一元一次不等式知识点及典型例题综合大全

合集下载

初中数学不等式知识点大全

初中数学不等式知识点大全

一元一次不等式知识点1.不等式不等式的概念:用不等号),,,,(≠≤<≥>表示不等关系的式子叫做不等式。

常用的表示不等关系的语言及符号:(1)大于、比……大、超过:>; (2)小于、比……小、低于:<;(3)不大于、不超过、至多:≥; (4)不小于、不低于、至少:≤;(5)正数:0>; (6)负数:0<;(7)非负数:0≥;(8)非正数:0≤【例1】下列式子中:① 21>-;② 13-≥x ;③ 3-x ;④ vt s =;⑤ y x 243<- ⑥ 2253+=-x x ;⑦ 022≥+a ;⑧ 222c b a ≠+.是不等式的有_________________.【例2】下列语句不能用不等式表示的是( )A. 1+m 是负数B. 2a 是正数C.n m +等于xD. 1-m 是非负数【练习1】下列式子:①05>;②043>+b a ;③2=x ;④1-x ;⑤53≠+x ;⑥732≤+a ;⑦812≥+x ,其中,不等式有______________.【练习2】符号“≥”的含义是“大于或等于”,即“不小于”;符号“≤”的含义是“小于或等于”,即“不大于”.请用文字语言翻译下列不等式:(1)02≥x :____________.(2)0≤-x :_____________.知识点2.不等式的基本性质不等式性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 即如果b a >,那么c b c a c b c a ->-+>+,不等式的性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即 如果0,>>c b a ,那么cb c a bc ac >>,.不等式的性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.即 如果0,<>c b a ,那么cb c a bc ac <<,. 不等式的性质4 如果b a >,那么a b <.不等式的性质5 如果c b b a >>,,那么c a >.【例1】由13+<-b a ,可得到的结论( )A. b a <B. 13-<+b aC. 31+<-b aD. 31-<+b a【例2】如果b a >,那么下列变形错误的是( )A. b a 33->-B. b b a 2>+C.b a 2222-<-D.b a +->+-11【例3】下列判断中,正确的是( )A. 若b a <,则c b c a <B. 若b a <,则22bm am <C. 若22bm am <,则b a <D. 若b a <,则22b a <【例4】 若0<<b a ,则下列式子:① 21+<+b a ;② 1>ba ;③ ab b a <+;④ba 11<. 其中正确的有_______________. 【例5】已知关于x 的不等式()21>-x a 可化为ax -<12,试化简:21++-a a .【练习1】若b a >,则下列不等式成立的是( )A . b a 22-<-B .b m a m 22<C .21-<-b aD .21+<+b a 【练习2】已知y x >,则下列不等式不成立的是( )A .66->-y xB .y x 33>C .y x 22-<-D .6363+->+-y x【练习3】下列叙述正确的是( )A .若b a =,则b a =B .若b a >,则b a >C .若b a <,则b a <D .若b a =,则b a ±= 【练习4】有理数n m ,在数轴上的位置如图示,则下列关系式中正确的个数( )0<+n m ;0>-m n ;n m 11>;02>-n m ;0>--m n A .1个 B .2个 C .3个 D .4个【练习5】如果0>+b a ,且0>b ,那么b a b a --,,,的大小关系为( )A .b a b a -<-<<B .b a a b <-<<-C .b a b a <-<-<D .a b b a -<<-<知识点3.不等式的解集1.使不等式成立的未知数的值,叫做这个不等式的解。

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

(完整)一元一次不等式总复习讲义

(完整)一元一次不等式总复习讲义

一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质。

1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323b a-<-( )3、若,,d c b a =<,则 bd ac < ( )4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤: (1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2) (4) 合并同类项,得ax>b ,或ax 〈b (a≠0)(根据合并同类项法则) (5) 两边同除以a (或乘1/a )(根据不等式基本性质3)(注:若a<0,不等号反向) (6) 不等式的解在数轴上的表示 一、选择题1、 如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B ) c -a >c -b ; (C ) ac >bc ; (D ) a bc c> . 2、如果,2323,11--=++=+x x x x 那么x 的取值范围是( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x3、已知a 、b 、c 为有理数,且a>b>c ,那么下列不等式中正确的是( )A 。

a+b 〈b+cB 。

a-b 〉b-c C.ab>bc D 。

a bc c>4、如果m<n 〈0那么下列结论中错误的是( )A 。

m —9〈n-9 B.-m 〉—n C 。

(完整版)一元一次不等式知识点总结(最新整理)

(完整版)一元一次不等式知识点总结(最新整理)

符号语言表示为:如果
,那么

基本性质 2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果
,并且
,那么
(或
基本性质 3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
)。
符号语言表示为:如果
,并且
,那么
5x 2
1
1≥
2
x 3
1,并把解集在数轴上表示出来. 5 4 3 2 1
0
1
若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为

的形式,
其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为 1。这五个步骤根据具体题
目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为 1 时,在不等式两边同乘以(或除以)同一个非零数时,
A
B
C
知识点 6:一元一次不等式的定义
9.下列属于一元一次不等式的是( )A.10>8 知识点 7:一元一次不等式的整数解
D
B. 2x 1 3y 2 C. 2(1 y) 1 y 1 D. x2 3 5 2
10.在不等式 3x 2 4 中, x 可取的最大整数值是( )A.0 B.1 C.2 11.不等式 2 x -1≥3 x -5 的正整数解的个数为( )A.5 个 B.2 个 C.3
知识点四:一元一次不等式的解法
1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本
性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为 1.

(完整)一元一次不等式与一元一次不等式组知识点和训练,推荐文档.docx

(完整)一元一次不等式与一元一次不等式组知识点和训练,推荐文档.docx

一元一次不等式与一元一次不等式组知识点和训练本章知识点:1、不等式: 用 或 号表示大小关系的式子叫做不等式。

2、不等式的解: 把使不等式成立的未知数的值叫做不等式的解。

3、解集: 使不等式成立的 x 的取值范围叫做不等式解的集合,简称解集。

4、一元一次不等式: 含有一个未知数, 未知数的次数是 1 的不等式叫做一元一次不等式。

5、不等式的性质:( 1)基本性质 1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(用 字母表示:若 a b ,则 a c b c ;若 a b ,则 a c b c )( 2)基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(用字母表示: 若 ab,c 0 ,则 ac bc ,或ab;若 a b, c 0 ,则 ac bc ,或ab )cccc( 3)基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

(用字母表示: 若 ab,c 0 ,则 ac bc ,或ab;若 a b, c0 ,则 ac bc ,或ab )c ccc6、一元一次不等式的解法: 与一元一次方程的解法类似。

一般步骤如下:( 1)去分母(注意每一项都要乘以各分母的最小公倍数,不要漏乘 ; 如分子是多项式的, 去掉分母要加括号)( 2)去括号(括号前是负号,去掉括号时里面的每一项都要变号) ( 3)移项(移项要变号) ( 4)合并同类项( 5)未知数的系数化为 1(当两边同时乘以(或除以)一个负数时,要改变不等号的方向)7、元一次不等式组: 把几个不等式合起来,组成一个一元一次不等式组。

8.一元一次不等式组的解法:( 1)分别求出每个不等式的解集。

( 2)确定各个解集的公共部分。

(在同一条数轴上表示出各个解集, 再由图形直观得出不等式组的解集)(3).如果 a x a xx a 无解(或空集);x a b ,则的解集为 a ;的解集为 x 的x b x bb解集为 b xx a b 。

(完整版)一元一次不等式知识点汇总

(完整版)一元一次不等式知识点汇总

一元一次不等式知识点汇总【知识点一】不等式的有关概念1、不等式定义:用符号“<”、“≤”、“>"、“≥”、“≠"连接而成的数学式子,叫做不等式.这5个用来连接的符号统称不等号。

2、列不等式:步骤如下(1)根据所给条件中的关系确定不等式两边的代数式;(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义;(3)选择与题意符合的不等号将表示不等关系的两个式子连接起来。

3、用数轴表示不等式(1)x a <表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。

(2)x a ≥表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内.(3)()b x a b a <<<表示大于b 而小于a 的全体实数。

b【知识点二】不等式的基本性质1、不等式的基本性质(1)基本性质1:若a b <,b c <,则a c <。

(不等式的传递性)(2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。

①若a b >,则a c b c +>+,a c b c ->-;②若a b <,则a c b c +<+,a c b c -<-。

(3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;若a b >,且0c >,则ac bc >,a bc c>.②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。

若a b >,且0c <,则ac bc <,a bc c<。

2、比较等式与不等式的基本性质【知识点三】一元一次不等式1、一元一次不等式的概念:不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次。

一元一次不等式知识归纳及例题

一元一次不等式知识归纳及例题

一元一次不等式知识点及例题1.用不等号>、<表示不等关系的式子,叫不等式。

如120>135 ,x <30 ,120<5x例题:用不等式表示下列数量关系。

(1)a 的一半与-3的和小于或等于1。

解:x 的5倍加16:5x +16其关系不大于:练习用不等式表示:x 的2倍与1的和大于-1为__________,y 的与t 的差的一半是负数为_________2.能使不等式成立的未知数的值,叫不等式的解。

例题:下列各数中,哪些是不等式x+2>5的解?那些不是?-3,-2,-1,0,1.5,2.5,3,3.5,5,73.一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。

例题:两个不等式的解集分别为x <2和x ≦2,他们有什么不同?在数组上怎么表示他们的区别?练习:两个不等式的解集分别为x ≦1和x>1,他们有什么不同?在数组上怎么表示他们的区别?4.不等式的性质。

如果(1)a >b ,那么a+c >b+c,a-c >b-c.(2).如果a >b,并且c >0,那么ac >bc. (3).如果a >c ,并且c <0,那么ac <bc.例题: 指出下列各题中不等式的变形依据练习: 把下列不等式变成x>a x<a 的形式。

()的与的差的相反数不小于。

2a 3525-()的相反数的不大于的倍加。

317516x x ()的一半:112a a 与-的和:3123a +-()小于或等于:11231a +-≤()故:1231a +-≤()()的与的差:2352352a a -相反数:-()352a -不小于-:53525--≥-()a 故:---≥-()3525a ()的相反数的:31717x x --≤+17516x x 故:-≤+17516x x5不等号的两边都是整数,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。

例题判断下列属于一元一次不等式的是()10>8 2x+1>3y+2 121)1(2->+y y x 2 +3>5 判断下列哪些是一元一次方程,哪些是一元一次不等式x+1<6 x+8=2 x 30 x ≥90 x+1<6 x+2 x ≦3 13 x+1=6 6一元一次方程的解法解一元一次方程有哪些步骤⑴去分母——方程两边同乘以各分母的最小公倍数.⑵去括号——应用分配律、去括号法则,⑶移项—一般把含未知数的项移到方程的左边,常数项移到方程的右边。

下一元一次不等式知识点及典型例题

下一元一次不等式知识点及典型例题

8下一元一次不等式知识点及典型例题(总18页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一元一次不等式考点一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为 1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

7、不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

知识点与典型基础例题一不等式的概念:例判断下列各式是否是一元一次不等式?-x≥5 2x-y<0 25432xxx352x二不等式的解:三不等式的解集:例判断下列说法是否正确,为什么?X=2是不等式x+3<2的解。

X=2是不等式3x<7的解。

不等式3x<7的解是x<2。

X=3是不等式3x≥9的解四一元一次不等式:例判断下列各式是否是一元一次不等式-x<52x-y<0232xx52x≥3x例五.不等式的基本性质问题例1 指出下列各题中不等式的变形依据1)由3a>2得a>32 2) 由3+7>0得a>-73)由-5a<1得a>-51 4)由4a>3a+1得a>1例2 用>”或<”填空,并说明理由如果a<b则 1)a-2( )b-2 2)-2a-2b 3)-3a-5( )-3b-5例3 把下列不等式变成x>a x<a的形式。

X+4>7 5x<1+4x -54x>-1 2x+5<4x-2例4 已知实数a/b/c/在数轴上的对应点如图,则下列式子正确的是()A cb>abB ac>abC cb<abD c+b<a+b例5当0<x<1时x2,x,x1,之间的大小关系是。

例将下列不等式的解集在数轴上表示出来。

X ≥2 x <132 x<3的非负整数解 -121312x六在数轴上表示不等式的解集:例解下列不等式并把解集在数轴上表示出来2x+3<3x+2 -3x+2≤5 -x 31≠2323125x x 8-2(x+2)<4x-2 3-8)1(3412x x 5-x+3x<1-31232x x 题型一:求不等式的特殊解例1)求x+3<6的所有正整数解2)求10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来。

3)求不等式0123x的非负整数解。

4)设不等式2x-a≤0只有3个正整数解,求正整数题型二:不等式与方程的综和题例关于X的不等式2x-a≤-1的解集如图,求a的取值范围。

不等式组{1591x x m x 的解集是x>2,则m的取值范围是?若关于X、Y的二元一次方程组{31350y x p y x 的解是正整数,求整数P的值。

已知关于x的不等式组{ba xb a x 122的解集为3≤x<5,求ba 的值。

题型三确定方程或不等式中的字母取值范围例k为何值时方程5x-6=3(x+k)的值是非正数已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围已知在不等式3x-a≤0的正整数解是1,2,3,求a的取值范围。

若方程组{ky x y x 34532的解中x>y ,求K 的范围。

如果关于x 的方程x+2m-3=3x+7的解为不大于2的非负数,求m 的范围。

若|2a+3|>2a+3,求a 的范围。

若(a+1)x >a+1的解是x <1,求a 的范围。

若{148x x a x 的解集为>3,求a的取值范围。

已知关于x 的方程x-3232x m x 的解是非负数,m是正整数,求m的值。

如果{0908a x b x 的整数解为1、2、3,求整数a、b的值。

题型五求最小值问题例x 取什么值时,代数式645x 的值不小于3187x 的值,并求出X 的最小值。

题型六不等式解法的变式应用例根据下列数量关系,列不等式并求解。

X 的31与x 的2倍的和是非负数。

C 与4的和的30﹪不大于-2。

X 除以2的商加上2,至多为5。

A与b 两数和的平方不可能大于3。

例x取何值时,2(x-2)-(x-3)-6的值是非负数?例x取哪些非负整数时,523x 的值不小于32x 与1的差。

题型七解不定方程例求方程4x+y-20=0的正整数解。

已知{axax223无解,求a的取值范围。

题型八比较两个代数式值的大小例已知A=a+2,B=a2-a+5,C=a2+5a-19,求B与A,C与A的大小关系题型九不等式组解的分类讨论例解关于x的不等式组{axaxxaxa38..44)1(2..2)2(8、常见题型一、选择题在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( ) A.-1<m<3 B.m>3 C.m<-1D.m>-1答案:A已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B. C. D.答案:D四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是( D )A、 B、 C、 D、把不等式组的解集表示在数轴上正确的是()答案:C不等式的解集是()A.B.C.D.答案:C 若不等式组有实数解,则实数的取值范围是()A.B.C.D.答案:A若,则的大小关系为()A.B.C. D.不能确定答案:A不等式—x—5≤0的解集在数轴上表示正确的是()答案:B不等式<的正整数解有( )(A)1个(B)2个(C)3个(D)4个答案:C把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.答案:B不等式组,的解集是()A. B. C. D.无解答案:C不等式组的解集在数轴上可表示为()A B C D答案:D实数在数轴上对应的点如图所示,则,,的大小关系正确的是()A.B.C. D.答案:D如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b答案:C不等式组的解集在数轴上表示正确的是()答案:C把不等式组的解集表示在数轴上,正确的为图3中的() A. B. C. D.答案:B用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为()答案:A不等式组的解集在数轴上可表示为()答案:A在数轴上表示不等式组的解集,正确的是()答案:A二、填空题已知3x+4≤6+2(x-2),则的最小值等于________. 答案:1如图,已知函数和的图象交点为,则不等式的解集为.答案:不等式组的解集为.答案:不等式组的整数解的个数为.答案:46.已知关于的不等式组的整数解共有3个,则的取值范围是.答案:9.不等式组的解集是.答案:10.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为.答案:<-113.已知不等式组的解集为-1<x<2,则(m+n)2008=__________.答案:1三、简答题解不等式组解:解不等式(1),得.解不等式(2),得.原不等式组的解是.解不等式组并写出该不等式组的最大整数解.解:解不等式x+1>0,得x>-1 解不等式x≤,得x≤2 ∴不等式得解集为-1<x≤2 ∴该不等式组的最大整数解是 2若不等式组的整数解是关于x的方程的根,求a的值。

解:解不等式得,则整数解x=-2代入方程得a=4。

解方程。

由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值。

在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图(17)可以看出x=2;同理,若x 对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程的解为(2)解不等式≥9;(3)若≤a对任意的x都成立,求a的取值范围解:(1)1或.(2)和的距离为7,因此,满足不等式的解对应的点3与的两侧.当在3的右边时,如图(2),易知.当在的左边时,如图(2),易知.原不等式的解为或(3)原问题转化为:大于或等于最大值.当时,,当,随的增大而减小,当时,,即的最大值为7.故.解不等式组并把解集表示在下面的数轴上.解:的解集是:的解集是:所以原不等式的解集是:,,,,,,,,,,,,,,,(3分)解集表示如图,,,,,,,,,,,,,,,,,,,,,,,,,(5分)解不等式组解:由不等式(1)得:<5由不等式(2)得:≥3所以:5>x≥3解不等式组:并判断是否满足该不等式组.解:原不等式组的解集是:,满足该不等式组.解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.解:3x-2<73x<7+23x<9x<3解不等式组,并写出它的所有整数解.解:解不等式组并求出所有整数解的和.解:解不等式①,得,解不等式②,得.原不等式组的解集是.则原不等式组的整数解是.所有整数解的和是:不等式复习 1一:知识点回顾1、一元一次不等式(组)的定义:2、一元一次不等式(组)的解集、解法:3、求不等式组的解集的方法:若a<b,当时,x>b;(同大取大)当时,x<a;(同小取小)当时,a<x<b;(大小小大取中间)当时无解,(大大小小无解)二:小试牛刀1、不等式8-3x≥0的最大整数解是_______________.2、若1)1(axa的解集是1x,则a必须满足_______3、若不等式组axx,4的解集是ax4,则a的取值范围是________.4、若10a,则2a、a1、a之间的大小关系是________.5、如果一元一次方程452xkx的解是正数,那么k的取值范围是________.6、如图,直线y kx b经过点(12)A,和点(20)B,,直线2y x过点A,则不等式20x kx b的解集为()A.2x B.21x C.20xD.10x7、不等式组的解集为x<2,试求k的取值范围______8、由x>y 得ax≤ay 的条件是()A.a>0B.a<0C.a≥0D.a≤09、由a>b 得am2>bm2 的条件是()A.m>0B.m<0C.m≠0D.m是任意有理数三:例题讲解1、已知关于x的不等式2x+m>-5的解集如图所示,则m的值为()A, 1 B, 0 C, -1 D, 32、不等式2x+1<a有3个正整数解,则a的取值范围是?yO xBA3、关于x 的不等式组10x a x 的整数解共有3个,则a 的取值范围是多少?4、若方程组3,23xyk y x 的解满足1,1y x 且,求整数k 的取值范围。

相关文档
最新文档