电导的测定及其应用

合集下载

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告实验报告:电导的测定及其应用实验目的:掌握电导的基本概念,掌握测定电导的方法及其计算公式,了解电导在实际应用中的作用。

实验仪器:电导率仪、盐酸溶液、去离子水、容量瓶、计时器、玻璃棒实验步骤:1.取一定体积的盐酸溶液(如10ml),加入同体积的去离子水,混合均匀。

2.用电导率仪测定混合液的电导率,并记录数据。

3.将测得的电导率和混合液的浓度数据代入计算公式计算电导率。

4.重复以上步骤,每次调整混合液的浓度(如1mol/L、0.5mol/L、0.25mol/L、0.125mol/L、0.0625mol/L),同时记录电导率和浓度数据,并计算电导率。

5.根据实验数据绘制电导率-浓度曲线图。

6.分析实验数据,探索电导在实际应用中的作用。

实验结果:通过实验,我们得出了盐酸溶液的电导率随其浓度降低而降低的规律,同时得出了电导率-浓度曲线图。

从实验结果中,我们可以得出电导在工业、生物、环境等领域中的重要应用,如用于污水处理、药品生产等。

实验结论:电导是溶液中离子传导电流的能力,用电导率仪可以测量电导。

实验结果表明,电导率随着溶液浓度的降低而降低。

电导在工业、生物、环境等领域中具有重要的应用,比如污水处理、药品生产等。

实验注意事项:1.曲线图中需要标出坐标轴和单位。

2.清洗容器时,使用去离子水。

用盐酸溶液清洗容器会影响实验数据。

3.操作时,要注意安全,尤其是向容器中加入浓盐酸时。

扩展实验:实验中所用的是盐酸溶液,可以尝试用其他电解质溶液进行实验,比如NaCl、KCl等,探究它们的电导率与浓度之间的关系。

另外,也可以尝试利用电导率仪测量水中离子的含量,了解水质情况。

电导的测定及其应用实验原理

电导的测定及其应用实验原理

电导的测定及其应用实验原理1. 引言电导是描述物质导电能力的物理量,对于许多化学和物理过程的研究都具有重要意义。

本实验旨在介绍电导的测定原理以及一些常见的电导应用实验。

2. 电导的测定原理电导是指物质对电流流动的能力。

电导率(conductivity)是一个描述物质导电能力的物理量,用符号κ表示。

电导率与物质的导电性质成正比,与物质体积和形状无关。

电导率的单位是西门子每米(S/m)。

电导的测定可以通过测量电导率来进行。

电导率的测定方法多种多样,例如电阻法和电极法等。

以下是一种常用的电导测定方法:1.准备一个电导测量装置,包括电导计和导电性样品。

2.将导电性样品放置在电导计的电极之间,确保样品与电极之间完全接触。

3.打开电导计电源,调节测量参数,如温度和电流强度。

4.电导计通过测量电流和电压的比值来计算电导率。

5.根据实验需求,可以采取不同的测量方法和调整测量参数。

3. 电导的应用实验电导在许多领域中有重要的应用,下面介绍一些常见的电导应用实验。

3.1. 溶液的电导测定可以利用电导计来测量溶液的电导率,通过电导率的测定可以了解溶液中离子的浓度和电离度。

这对于化学反应的研究和溶液的质量控制具有重要意义。

实验步骤: 1. 准备一个电导计和待测溶液样品。

2.将电导计的电极插入溶液中,确保电极完全浸没。

3.打开电导计电源,并调节测量参数,如温度和电流强度。

4.手动搅拌溶液以确保均匀性。

5.电导计根据测量到的电压和电流比值计算溶液的电导率。

3.2. 金属材料的电导测定金属材料的电导性质是描述其导电能力的重要指标,可以通过电导测定来了解金属材料的电导率。

这对于金属材料的性能评估和材料选择具有重要意义。

实验步骤: 1. 准备一个电导计和金属材料样品。

2.将电导计的电极与金属材料的不同部位接触,确保电极与金属材料之间有良好的导电接触。

3.打开电导计电源,并调节测量参数,如温度和电流强度。

4.电导计通过测量电流和电压比值计算金属材料的电导率。

电导的测定及其应用

电导的测定及其应用

讨论
乙酸乙酯皂化反应系吸热反应, 混合后体系温度降低, 所
以在混合后的起始几分钟内所测溶液的电导偏低, 因此
最好在反应后开始, 否则, 由 一抛物线, 而不是直线。
G0 (G t
GG对t )t作图得到的是
思考题
1.为什么本实验要在恒温下进行? 而且氢氧化钠与乙酸乙酯溶液混合 前要预先恒温?
2.各溶液在恒温和操作过程中为什么要盖好? 3.如何从实验结果验证乙酸乙酯皂化反应为二级反应? 4.如果氢氧化钠和乙酸乙酯起始浓度不相等,则应怎样计算K值? 如
CH3COO- +Na++
在反应过程中,各物质的浓度随时间而改变。某一时刻 的OH-离子浓度,可以用标准酸进行滴定求得,也可以通 过测量溶液的某些物理性质而求出。以电导仪测定溶液 的电导值 G 随时间的变化关系,可以监测反应的进程, 进而可求算反应的速率常数。
实验原理
二级反应的速率与反应物的浓度有关。为了处理方 便起见, 在设计实验时将反应物 CH3COOC2H5 和 NaOH 采用相同的浓度 c 作为起始浓度。当反应时间为 t 时, 反 应所生成的CH3COO- 和C2H5OH的浓度为 x , 那么 CH3COOC2H5 和 NaOH的浓度则为 (c-x) 。设逆反应可 以忽略, 则应有
在另一支叉形电导池直支管中加入0.0200 mol/L的乙酸乙酯 溶液10mL, 侧支管中加入0.0200 mol/L的NaOH溶液10mL, 并把 洗净的电导电极插入直支管中。在恒温情况下, 混合两溶液, 同 时开启停表, 记录反应时间, 并在恒温槽中将叉形电导池中溶液 混合均匀并立即测其电导值, 每隔2 min测一次, 直到电导数值变 化不大时(一般45min到60min)。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告1.掌握电导的测定方法;2.探究不同溶液电导的异同,并了解电导相关的应用。

实验步骤:1.准备所需材料,包括待测溶液、电导计、电导池、计算机等设备;2.将电导计的电极放入待测溶液中,等待电导计稳定后读取电导值;3.重复步骤2,测量其他待测溶液的电导值,并将数据记录在实验记录表中;4.将数据进行分析,并比较不同溶液的电导异同;5.了解和探究电导在其他领域的应用,如水质检测、电解制氢等。

实验结果:实验中我们测量了不同浓度的HC2H3O2溶液的电导值,数据如下图所示:HC2H3O2浓度/% 电导率/mS/cm0% 0.045% 1.9710% 3.9115% 6.0220% 8.26由上表可见,随着HC2H3O2浓度的逐渐增加,测得的电导率逐渐增大。

这是因为电解质浓度的增加会增加电离频率和电离程度,从而使电导率增加。

实验分析:电导测量是液体中离子浓度的重要测量手段之一。

它是根据溶液中游离离子导电所致的现象来确定溶液电导率的一种检测方法。

电导测量可用于检测水质、土壤和食品中的离子浓度等。

在实际生产和生活中,电导测量也广泛应用于水处理、环境保护和化工等领域。

例如,电导测量可以用于检测水质污染及水处理质量,通过电导值的变化可判断水质的变化,并采取相应的措施进行水处理。

此外,电导测量还可以用于电解制氢等领域中。

实验结论:通过本次实验,我们掌握了电导的测定方法,进一步了解了电导的相关知识,并探究了电导在其他领域的应用。

我们需要注意,电导测量需要避免测量设备的干扰以及影响测量的因素,提高实验数据的准确性。

电导的测定及其应用

电导的测定及其应用

电导的测定及其应用
电导是电解质溶液中电荷移动的能力,通常用于测量液体的浓度或纯度。

它是描述电解质物质中离子能量传输速率的一个重要参数。

电导的测定可以通过使用电导计来完成,该仪器能够测量溶液的电阻和导电性,并通过此来计算液体的电导度。

电导计的工作原理是利用促电动势感应流过一定电流的电解质溶液中的电离子,从而测量电流和电势差之间的比值,也称为电导系数。

电导计能够快速、准确地测量液体样品中的电导,尤其对于高浓度溶液最为有效。

这种技术可被应用于许多领域,如环境监测、工业生产和生物化学实验。

例如,电导仪器可以用于测量水中离子含量,如硝酸盐、硫酸盐、氯化物和钠离子,以评估水的质量和污染程度。

在工业生产中,液体的电导度可用于监测和控制反应和溶液的浓度,以确保产品符合标准质量。

在生物化学实验中,电导技术可以用于测量生化反应中的离子含量和浓度。

例如,在细胞质中钠、钾和氯离子的浓度对细胞膜电位的调节具有重要作用。

电导计可以用于测量溶液中离子含量的变化,以研究生化反应的动力学和热力学特征。

总之,电导的测定具有广泛的应用价值,可以为许多领域提供快速、准确的液体浓度或纯度测量。

随着高精度和自动化技术的发展,电导技术将不断完善和创新,为更多实验和应用提供新的可能和机遇。

实验2电导的测定及其应用——难溶盐溶解度的测定

实验2电导的测定及其应用——难溶盐溶解度的测定

实验 2 电导的测定及其应用——难溶盐溶解度的测定实验2 电导的测定及其应用——难溶盐溶解度的测定一、实验目的1.掌握电导测定原理及方法。

2.通过电导测定法,研究难溶盐的溶解度。

3.理解难溶盐溶解度的概念及其影响因素。

二、实验原理电导是物质导电能力的度量,可以通过测定溶液的电导率来反映溶液中离子的浓度。

难溶盐的溶解度是指在一定温度和压力下,一定量溶剂中可溶解的难溶盐的最大量。

通过电导测定法,可以研究难溶盐的溶解度,进而了解其电离情况及离子交换性能等。

三、实验步骤1.准备实验仪器:电导率仪、恒温水浴、称量纸、电子天平、容量瓶、烧杯、滴管等。

2.配制不同浓度的难溶盐溶液,分别置于容量瓶中。

3.将电导率仪进行校准,确保测量准确。

4.将容量瓶中的溶液倒入电导池中,记录下此时溶液的温度。

5.测定溶液的电导率,记录数据。

6.加入少量难溶盐,搅拌使其溶解。

7.等待一定时间,待溶液达到平衡状态后,再次测定溶液的电导率,记录数据。

8.重复步骤6和7,直至难溶盐不再溶解为止。

9.数据处理及分析。

四、实验结果与数据分析1.数据记录:将每次测定的电导率和难溶盐加入量记录在表格中。

2.数据处理:根据实验数据绘制出难溶盐溶解度曲线,横坐标为温度,纵坐标为电导率。

曲线上的转折点对应于难溶盐的最大溶解度。

3.数据分析:比较不同温度下难溶盐的溶解度,分析其影响因素。

例如,温度升高,分子运动加快,溶解度增大;压力增大,分子间距减小,溶解度增大。

此外,难溶盐的晶体结构、溶剂的性质等也会影响溶解度。

五、结论通过本实验,我们掌握了电导测定法及其在研究难溶盐溶解度方面的应用。

实验结果表明,温度和压力是影响难溶盐溶解度的主要因素。

此外,本实验还发现不同难溶盐在相同温度下的溶解度存在差异,这与其晶体结构和溶剂性质有关。

通过本实验,我们对难溶盐溶解度的概念有了更深入的理解,并掌握了电导测定法在研究难溶盐溶解度方面的应用技巧。

这对于我们今后在实际工作中利用电导测定法进行相关研究具有重要的指导意义。

电导的测定及其应用—弱电解质的电离常数测量

电导的测定及其应用—弱电解质的电离常数测量

电导的测定及其应用—弱电解质的电离常数测量一、实验目的1.掌握电桥法测量电导的原理和方法;2.测定电解质溶液的当量电导,并计算弱电解质的电离平衡常数K。

二、实验原理1.电解质溶液的导电能力通常用电导G表示,其单位是西门子,用符号S 表示。

如将电解质溶液中放入两平行电极之间,电极间距离为l,电极面积为A,则电导可以表示为:k:电解质溶液的电导率,单位为S·m-1,l/A:电导池常数,单位为m-1,电导率的值与温度、浓度、溶液组成及电解质的种类有关。

在研究电解质溶液的导电能力时,常用摩尔电导率Λm来表示,其单位为S·m2·mol-1。

Λm与电导率k和溶液浓度c的关系如下所示:2.摩尔电导率Λm随着浓度的降低而增加。

对强电解质而言,其变化规律可以用科尔劳斯(Kohlraus c h)经验式表示:为无限稀释摩尔电导率。

在一定温度下,对特定的电解质和溶剂来说,A为一常数。

因此,将摩尔电导率Λm对c1/2作图得一直线,将直线外推与纵坐标的交点即为无限稀释摩尔电导率之比,即用下式表示:在一定温度下,对于AB型弱电解质在水中电离达到平衡时有如下关系:该反应的解离平衡常数K与解离度α有如下关系:由此可以看出,如果测得一系列不同浓度AB型溶液的摩尔电导率Λm,然后以1/Λm对cΛm作图可得到一条直线,其斜率m等于,如果知道无限稀释摩尔电导率的数据,即可求得解离平衡常数K。

三、仪器与药品SLDS-I型数显电导率仪SYP-Ⅲ型玻璃25mL移液管恒温水槽DJS-1C型铂黑电极50ml量筒、100ml量筒250ml锥形瓶洗耳球KCl溶液(0.1mol.L-1)HA c溶液(0.1mol.L-1)蒸馏水滤纸四、实验步骤1.调节恒温水槽温度为25℃,打开电导率仪预热10分钟。

2.用容量瓶将0.1mol·L-1HA c溶稀释成为:0.0500mol·L-1、0.0200mol·L-1、0.0100mol·L-1、0.0050mol·L-1、0.0020mol·L-1五种溶液。

药学物化课件—电导的测定及其应用

药学物化课件—电导的测定及其应用

随着实验技术的不断发展,目前已有
不少测定电导、电导率的仪器可直接测定
二、电导测定的应用
电导测定的应用非常广泛,主要如下:
1.检验水的纯度
医药行业常常对水的纯度有较高的要求,
可测定水的电导率的大小来检测水的纯度。 自
来水中因含有各种离子杂质,常温下其电导率约 为1.0×10-1S.m-1,普通蒸馏水的电导率约为 1.0×10-3S.m-1 ,药用去离子水的电导率要求为 1.0×10-4Sm-1 ,所以我们可以只要测定水的电 导率k值就可知道其纯度是否符合要求。
导池, 电阻Rx待测。I 是频率在1000Hz左右的高
频交流电源,G为耳机或阴极示波器。
接通电源后,移动C点,使DGC线路中无 电流通过,如用耳机则听到声音最小,这
时D,C两点电位降相等,电桥达平衡。根 据几个电阻之间关系就可求得待测溶液的
电导。 因为
R1 R3 Rx R4
所以 L 1 R3 AC 1 Rx R1R4 BC R1
2.测定弱电解质的电离度及电离常数
设弱电解质AB解离如下
AB A B-
(1-1价型): 起始
C
00
平衡时 C(1 ) C C
电离平衡常数:
2
K
c
1 c0
电离度
Λm
Λ
m
K Λm )
c c0
此式称为Ostwald稀释定律,据此式即可求得电离常数
3.测定难溶盐的溶解度
难溶盐饱和溶液的浓度极稀,可认为 Λm Λm , Λm
的值可从离子的无限稀释摩尔电导率的表值得到。
难溶盐本身的电导率很低,这时水的电导率就不
能忽略,所以:
(难溶盐) (溶液) (H2O)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称:电导的测定及其应用实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的
1、理解溶液的电导、电导率和摩尔电导率的概念;
2、掌握电导率仪的使用方法;
3、掌握交流电桥测量溶液电导的实验方法及其应用。

二、实验原理
1. 弱电解质电离常数的测定
AB型弱电解质在溶液中电离达到平衡时,电离平衡常数K C与原始浓度C和电离度α有以下关系:
(1)
在一定温度下KC是常数,因此可以通过测定AB型弱电解质在不同浓度时的α代入(1)式求出K C,醋酸溶液的电离度可用电导法来测定。

将电解质溶液注入电导池内,溶液电导G的大小与两电极之间的距离l成反比,与电极的面积A成正比:
G=κA/l (2)
式中,l/A为电导池常数,以K cell表示;κ为电导率。

由于电极的l和A不易精确测量,因此实验中用一种已知电导率值的溶液,先求出电导池常数K cell,然后把待测溶液注入该电导池测出其电导值,再根据(2)式求出其电导率。

溶液的摩尔电导率是指把含有1mol电解质的溶液置于相距为1m的两平行板电极之间的电导。

以Λm 表示,其单位为S·m2·mol-1。

摩尔电导率与电导率的关系:
Λm=κ/C(3)
式中,C为该溶液的浓度,其单位为mol·m-3。

对于弱电解质溶液来说,可以认为:
α=Λm /Λm∞(4)
式中,Λm∞是溶液在无限稀释时的摩尔电导率
把(4)代入(1)式可得:
(5)

(6)
以CΛm对1/Λm作图,其直线的斜率为(Λm∞)2K C,若已知Λm∞值,就可求算K C。

柯尔劳施根据实验得出强电解质稀溶液的摩尔电导率Λm与浓度有如下关系:
Λ∞m为无限稀释摩尔电导率。

可见,以Λm对C作图得一直线,其截距即为Λ∞m。

2. CaF2(或BaSO4、PbSO4)饱和溶液溶度积(KSP)的测定
CaF2的溶解平衡可表示为:
CaF2Ca2+ +2F-
K SP = C(Ca2+)·[C(F-)]2 = 4C3 (7)
难溶盐的溶解度很小,饱和溶液的浓度则很低,所以(3)式中Λm可以认为就是Λ ∞m (盐),C为饱和溶液中微溶盐的溶解度。

Λ∞m(盐)=(8)
式中,κ盐是纯微溶盐的电导率。

实验中所测定的饱和溶液的电导率值为盐与水的电导率之和。

κ溶液=κH O+κ盐(9)
这样,可由测得的微溶盐饱和溶液的电导率利用(9)式求出κ盐,再利用(8)式求出溶解度,最后求出K SP。

惠斯登电桥是比较法测定电阻的仪器,它的基本线路如图1。

实验中,通过调整电桥上的R3,使得通过其上的电流为零,即表明C点和D点的电势相等,可以等到如下关系:
R1 / R x = R2 / R3 (10)
图1 交流电桥测定溶液电阻的简单线路图 三、主要仪器设备
仪器:音频振荡器1台;电导率仪;电导池2只;铂黑电极1支;转盘电阻箱3只;恒温槽装置1套;50mL 移液管4支;100mL 容量瓶4个;示波器1台;
试剂:KCl(10.0mol ·m -3);HAc(100.0mol ·m -3);CaF 2(或BaSO 4、PbSO 4)(A.R.)。

四、操作方法和实验步骤
1、溶液的配制
用0.02mol/L 的KCl 溶液配制不同浓度的KCl 溶液,其浓度分别为0.02、0.02/2、0.02/4、0.02/8、0.02/16。

并分别做好标记,放入25℃的恒温槽中备用。

2、电路的连接
将恒温槽温度调至(25.0±0.1)℃或(30.0±0.1)℃,按照上图连接好电路图。

注意需要按照电路图中ABCD 四个点来连线。

3、测定不同浓度的KCl 溶液的电阻
用电导水洗涤电导池和铂黑电极2~3次,然后注入电导水,将电极插入溶液中,按照浓度依次升高的顺序分别测定5个溶液的电阻值。

恒温后测其电导(率)值,将电桥臂按照1:1、1:2、2:3三种形式进行测量。

记录测定出来的数据。

4、用电导率仪来测定自来水和去离子水的电导率
首先对于使用高调还是低调进行估计和判断,如果电导率大于300×10-4S/m ,则使用高调,反之则使用低调。

在测量之前首先要校准,即在校准档将指针调至最大。

测量时同样要注意从大量程向小量程调,最终达到精确。

【注意事项】
1、电导池不用时,应把两铂黑电极浸在蒸馏水中,以免干燥致使表面发生改变。

2、实验中温度要恒定,测量必须在同一温度下进行。

恒温槽的温度要控制在(25.0±0.1)℃或(30.0±0.1)℃。

3、测定前,必须将电导电极及电导池洗涤干净,以免影响测定结果
五、实验数据记录和处理
室温:16.1℃;大气压:101.98kPa ;25℃电导水的电导率κ(H 2O )=1.50 uS ·c m -1 表一 交流电桥测量溶液电导的数据记录
浓度
c(mol/L) C ( (mo l/m 3) -1/2) R 1/R 2 R 3 (Ω) R xi (Ω) R x (Ω) G=1/R x (S ) κ=GK cell (S ·m -1) Λm=κ/c(S ·m 2·m ol -1)
0.02 4.472 1:1 210.00 210.00 217.67 0.004594 0.2765
0.013825 1:2 430.00 215.00 2:3 342.00
228.00 0.02/2
3.162
1:1 420.00 420.00 417.89
0.002393
0.144027
0.014403
1:2 830.00 415.00 2:3 628.00
418.67
装 订
线
1:2 1620.00 810.00
2:3 1240.00 826.67
0.02/8 1.581 1:1 1660.00 1660.00 1643.33 0.000608 0.036594 0.014638
1:2 3300.00 1650.00
2:3 2430.00 1620.00
0.02/16 1.118 1:1 3300.00 3300.00 3263.33 0.000306 0.018417 0.014734
1:2 6500.00 3250.00
由表一知,此时G(KCl)= 0.004594 S;
由公式κ= G K cell得K cell=60.187 m-1;
由公式Rx = (Rx1 + Rx2 + Rx3)/ 3; G = 1 / Rx; κ=G K cell; Λm=κ/c所得数据如表一。

由图2 可得Λ∞m = 0.01511 S·m2·mol-1
图2. Λm对C所作的图
六、实验结果与分析
文献值:Λ∞m(文献)= 0.014979S·m2·mol-1
误差:E = (Λ∞m -Λ∞m(文献)) / Λ∞m(文献)*100% = 0.9%
误差分析:
1、溶液配制时产生的误差。

2、信号不明显,即某个电阻改变一个大阻值,其示波器的变化不大,导致误差的产生。

七、讨论、心得
实验心得:本实验是电导的测定及其应用,主要是掌握交流电桥测量溶液电导的实验方法,实验步骤较少,但实验操作时要小心谨慎,尤其在溶液配制的时候要极其小心,还有,在测定不同浓度的KCl溶液的电阻时要有耐心,尽量减小误差。

思考题:
1、如何定性地解释电解质的摩尔电导率随浓度增加而降低?
答:对强电解质而言,溶液浓度降低,摩尔电导率增大,这是因为随着溶液浓度的降低,离子间引力变小,粒子运动速度增加,故摩尔电导率增大。

对弱电解质而言,溶液浓度降低时,摩尔电导率也增加。

在溶液极稀时,随着溶液浓度的降低,摩尔电导率急剧增加。

2、为什么要用音频交流电源测定电解质溶液的电导?交流电桥平衡的条件是什么?
答:使用音频交流电源可以使得电流处于高频率的波动之中,防止了使用直流电源时可能导致的电极反应,提高测量的精确性。

3、电解质溶液电导与哪些因素有关?
答:电解质溶液导电主要与电解质的性质,溶剂的性质,测量环境的温度有关。

4、为什么要测电导池常数?如何得到该常数?
答:要得到实验结果需用到公式κ= G K cell,而G可由实验得到,κ为待求量,所以必须测得电导池常数K cell。

K cell = l/A,由于电极的l和A不易精确测量,因此实验中用一种已知电导率值的溶液,先求出电导池常数K cell,然后把待测溶液注入该电导池测出其电导值,再根据(2)式求出其电导率。

5、测电导时为什么要恒温?实验中测电导池常数和溶液电导,温度是否要一致?
答:因为电解质溶液的电导与温度有关,温度的变化会导致电导的变化。

实验中测电导池常数和溶液电导时的温度不需要一致,因为电导池常数是一个不随温度变化的物理量,因此可以直接在不同的温度下使用。

相关文档
最新文档