应用题---浓度问题---经典

合集下载

浓度问题应用题

浓度问题应用题
答:需要20%的盐水400克,5%的盐水200克。
举一反三
1、用浓度为45%和5%的两种盐水配制浓度为30%的盐水4千克, 需要两为22%和27%的 糖水各多少克?
3、两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需 要含镍5%和含镍40%的钢各多少吨?
• 3、给浓度为45%的酒精溶液加入一定数量的
水稀释成浓度为36%的酒精溶液,如果再加入 同样多的水,那么酒精溶液的浓度将变为 多少?
例4、一容器内有浓度为25%的糖水若干,若再加入20 千克水,则糖水的浓度变为15%。这个容器内原来含糖多少 千克?
• 分析:因为是在原溶液(糖水)中加水得到新溶 液,所以溶液中溶质(糖)的质量不变,即加水 前糖的质量与加水后糖的质量相等,根据这一等 量关系,我们可以列方程解答。

分析:根据题意,将20%的盐水与5%的盐水混合配 成15%的盐水,说明混合前两种盐水的质量和与混
合后得到的新盐水中盐水的质量是相等的。可以根
据这一数量间的相等关系列方程解答。
解:设需要20%的盐水x克,则需要5%的盐水(600 -x)。
20%x +(600-x)× 5% = 600×15% 20%x+30- 5%x=90 15%x=90-30 x=60÷15% x=400 600-400=200(克)

解:设容器内原有糖水x千克。

25%x =(x +20)×15%

25%x =15%x +3
• 25%x -15%x =3

10%x =3

x =3 ÷10%

x = 30

30 ×25% = 7.5(千克)

答:这个容器内原来含糖7.5千克。

小学奥数浓度问题经典例题含解析

小学奥数浓度问题经典例题含解析
★★★阿奇从冰箱里拿出一瓶 100%的汇源纯果汁,一口气喝了五分之一后又放回了冰箱. 第二天妈妈拿出来喝了剩下的五分之一觉得太浓,于是就加水兑满,摇匀之后打算明天再喝.第三天阿奇拿出这瓶果汁,一口气喝得只剩一半了.他担心妈妈说他喝得太多,于是就加了些水把果汁兑满.请问:这时果汁的浓度是多少?
★★★有浓度为 20%的糖水500克,另有浓度为 56%的糖水625克,将它们混合之后,糖水的浓度是多少?
三种溶液混合在一起,混合前溶质的质量和还是等于混合后溶质的质量和.三瓶糖水的浓度都是已知的,并且知道B瓶比C瓶多30克,可以假设C瓶为x克,那么B瓶为(x+30)克,A瓶糖水为100-(x + x +30)=70-2x =克,利用混合前后溶质相等这个等量关系来解题.设C瓶糖水有x克,则B瓶糖水为x+30克,A瓶糖水为100-(x+x+30)= 70-2x ,
【解析】这个题目我们可以利用浓度倒三角来解题。
★★甲种酒精纯酒精含量为72 % ,乙种酒精纯酒精含量为58 % ,混合后纯酒精含量为62 % ,如果每种酒精取的数量比原来多15升,混合后纯酒精含量为63.25%.问第一次混合时,甲、乙两种酒精各取了多少升?
★★甲容器有纯酒精11升,乙容器有水15升.第一次将甲容器中的一部分纯酒精倒人乙容器,使酒精和水混合.第二次将乙容器中的一部分混合液倒入甲容器中,这样甲容器中的纯酒精含量为62.5% ,乙容器中的纯酒精含量是25% ,那么,第二次从乙容器倒人甲容器的混合液是多少升?
所以质比量为1:1。所以浓度为40%与浓度为10%的溶液混合液质量为300克。所以质量比值为:2:1,原来浓度为40%的溶液有200克。
交叉相减求差:
【评析】 除了两种溶液配比外,稀释和加溶质也可以用“十字交叉相减”法,如果溶液加水,那么溶液就和0%的溶液来配比,如果单加溶质,就是溶液和100%的溶液来配比.

应用题浓度问题经典

应用题浓度问题经典

应用题浓度问题经典(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除浓度问题专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量×100%=溶质质量溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。

在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。

浓度问题变化多,有些题目难度较大,计算也较复杂。

要根据题目的条件和问题逐一分析,也可以分步解答。

例题1。

有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。

因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。

原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。

练习11、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。

数学浓度问题

数学浓度问题
浓度问题
在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水 叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是 说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者 质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比 值叫酒精含量。
解:设5%的镍需x克,则40%的镍为140-x克,那么 5%x+(140-x)×40%=140×30%
X=40 140-40=100(克) 答:需要5%的镍40克,40%的镍100克。
用十字交叉法?
2、甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000 克,应当从这两种酒中各取多少克?
解:设20%的盐水需x克,则5%的盐水为600-x克,那么 20%x+(600-x)×5%=600×15%
X=400 600-400=200(克) 答:需要20%的盐水400克,5%的盐水200克。
用十字交叉法?
练习1、两种钢分别含镍5%和40%,%的钢各多少吨?
用十字交叉法?
2、浓度为70%的酒精溶液500克与浓度为50%的酒精溶 液300克混合后
(500×70%+300×50%)÷(500+300)=62.5% 答:所得到的酒精溶液的浓度是62.5%.
【例题3】 将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水 和5%的盐水各多少克? 【思路导航】根据题意,将20%的盐水与5%的盐水混合配成15%的盐水, 说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。可 根据这一数量间的相等关系列方程解答。

小学六年级奥数浓度问题习题及解答

小学六年级奥数浓度问题习题及解答

小学六年级奥数浓度问题习题及解答马克思曾经说过:“一门学科只有成功的应用了数学,才能真正达到了完善的地步。

”这句话充分显示了数学知识的广泛应用及学习数学的必要性和重要性。

因此,数学作为认识世界的基础性学科,它可以在思想上支持不同学科的深入发展。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】糖与糖水重量的比值叫做糖水的浓度;盐与盐水的重量的比值叫做盐水的浓度。

我们习惯上把糖、盐、叫做溶质(被溶解的物质),把溶解这些物质的液体,如水、汽油等叫做溶剂。

把溶质和溶剂混合成的液体,如糖水、盐水等叫做溶液。

一些与浓度的有关的应用题,叫做浓度问题。

浓度问题有下面关系式:浓度=溶质质量÷溶液质量溶质质量=溶液质量×浓度溶液质量=溶质质量÷浓度溶液质量=溶质质量+溶剂质量溶剂质量=溶液重量×(1–浓度)例1、浓度为25%的盐水120千克,要稀释成浓度为10%的盐水,应该怎样做?加水稀释后,含盐量不变。

所以要先求出含盐量,再根据含盐量求得稀释后盐水的重量,进而求得应加水多少克。

120×25%÷10%-120=180克例2、浓度为70%的酒精溶液500克与浓度为50%酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?要求混合后的溶液浓度,需要知道混合后溶液的总重量及所含纯酒精的重量。

(500×70%+300×50%)÷(500+300)=62.5%例3、有含盐8%的盐水40千克,要配制含盐20%的盐水100千克需加水和盐各多少千克?根据“要配制含盐20%的盐水100千克”可求得新的盐水中盐和水的重量。

加盐多少千克:100×20%-40×8%=16.8千克加水多少千克:100-40-16.8=33.2千克【篇二】附自习题1、浓度为25%的盐水60克,要稀释成浓度为6%的盐水,应该怎么做?(提示:浓度变低,说明加了水,盐不变。

(完整版)浓度问题典型题目汇总

(完整版)浓度问题典型题目汇总

浓 度 问 题 专 题专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量 ×100%=溶质质量溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。

在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。

浓度问题变化多,有些题目难度较大,计算也较复杂。

要根据题目的条件和问题逐一分析,也可以分步解答。

例题1。

有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。

因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。

原来糖水中水的质量:600×(1-7%)=558(克) 现在糖水的质量 :558÷(1-10%)=620(克) 加入糖的质量 :620-600=20(克)答:需要加入20克糖。

练习11、 现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、 有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、 有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。

第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?例题2。

小学数学典型应用题20:浓度问题(含解析)

小学数学典型应用题20:浓度问题(含解析)

小学数学典型应用题20:浓度问题(含解析)浓度问题【含义】在生产和生活中,我们经常会遇到溶液浓度问题。

这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。

例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。

溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

【数量关系】溶液=溶剂+溶质浓度=溶质÷溶液×100%解题思路和方法找出不变量,简单题目直接利用公式,复杂题目变通后再利用公式。

例1:要将浓度为25%的酒精溶液1020克,配制成浓度为17%的酒精溶液,需加水多少克?解:1、根据题意可知,配制前后酒精溶液的质量和浓度发生了改变,但纯酒精的质量并没有发生改变。

2、纯酒精的质量:1020×25%=255(克),占配制后酒精溶液质量的17%。

所以配制后酒精溶液的质量:255÷17%=1500(克)。

加入的水的质量:1500-1020=480(克)。

例2:有浓度为30%的盐水溶液若干,添加了一定数量的水后稀释成浓度为24%的盐水溶液。

如果再加入同样多的水,那么盐水溶液的浓度变为多少?解:1、分析题意,假设浓度为30%的盐水溶液有100克,则100克溶液中有100×30%=30(克)的盐,加入水后,盐占盐水的24%。

此时盐水的质量为:30÷24%=125(克),加入的水的质量为:125-100=25(克)。

2、再加入相同多的水后,盐水溶液的浓度为:30÷(125+25)=20%。

例3:两个杯中分别装有浓度为45%与15%的盐水,倒在一起后混合盐水的浓度为35%。

若再加入300克浓度为20%的盐水,则变成浓度为30%的盐水,则原来浓度为45%的盐水有多少克?解:1、本题考察的是浓度和配比问题的相关知识。

解决本题的关键是先求出原溶液与混合后的溶液浓度差的比。

从而求出所需溶液质量的比,并解决问题。

2、根据题意可知,浓度为35%的盐水和浓度为20%的盐水混合成浓度为30%的盐水,因为浓度为35%的盐水比混合后的浓度多35%-30%=5%,浓度为20%的盐水比混合后的浓度少30%-20%=10%,5%:10%=1:2,即混合时,2份浓度为35%的盐水才能补1份浓度为20%的盐水。

小升初数学浓度问题经典题型解析

小升初数学浓度问题经典题型解析

小升初数学应用题
浓度问题——经典题型解析
1.浓度为10%的盐水800克和浓度为20%的盐水200克混在一起,浓度是多少?
解:(800×10%+200×20%)÷(800+200)=12%
答:浓度是12%。

2.配置一种药液,药粉和水的质量比是1:40,要配置820克药液,需要水多少克?
解:820×[40÷(1+40)]=800克
答:需要800克水。

3.有浓度是3.5%的盐水200克,为了制成浓度为2.5%的盐水,需要加入多少克水?
解:200×3.5%÷2.5%-200=80克
答:需要加入80克水。

4.一杯水中放入10克糖,再加入浓度为5%的糖水200克,刚好配成浓度为2.5%的糖水,原来杯中有水多少克?
解:10+200×5%=20克
20÷2.5%=800克
800-200-10=590克
答:原来杯中有590克水。

5.将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
解:设要20%的盐水x克,5%的盐水(600-x)克
20%x+(600-x)×5%=600×15%,
解得x=400,600-400=200
答:20%的盐水400克,5%的盐水200克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题---浓度问题---经典浓度问题专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量×100%=溶质质量溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。

在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。

浓度问题变化多,有些题目难度较大,计算也较复杂。

要根据题目的条件和问题逐一分析,也可以分步解答。

例题1。

有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。

因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。

原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。

练习11、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。

第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?例题2。

一种35%的新农药,如稀释到1.75%时,治虫最有效。

用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?【思路导航】把浓度高的溶液经添加溶剂变为浓度低的溶液的过程称为稀释。

在这种稀释过程中,溶质的质量是不变的。

这是解这类问题的关键。

800千克1.75%的农药含纯农药的质量为800×1.75%=14(千克)含14千克纯农药的35%的农药质量为14÷35%=40(千克)由40千克农药稀释为800千克农药应加水的质量为800-40=760(千克)答:用40千克的浓度为35%的农药中添加760千克水,才能配成浓度为1.75%的农药800千克。

练习21、用含氨0.15%的氨水进行油菜追肥。

现有含氨16%的氨水30千克,配置时需加水多少千克?2、仓库运来含水量为90%的一种水果100千克。

一星期后再测,发现含水量降低到80%。

现在这批水果的质量是多少千克?3、一容器内装有10升纯酒精,倒出2.5升后,用水加满;再倒出5升,再用水加满。

这时容器内溶液的浓度是多少?例题3。

现有浓度为10%的盐水20千克。

再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?【思路导航】这是一个溶液混合问题。

混合前、后溶液的浓度改变了,但总体上溶质及溶液的总质量没有改变。

所以,混合前两种溶液中溶质的和等于混合后溶液中的溶质的量。

20千克10%的盐水中含盐的质量20×10%=2(千克)混合成22%时,20千克溶液中含盐的质量20×22%=404(千克)需加30%盐水溶液的质量(4.4-2)÷(30%-22%)=30(千克)答:需加入30千克浓度为30%的盐水,可以得到浓度为22%的盐水。

练习31、在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?2、浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少?3、在20%的盐水中加入10千克水,浓度为15%。

再加入多少千克盐,浓度为25%?例题4。

将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?【思路导航】根据题意,将20%的盐水与5%的盐水混合配成15%的盐水,说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。

可根据这一数量间的相等关系列方程解答。

解:设20%的盐水需x克,则5%的盐水为600-x克,那么20%x+(600-x)×5%=600×15%X =400600-400=200(克)答:需要20%的盐水400克,5%的盐水200克。

练习41、两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?2、甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克,应当从这两种酒中各取多少克?3、甲、乙两只装糖水的桶,甲桶有糖水60千克,含糖率为40%;乙桶有糖水40千克,含糖率为20%。

要使两桶糖水的含糖率相等,需把两桶的糖水相互交换多少千克?例题5。

甲、乙、丙3个试管中各盛有10克、20克、30克水。

把某种质量分数的盐水10克倒入甲管中,混合后取10克倒入乙管中,再混合后从乙管中取出10克倒入丙管中。

现在丙管中的盐水的质量分数为0.5%。

最早倒入甲管中的盐水质量分数是多少?【思路导航】混合后甲、乙、丙3个试管中应有的盐水分别是20克、30克、40克。

根据题意,可求出现在丙管中盐的质量。

又因为丙管中原来只有30克的水,它的盐是从10克盐水中的乙管里取出的。

由此可求出乙管里30克盐水中盐的质量。

而乙管里的盐又是从10克盐水中的甲管里取出的,由此可求出甲管里20克盐水中盐的质量。

而甲管里的盐是某种浓度的盐水中的盐,这样就可得到最初倒入甲管中盐水的质量分数。

丙管中盐的质量:(30+10)×0.5%=02(克)倒入乙管后,乙管中盐的质量:0.2×【(20+10)÷10】=0.6(克)倒入甲管,甲管中盐的质量:0.6×【(10+10)÷10】=1.2(克)1.2÷10=12%答:最早倒入甲管中的盐水质量分数是12%。

练习51、从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水将杯加满。

如此反复三次后,杯中盐水的浓度是多少?2、甲容器中又8%的盐水300克,乙容器中有12.5%的盐水120克。

往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样。

每个容器应倒入多少克水?3、甲种酒含纯酒精40%,乙种酒含纯酒精36%,丙种酒含纯酒精35%。

将三种酒混在一起得到含酒精38.5%的酒11千克。

已知乙种酒比丙种酒多3千克,那么甲种酒有多少千克?答案:练11、300×(1-20%)÷(1-40%)-300=100克2、20×(1-15%)÷(1-20%)-20=1.25千克3、第一次把20毫升的纯酒精倒入甲瓶,则甲瓶的浓度为:20÷(200+20)=111,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶中含酒精200×111=20011毫升,乙瓶中含水20×(1-111)=20011毫升,即两者相等。

练21、30×(16%-0.15%)÷0.15%=3170千克2、100×(1-90%)÷(1-80%)=50千克3、10×(1-2.510)×(1-510)÷10=37.5%练31、100×(50%-25%)÷(25%-5%)=125千克2、(500×70%+300×50%)÷(500+300)×100%=62.5%3、原有浓度为20%的盐水的质量为:10×15%÷(20%-15%)=30千克第二次加入盐后,溶液浓度为25%的质量为:【30×(1-20%)+10】÷(1-25%)=1363千克加入盐的质量:1363-(30+10)=163千克练41、解:设需含镍5%的钢x吨,则含镍40%的钢140-x吨,5%x+(140-x)×40%=140×30%X =40140-40=100吨2、(3000×75%-3000×65%)÷【1×(75%-55%)】=1500克3000-1500=1500克3、解法一:设互相交换x千克糖水。

【(60-x)×40%+x×20%】÷60=【(40-x)×20%+x×40%】÷40X=24解法二:60-60×6040+60=24千克练51、解法一:100×80%=80克40×80%=32克(80-32)÷100=48%40×48%=19.2克(80-32-19.2)÷100=28.8%40×28.8=11.52克(80-32-19.2-11.52)÷100=17.28%解法二:80×(1-40100)×(1-40100)×(1-40100)÷100=17.28%2、300×8%=24克120×12.5%=15克解:设每个容器应倒入x克水。

24300+x=15 120+xX =1803、解:设丙种酒有x千克,则乙种酒有(x+3)千克,甲种酒有(11-2x-3)千克。

(11-2x-3)×40%+(x+3)×36%+35%x=11×38.5%X=0.511-2×0.5-3=7千克练习:一、有浓度为30%的酒精若干,添加了一定数量的水后稀释成浓度为24%的酒精溶液。

如果再加入同样多的水,那么酒精溶液的浓度变为多少?解:在浓度为30%的酒精溶液中,溶质重量与溶液重量的比为30:100;在浓度为24%的酒精溶液中,溶质重量与溶液重量的比为24:100。

注意到溶质的重量不变,且30:100=120:400 24:100=120:500故,若溶质的重量设为120份,则增加了500-400=100(份)的水。

若再加同样多的水,则溶质重量与溶液重量的比变为:120:(500+100)于是,此时酒精溶液的浓度为 120÷(500+100)×100%=20%答:最后酒精溶液的浓度为20%。

相关文档
最新文档