调递减,所以y<2ln2﹣3,所以λ≥2ln2﹣3.【点评】本题考查函数与方程的应用,函数的导数以及函数的最值的求法,切线方程的求法,考查分析问题解决问题的能力,是难题.5.(2018秋•济宁期末)已知函数f(x)=(x﹣a)cos x﹣sin x,g(x)=x3﹣ax2,a∈R (Ⅰ)当a=1时,求函数y=f(x)在区间(0,)上零点的个数;(Ⅱ)令F(x)=f(x)+g(x),试讨论函数y=F(x)极值点的个数.【分析】(1)先对函数求导,然后结合导数与单调性的关系可判断单调性,结合零点判定定理可求.(2)先求导,再分类讨论即可求出函数的单调区间和极值【解答】解:(1)a=1时,f(x)=(x﹣1)cos x﹣sin x,∴f′(x)=(﹣x+1)sin x,x∈(0,),sin x>0,当0<x<1时,f′(x)>0,f(x)单调递增,当1<x<时,f′(x)<0,f(x)单调递减,当x=1时,函数取得最小值f(1)=﹣sin1<0,而f(0)=﹣cos1<0.f()=﹣1<0,故函数f(x)在区间(0,)上零点的个数为0,(2)函数F(x)=(x﹣a)cos x﹣sin x x3﹣ax2,∴F′(x)=(x﹣a)(x﹣sin x),令F′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x>a时,F′(x)>0恒成立,故F(x)在(a,+∞)上单调递增,当0<x<a时,F′(x)<0恒成立,故F(x)在(0,a)上单调递减,故有2个极值点,②若a<0时,当x>0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x<a时,F′(x)>0恒成立,故F(x)在(﹣∞,a)上单调递增,当a<x<0时,F′(x)<0恒成立,故F(x)在(a,0)上单调递减,故有2个极值点,③当a=0时,F′(x)=x(x﹣sin x),当x>0时,F′(x)>0恒成立,故F(x)在(0,+∞)上单调递增,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,∴F(x)在R上单调递增,无极值.【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题6.(2019秋•五华区校级月考)已知函数,f'(x)为f(x)的导数.(1)证明:f(x)在定义域上存在唯一的极大值点;(2)若存在x1≠x2,使f(x1)=f(x2),证明:x1x2<4.【分析】(1)求出,判断函数的单调性,说明在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,推出结果.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,利用代换是判断函数的单调性推出,结合对数均值不等式,推出x1x2<4.【解答】证明:(1),当x≥2时,,,,“=”不能同时取到,所以f'(x)<0;当0<x<2时,,所以f'(x)在(0,2)上递减,因为,,所以在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,所以x0是f(x)在定义域(0,+∞)上的唯一极值点且是极大值点.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,g(x)在(0,+∞)上递增,不妨设x1>x2>0,则g(x1)>g(x2),即x1﹣sin x1>x2﹣sin x2,x1﹣x2>sin x1﹣sin x2,所以,得,根据对数均值不等式,可得,x 1x2<4.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f(x)=e x﹣cos x的导函数为g(x).证明:(1)g(x)在区间(﹣π,0)存在唯一极小值点;(2)f(x)有且仅有2个零点.【分析】(1)结合导数与单调性的关系,先求解函数的单调性,然后求解函数极值,(2)结合导数与单调性关系及零点判定定理进行讨论即可求解.【解答】解:(1)∵g(x)=e x+sin x,则g′(x)=e x+cos x,容易得出,g′(x)=e x+cos x在[﹣π,0)上单调递增,又g′(﹣π)<0,g′(0)>0,结合零点存在定理可知,存在唯一的x0∈(﹣π,0)使得g′(x)=0,若x∈(﹣π,0),g′(x)<0,g(x)单调递减,若x∈(x0,0),g′(x)>0,g(x)单调递增,故g(x)存在唯一的极小值点,(2)由(1)可知g(x)在(﹣π,0)上存在唯一的极小值点x0,∴g(x0)=e<0,又g(0)=1>0,g(﹣π)=e﹣π>0,结合零点存在定理可知,存在唯一的x1∈(﹣π,x0),使得g(x1)=0,存在唯一的x2∈(x0,0),使得g(x2)=0,故当x∈(﹣π,x1)∪(x2,0)时,g(x)>0,此时f(x)单调递增,当x∈(x1,x2)时,g(x)>0,此时g(x)单调递减,则f(x1)>f(﹣π)>0,f(x2)<f(0)=0,由零点存在性定理可知,存在唯一m∈(x1,x2),使得f(m)=0,故函数f(x)在[﹣π,0]上尤其仅有x=m与x=0两个零点,当x∈(0,+∞)时,e x>1≥cos x,则f(x)>0,故f(x)在(0,+∞)上没有零点,综上可得,f(x)有且仅有两个零点.【点评】本题主要考查了函数的极值及零点存在条件的应用,体现了分类讨论及转化思想的应用,属于中档试题.8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.【分析】(1)对a分大于零和小于零两种情况讨论,利用导数即可求出函数f(x)在上的单调性;(2)由(1)知a>0时f(x)的最大值为,从而求出a=2,又因为f(x)在上单调递增,且f(0)=﹣1<0,,所以f(x)在内有且仅有1个零点.再讨论当x时,函数f(x)存在一个极值点x0,利用导数得到f(x)在上无零点,f(x)在(x0,π)内有且仅有1个零点,所以函数f(x)在(0,π)内有2个零点.【解答】解:(1)f'(x)=a(sin x+x cos x),当a<0,时,sin x>0,cos x>0,∴f'(x)<0,f(x)单调递减,当时,sin x>0,cos x>0,∴f'(x)>0,f(x)单调递增,综上得:当a<0,f(x)在单调递减;a>0时,f(x)在单调递增;(2)由(1)知a>0时f(x)的最大值为由得a=2,∴f(x)=2x sin x﹣1,又∵f(x)在上单调递增;且f(0)=﹣1<0,,∴f(x)在内有且仅有1个零点.当时,令g(x)=f'(x)=2(sin x+x cos x),g'(x)=2(2cos x﹣x sin x)<0,∴g(x)在内单调递减,且,g(π)=﹣2π<0,∴存在,使得g(x0)=0,∴①当时,f'(x)>0,f(x)在单调递增,∴时,,∴f(x)在上无零点,②当x∈(x0,π)时,f'(x)<0,f(x)在(x0,π)内单调递减,又∵f(x0)>0,f(π)=﹣1<0,∴f(x)在(x0,π)内有且仅有1个零点,综上所求:函数f(x)在(0,π)内有2个零点.【点评】本题主要考查了利用导数研究函数的单调性和零点,是中档题.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.【分析】(1)先对函数求导,结合为偶函数,问题可转化为先研究x≥0,结合导数与单调性的关系及函数的零点判定定理可求,(2)结合导数先判断函数的单调性,结合零点判定定理可求.【解答】解:(1),令,x∈R,g(x)为偶函数,先研究x≥0,则g'(x)=x﹣sin x,g''(x)=1﹣cos x≥0,∴g'(x)在[0,+∞)为递增函数,且g'(0)=0,∴g'(x)≥0,即g(x)在[0,+∞)为单调递增函数,当g(0)=1﹣a>0,即a<1,g(x)没有零点,当g(0)=1﹣a=0,即a=1,g(x)有1个零点,当g(0)=1﹣a》<0,即a>1,,∴当,g(x)>0,∴当,g(x)在[0,+∞)有1个零点,∴g(x)为偶函数,在(﹣∞,0]也有有1个零点.综上:a<1,f'(x)没有零点;a=1,f'(x)有1个零点;a>1,f'(x)有2个零点.(2)①当a≤1时,由(1)知f'(x)≥0,f(x)在[0,+∞)为单调递增函数,f(x)≥f(0)=0,②当a>1时,f'(2a)=cos2a﹣a+2a2=cos2a+a2+a(a﹣1)>0,f'(0)=1﹣a<0,由零点存在性定理知∃x0∈(0,2a)使得f'(x0)=0,且在(0,x0),f'(x)<0,即f(x)单调递减,f(x)<f(0)=0与题设不符.综上可知,a≤1时,f(x)≥0,【点评】本题考查了导数的综合应用及零点判定定理的应用,属于中档题.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.【分析】(1)先求出f'(x),分析出当x∈(0,π)时,f'(x)为增函数,且,,得到f'(x)在(0,π)上有唯一零点,又因为当x∈[π,+∞)时,,所以f'(x)在[π,+∞)上没有零点,从而得出f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,即.设g(x)=x﹣sin x,利用导数得到g(x)在(0,+∞)为增函数,从而,再证明:.从而得出,即.【解答】证明:(1)当m=2时,,,当x∈(0,π)时,f'(x)为增函数,且,,∴f'(x)在(0,π)上有唯一零点,当x∈[π,+∞)时,,∴f'(x)在[π,+∞)上没有零点,综上知,f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,∴,设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,故g(x)在(0,+∞)为增函数,∴x2﹣sin x2>x1﹣sin x1,从而x2﹣x1>sin x2﹣sin x1,∴=,∴,下面证明:,令,则t>1,即证明,只要证明,(*)设,则,∴h(t)在(1,+∞)单调递减,当t>1时,h(t)<h(1)=0,从而(*)得证,即,∴,即.【点评】本题主要考查了利用导数研究函数的零点,利用导数研究函数的单调性,是中档题.。

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版导数与三角函数的问题在近几年的高考数学试题中频繁出现,主要包括函数零点个数的确定、根据函数零点个数求参数围、隐零点问题及零点存在性赋值理论。

这些问题的形式逐渐多样化、综合化。

一、零点存在定理例1.【2019全国Ⅰ理20】函数$f(x)=\sin x-\ln(1+x)$,$f'(x)$为$f(x)$的导数。

证明:1)$f'(x)$在区间$(-1,)$存在唯一极大值点;2)$f(x)$有且仅有2个零点。

解析】(1)设$g(x)=f'(x)$,则$g(x)=\cos x-\frac{1}{1+x}$,$g'(x)=-\sin x+\frac{1}{(1+x)^2}$。

当$x\in(-1,\frac{\pi}{2})$时,$g'(x)$单调递减,而$g'(0)>0$,$g'(\frac{\pi}{2})<0$,可得$g'(x)$在$(-1,\frac{\pi}{2})$有唯一零点,设为$\alpha$。

则当$x\in(-1,\alpha)$时,$g'(x)>0$;当$x\in(\alpha,\frac{\pi}{2})$时,$g'(x)<0$。

所以$g(x)$在$(-1,\alpha)$单调递增,在$(\alpha,\frac{\pi}{2})$单调递减,故$g(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点,即$f'(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点。

2)$f(x)$的定义域为$(-1,+\infty)$。

i) 由(1)知,$f'(x)$在$(-1,0)$单调递增,而$f'(0)=0$,所以当$x\in(-1,0)$时,$f'(x)<0$,故$f(x)$在$(-1,0)$单调递减,又$f(0)=0$,从而$x=0$是$f(x)$在$(-1,0]$的唯一零点。

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题1.已知,,则_____________.【答案】【解析】因为α是锐角所以sin(π-α)=sinα=【考点】同角三角函数关系,诱导公式.2.若,则A.B.C.D.【答案】C【解析】由,可得:同正或同负,即可排除A和B,又由,故.【考点】同角三角函数的关系,且α∈,则tan(2π-α)的值为________.3.已知sin(π-α)=log8【答案】=-,【解析】sin(π-α)=sin α=log8又α ∈,得cos α==,tan(2π-α)=tan(-α)=-tan α=-=.4.已知2sinαtanα=3,则cosα的值是()A.-7B.-C.D.【答案】D【解析】由已知得2sin2α=3cosα,∴2cos2α+3cosα-2=0,(cosα+2)(2cosα-1)=0∴cosα=,选D.5.已知sin(-x)=,则cos(π-x)=()A.B.C.-D.-【答案】C【解析】cos(π-x)=cos[+(-x)]=-sin(-x)=-,故选C.6.方程两根,且,则;【答案】【解析】由已知可得,,因为,所以,所以或.但由于,所以,。

由,则同号;由,则都小于0。

所以,所以【考点】两角和差公式以及正切函数的性质.7.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.8.若,则 .【答案】【解析】.【考点】诱导公式.9.已知tan =,tan =,则tan(α+β)=________.【答案】1【解析】tan(α+β)=tan[(α-)+(+β)]==110.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-11.函数y=cos的单调递增区间是________.【答案】(k∈Z)【解析】-π+2kπ≤2x-≤2kπ,即-+kπ≤x≤+kπ(k∈Z),所求单调递增区间是(k∈Z).12.设f(x)=sinx+cosx,f′(x)是f(x)的导数,若f(x)=2f′(x),则=_________.【答案】【解析】由f'(x)=cosx-sinx,∴sinx+cosx=2(cosx-sinx),∴3sinx=cosx,∴tanx=,所求式子化简得,=tan2x+tanx=+=.13.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.14.已知sin =,则sin=________.【答案】±【解析】由sin =,得cos =±,所以sin=cos=±.15.若tan θ+=4,则sin 2θ的值 ().A.B.C.D.【答案】D【解析】由tan θ+=4,得=4,∴4sin θcos θ=1,则sin 2θ=.16.已知f(x)=sin2,若a=f(lg 5),b=f().A.a+b=0B.a-b=0C.a+b=1D.a-b=1【答案】C【解析】f(x)=,∴a=+,b=+=-,因此a+b=1.17.已知,且,则()A.B.C.D.【答案】【解析】.又因为,所以为三象限的角,.选B.【考点】三角函数的基本计算.18.已知0<α<,β为f(x)=cos的最小正周期,a=,b=(cos α,2),且a·b=m,求的值.2cos2α+sin 2α+βcosα-sin α【答案】4+2m【解析】因为β为f(x)=cos的最小正周期,故β=π.因为a·b=m,又a·b=cos α·-2,故cos α·=2+m.由于0<α<,所以===2cos α·=2cos α·tan=2(2+m)=4+2m.19.在中,BC=,AC=2,的面积为4,则AB的长为 .【答案】或【解析】由已知,∴,故,在中,当,当时,4,当时.【考点】1、三角形的面积;2、同角三角函数基本关系式;3、余弦定理.20.在中,角A,B,C所对的边分别为(Ⅰ)叙述并证明正弦定理;(Ⅱ)设,,求的值.【答案】(Ⅰ)证明见解析;(Ⅱ) .【解析】(Ⅰ)正弦定理:,利用三角形的外接圆证明正弦定理. 设的外接圆的半径为,连接并延长交圆于点,则,直径所对的圆周角,在直角三角形中,,从而得到,同理可证,,则正弦定理得证;(Ⅱ)先由正弦定理将化为①,再依据和差化积公式,同角三角函数间的关系,特殊角的三角函数值将①式化简,得到,则,再由二倍角公式求解.试题解析:(Ⅰ) 正弦定理:.证明:设的外接圆的半径为,连接并延长交圆于点,如图所示:则,,在中,,即,则有,同理可得,,所以.(Ⅱ)∵,由正弦定理得,,,,,,解得,,∴.【考点】1.正弦定理;2.解三角形;3.同角三角函数间的关系;4.和差化积公式;5.二倍角公式21.已知函数,.(1)求的值;(2)设、,,,求的值.【答案】(1);(2).【解析】(1)直接计算的值;(2)先由已知条件计算、的值,然后利用同角三角函数的基本关系求出、的值,最后利用两角和的余弦公式计算出的值.试题解析:(1),所以;(2),,、,所以,,所以.【考点】1.同角三角函数的基本关系;2.两角和的余弦公式22.已知5cos(45°+x)=3,则sin2x=.【答案】【解析】由已知可得(cosx-sinx)=,即cosx-sinx=,两边平方得1-2cosxsinx=,sin2x=.【考点】1.两角和差公式;2.同角的基本关系式;23.已知函数的最大值是1,其图像经过点。

高中数学三角函数与导数综合题精选

高中数学三角函数与导数综合题精选

高中数学三角函数与导数综合题精选1(14,北京理,18)已知函数()cos sin ,0,2f x x x x x π⎡⎤=-∈⎢⎥⎣⎦. (1)求证:()0f x(2)若sin x a b x <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与的最小值.2(17,北京理,19)已知函数()cos xf x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3(2017山东)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点(,())f ππ处的切线方程;(Ⅱ)令()()()h x g x af x =-()a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.4(2020福州二检)已知函数()()sin cos x f x x x x e =+-.(Ⅰ)若()'f x 为()f x 的导函数,且()()()'g x f x f x =-,求函数()g x 的单调区间; (Ⅱ)若0x ≥,证明:()21f x x ≥-.5已知函数()sin f x x x =,(0,)x π∈,()f x '为()f x 的导数,且()()g x f x '=.证明:()1()g x 在22,3π⎛⎫⎪⎝⎭内有唯一零点; ()2()2f x .(参考数据:sin 20.9903≈,cos20.4161≈-,tan 2 2.1850≈- 1.4142≈, 3.14π≈.)6(19年全国1卷,20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.7 (2013福建)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.8 (2016年全国Ⅲ) 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.9 设函数()sin ()f x x x x =∈R .(1)求证:(2)()2sin f x k f x k x ππ+-=,其中k 为整数;(2)设0x 为()f x 的一个极值点,求证:()42021x f x x =+ (3)设()f x 在(0,)+∞上的全部极值点按从小到大的顺序排列为12,,,,n a a a ⋯⋯,求证:1(1,2,)2n n a a n ππ+<-<=.。

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.2.(2019秋•汕头校级期末)已知函数f (x )=x cos x ﹣2sin x +1,g (x )=x 2e ax (a ∈R ).(1)证明:f (x )的导函数f '(x )在区间(0,π)上存在唯一零点;(2)若对任意x 1∈[0,2],均存在x 2∈[0,π],使得g (x 1)≤f (x 2),求实数a 的取值范围.注:复合函数y =e ax 的导函数y '=ae ax .3.(2020•开封一模)已知函数,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x)在上存在两个极值点,求实数a 的取值范围.4.(2020•遂宁模拟)已知函数(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若函数g (x )=a (lnx ﹣x )+f (x )﹣e x sin x ﹣1有两个极值点x 1,x 2(x 1≠x 2).且不等式g (x 1)+g (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.5.(2018秋•济宁期末)已知函数f (x )=(x ﹣a )cos x ﹣sin x ,g (x )=x 3﹣ax 2,a ∈R (Ⅰ)当a =1时,求函数y =f (x )在区间(0,)上零点的个数;(Ⅱ)令F (x )=f (x )+g (x ),试讨论函数y =F (x )极值点的个数.6.(2019秋•五华区校级月考)已知函数,f '(x )为f (x )的导数.(1)证明:f (x )在定义域上存在唯一的极大值点;(2)若存在x 1≠x 2,使f (x 1)=f (x 2),证明:x 1x 2<4.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f (x )=e x ﹣cos x 的导函数为g (x ).证明:(1)g (x )在区间(﹣π,0)存在唯一极小值点;(2)f (x )有且仅有2个零点.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.二.解答题(共10小题)含有三角函数的导数题目8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.一.选择题二.解答题(共10小题)1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.【分析】(1)求出f ′(x )=﹣e ﹣x +cos x ,得出f ′(x )≤0,则f (x )在(﹣∞,0]上单调递减,结论可证.(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根,分离参数得a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,讨论函数g (x )的单调性即可解决;【解答】解:(1)当a =1时,f (x )=e ﹣x +sin x ,f ′(x )=﹣e ﹣x +cos x ,当x ≤0时,﹣e ﹣x ≤﹣1,则f ′(x )≤0(x ≤0)所以f (x )在(﹣∞,0]上单调递减,f (x )≥f (0)=1;所以:∀x ∈(﹣∞,0],f (x )≥1;(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根;即f ′(x )=﹣ae ﹣x +cos x =0在(0,)上有两个不等实数根;即a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,则g ′(x )=e x (cos x ﹣sin x );当时,g ′(x )>0,g (x )单调递增;当时,g ′(x )<0,g (x )单调递减;又g (0)=1,,;故实数a的取值范围为:【点评】本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.2.(2019秋•汕头校级期末)已知函数f(x)=x cos x﹣2sin x+1,g(x)=x2e ax(a∈R).(1)证明:f(x)的导函数f'(x)在区间(0,π)上存在唯一零点;(2)若对任意x1∈[0,2],均存在x2∈[0,π],使得g(x1)≤f(x2),求实数a的取值范围.注:复合函数y=e ax的导函数y'=ae ax.【分析】(1)设h(x)=f′(x),然后对h(x)求导,结合导数与单调性的关系可判断h(x)的单调性,然后结合零点判定定理可证,(2)依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,结合导数可分别求解最值,即可求解.【解答】解:(1)设h(x)=f′(x)=cos x﹣x sin x﹣2cos x=﹣cos x﹣x sin x,∴h′(x)=sin x﹣sin x﹣x cos x=﹣x cos x当x时,h′(x)<0;当x时,h′(x)>0;所以h(x)在(0,)单调递减,在()单调递增.又h(0)=﹣1<0lh()=﹣,h(π)=1>0,故f′(x)在区间(0,π)上存在唯一零点.(2)记f(x)在区间[0,π]上的最大值为f(x)max,g(x)在区间[0,2]上的最大值为g(x)max.依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,由(Ⅰ)知,f′(x)在(0,π)只有一个零点,设为x0,且当x∈(0,x0)时,f′(x)<0;当x∈(x0,π)时,f′(x)>0;,所以f(x)在(0,x0)单调递减,在当(x0,π)时单调递增.又f(0)=1,f(π)=1﹣π<0,所以当x∈[0,π]时,f(x)max=1.故应满足g(x)max≤1.因为g(x)=x2e ax,所以g′(x)=(ax2+2x)e ax=x(ax+2)e ax.①当a=0时,g(x)=x2,对任意x∈[0,2],g(x)max=g(2)=4,不满足g(x)max≤1.②当a≠0时,令g′(x)=0,得x=0或x=﹣.(ⅰ)当﹣≥2,即﹣1≤a<0时,在[0,2]上,g′(x)≥0,所以g(x)在[0,2]上单调递增,g(x)max=g(2)=4e2a.由4e2a≤1,得a≤﹣ln2,所以﹣1≤a≤﹣ln2.(ⅱ)当0<﹣<2,即a<﹣1时,上,g′(x)<0,g(x)单调递减.g(x)max=.由≤1,得a≤﹣或a≥,所以a<﹣1.(ⅲ)当﹣<0,即a>0时,显然在[0,2]上,g′(x)≥0,g(x)单调递增,于是g (x)max=g(2)=4e2a,此时不满足g(x)max≤1.综上,实数a的取值范围是(﹣∞,﹣ln2].【点评】本题主要考查了函数的导数与单调性关系,函数零点判定定理及恒成立与存在性问题与最值求解的相互转化,体现了分类讨论思想与转化思想的应用.3.(2020•开封一模)已知函数,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(﹣∞,0],f(x)≥1;(2)若函数f(x)在上存在两个极值点,求实数a的取值范围.【分析】(1)把a=1代入,直接用导数法证明即可;(2)对f(x)求导,,对a进行讨论,判断函数f(x)的极值,确定a的范围.【解答】解:(1)当a=1时,,则,当x∈(﹣∞,0]时,0<e x≤1,则,又因为cos x≤1,所以当x∈(﹣∞,0]时,,仅x=0时,f'(x)=0,所以f(x)在(﹣∞,0]上是单调递减,所以f(x)≥f(0)=1,即f(x)≥1.(2),因为,所以cos x>0,e x>0,①当a≤0时,f'(x)>0恒成立,所以f(x)在上单调递增,没有极值点.②当a>0时,在区间上单调递增,因为,f'(0)=﹣a+1.当a≥1时,时,f'(x)≤f'(0)=﹣a+1≤0,所以f(x)在上单调递减,没有极值点.当0<a<1时,f'(0)=﹣a+1>0,所以存在,使f'(x0)=0,当时,f'(x)<0,x∈(x0,0)时,f'(x)>0,所以f(x)在x=x0处取得极小值,x0为极小值点.综上可知,若函数f(x)在上存在极值点,则实数a∈(0,1).【点评】本题考查了导数的综合应用及极值点引出的含参问题,综合性高,难度较大.4.(2020•遂宁模拟)已知函数(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1有两个极值点x1,x2(x1≠x2).且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.【分析】(1)求出f′(x)=e x sin x+e x cos x+x,求出切线的斜率,切点坐标,然后求解切线方程.(2)化简g(x)=,求出导函数,通过g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,列出不等式组,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立,转化求解即可.【解答】解:(1)因为,所以f′(x)=e x sin x+e x cos x+x,=f′(0)=1,又f(0)=1,所以k切故所求的切线方程为y﹣1=1×(x﹣0),即x﹣y+1=0.(2)因为g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1=所以,由题意g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,则,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立又====所以,令(a>4),则,所以在(4,+∞)上单调递减,所以y<2ln2﹣3,所以λ≥2ln2﹣3.【点评】本题考查函数与方程的应用,函数的导数以及函数的最值的求法,切线方程的求法,考查分析问题解决问题的能力,是难题.5.(2018秋•济宁期末)已知函数f(x)=(x﹣a)cos x﹣sin x,g(x)=x3﹣ax2,a∈R (Ⅰ)当a=1时,求函数y=f(x)在区间(0,)上零点的个数;(Ⅱ)令F(x)=f(x)+g(x),试讨论函数y=F(x)极值点的个数.【分析】(1)先对函数求导,然后结合导数与单调性的关系可判断单调性,结合零点判定定理可求.(2)先求导,再分类讨论即可求出函数的单调区间和极值【解答】解:(1)a=1时,f(x)=(x﹣1)cos x﹣sin x,∴f′(x)=(﹣x+1)sin x,x∈(0,),sin x>0,当0<x<1时,f′(x)>0,f(x)单调递增,当1<x<时,f′(x)<0,f(x)单调递减,当x=1时,函数取得最小值f(1)=﹣sin1<0,而f(0)=﹣cos1<0.f()=﹣1<0,故函数f(x)在区间(0,)上零点的个数为0,(2)函数F(x)=(x﹣a)cos x﹣sin x x3﹣ax2,∴F′(x)=(x﹣a)(x﹣sin x),令F′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x>a时,F′(x)>0恒成立,故F(x)在(a,+∞)上单调递增,当0<x<a时,F′(x)<0恒成立,故F(x)在(0,a)上单调递减,故有2个极值点,②若a<0时,当x>0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x<a时,F′(x)>0恒成立,故F(x)在(﹣∞,a)上单调递增,当a<x<0时,F′(x)<0恒成立,故F(x)在(a,0)上单调递减,故有2个极值点,③当a=0时,F′(x)=x(x﹣sin x),当x>0时,F′(x)>0恒成立,故F(x)在(0,+∞)上单调递增,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,∴F(x)在R上单调递增,无极值.【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题6.(2019秋•五华区校级月考)已知函数,f'(x)为f(x)的导数.(1)证明:f(x)在定义域上存在唯一的极大值点;(2)若存在x1≠x2,使f(x1)=f(x2),证明:x1x2<4.【分析】(1)求出,判断函数的单调性,说明在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,推出结果.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,利用代换是判断函数的单调性推出,结合对数均值不等式,推出x1x2<4.【解答】证明:(1),当x≥2时,,,,“=”不能同时取到,所以f'(x)<0;当0<x<2时,,所以f'(x)在(0,2)上递减,因为,,所以在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,所以x0是f(x)在定义域(0,+∞)上的唯一极值点且是极大值点.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,g(x)在(0,+∞)上递增,不妨设x1>x2>0,则g(x1)>g(x2),即x1﹣sin x1>x2﹣sin x2,x1﹣x2>sin x1﹣sin x2,所以,得,根据对数均值不等式,可得,x 1x2<4.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f(x)=e x﹣cos x的导函数为g(x).证明:(1)g(x)在区间(﹣π,0)存在唯一极小值点;(2)f(x)有且仅有2个零点.【分析】(1)结合导数与单调性的关系,先求解函数的单调性,然后求解函数极值,(2)结合导数与单调性关系及零点判定定理进行讨论即可求解.【解答】解:(1)∵g(x)=e x+sin x,则g′(x)=e x+cos x,容易得出,g′(x)=e x+cos x在[﹣π,0)上单调递增,又g′(﹣π)<0,g′(0)>0,结合零点存在定理可知,存在唯一的x0∈(﹣π,0)使得g′(x)=0,若x∈(﹣π,0),g′(x)<0,g(x)单调递减,若x∈(x0,0),g′(x)>0,g(x)单调递增,故g(x)存在唯一的极小值点,(2)由(1)可知g(x)在(﹣π,0)上存在唯一的极小值点x0,∴g(x0)=e<0,又g(0)=1>0,g(﹣π)=e﹣π>0,结合零点存在定理可知,存在唯一的x1∈(﹣π,x0),使得g(x1)=0,存在唯一的x2∈(x0,0),使得g(x2)=0,故当x∈(﹣π,x1)∪(x2,0)时,g(x)>0,此时f(x)单调递增,当x∈(x1,x2)时,g(x)>0,此时g(x)单调递减,则f(x1)>f(﹣π)>0,f(x2)<f(0)=0,由零点存在性定理可知,存在唯一m∈(x1,x2),使得f(m)=0,故函数f(x)在[﹣π,0]上尤其仅有x=m与x=0两个零点,当x∈(0,+∞)时,e x>1≥cos x,则f(x)>0,故f(x)在(0,+∞)上没有零点,综上可得,f(x)有且仅有两个零点.【点评】本题主要考查了函数的极值及零点存在条件的应用,体现了分类讨论及转化思想的应用,属于中档试题.8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.【分析】(1)对a分大于零和小于零两种情况讨论,利用导数即可求出函数f(x)在上的单调性;(2)由(1)知a>0时f(x)的最大值为,从而求出a=2,又因为f(x)在上单调递增,且f(0)=﹣1<0,,所以f(x)在内有且仅有1个零点.再讨论当x时,函数f(x)存在一个极值点x0,利用导数得到f(x)在上无零点,f(x)在(x0,π)内有且仅有1个零点,所以函数f(x)在(0,π)内有2个零点.【解答】解:(1)f'(x)=a(sin x+x cos x),当a<0,时,sin x>0,cos x>0,∴f'(x)<0,f(x)单调递减,当时,sin x>0,cos x>0,∴f'(x)>0,f(x)单调递增,综上得:当a<0,f(x)在单调递减;a>0时,f(x)在单调递增;(2)由(1)知a>0时f(x)的最大值为由得a=2,∴f(x)=2x sin x﹣1,又∵f(x)在上单调递增;且f(0)=﹣1<0,,∴f(x)在内有且仅有1个零点.当时,令g(x)=f'(x)=2(sin x+x cos x),g'(x)=2(2cos x﹣x sin x)<0,∴g(x)在内单调递减,且,g(π)=﹣2π<0,∴存在,使得g(x0)=0,∴①当时,f'(x)>0,f(x)在单调递增,∴时,,∴f(x)在上无零点,②当x∈(x0,π)时,f'(x)<0,f(x)在(x0,π)内单调递减,又∵f(x0)>0,f(π)=﹣1<0,∴f(x)在(x0,π)内有且仅有1个零点,综上所求:函数f(x)在(0,π)内有2个零点.【点评】本题主要考查了利用导数研究函数的单调性和零点,是中档题.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.【分析】(1)先对函数求导,结合为偶函数,问题可转化为先研究x≥0,结合导数与单调性的关系及函数的零点判定定理可求,(2)结合导数先判断函数的单调性,结合零点判定定理可求.【解答】解:(1),令,x∈R,g(x)为偶函数,先研究x≥0,则g'(x)=x﹣sin x,g''(x)=1﹣cos x≥0,∴g'(x)在[0,+∞)为递增函数,且g'(0)=0,∴g'(x)≥0,即g(x)在[0,+∞)为单调递增函数,当g(0)=1﹣a>0,即a<1,g(x)没有零点,当g(0)=1﹣a=0,即a=1,g(x)有1个零点,当g(0)=1﹣a》<0,即a>1,,∴当,g(x)>0,∴当,g(x)在[0,+∞)有1个零点,∴g(x)为偶函数,在(﹣∞,0]也有有1个零点.综上:a<1,f'(x)没有零点;a=1,f'(x)有1个零点;a>1,f'(x)有2个零点.(2)①当a≤1时,由(1)知f'(x)≥0,f(x)在[0,+∞)为单调递增函数,f(x)≥f(0)=0,②当a>1时,f'(2a)=cos2a﹣a+2a2=cos2a+a2+a(a﹣1)>0,f'(0)=1﹣a<0,由零点存在性定理知∃x0∈(0,2a)使得f'(x0)=0,且在(0,x0),f'(x)<0,即f(x)单调递减,f(x)<f(0)=0与题设不符.综上可知,a≤1时,f(x)≥0,【点评】本题考查了导数的综合应用及零点判定定理的应用,属于中档题.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.【分析】(1)先求出f'(x),分析出当x∈(0,π)时,f'(x)为增函数,且,,得到f'(x)在(0,π)上有唯一零点,又因为当x∈[π,+∞)时,,所以f'(x)在[π,+∞)上没有零点,从而得出f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,即.设g(x)=x﹣sin x,利用导数得到g(x)在(0,+∞)为增函数,从而,再证明:.从而得出,即.【解答】证明:(1)当m=2时,,,当x∈(0,π)时,f'(x)为增函数,且,,∴f'(x)在(0,π)上有唯一零点,当x∈[π,+∞)时,,∴f'(x)在[π,+∞)上没有零点,综上知,f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,∴,设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,故g(x)在(0,+∞)为增函数,∴x2﹣sin x2>x1﹣sin x1,从而x2﹣x1>sin x2﹣sin x1,∴=,∴,下面证明:,令,则t>1,即证明,只要证明,(*)设,则,∴h(t)在(1,+∞)单调递减,当t>1时,h(t)<h(1)=0,从而(*)得证,即,∴,即.【点评】本题主要考查了利用导数研究函数的零点,利用导数研究函数的单调性,是中档题.。

相关文档
最新文档