山东省济南市市中区2018-2019年中考数学三模试卷(含答案)

合集下载

济南市中考数学三模试卷含答案解析

济南市中考数学三模试卷含答案解析

山东省济南市中考数学三模试卷(解析版)参考答案与试题解析一、选择题(本大题共15小题,每小题3分,满分45分,在每小题给出的四个选项中,只有一个是符合题意的)1.2的倒数是()A.2 B.﹣2 C. D.﹣【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.将数字86400用科学记数法表示为()A.8.64×105B.8.64×104C.86.4×103D.864×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:86400=8.64×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60° B.50° C.45° D.40°【分析】根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD的度数.【解答】解:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选:D.【点评】本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)0 1 2 3 4人数(人) 2 2 3 1 1A.3,2.5 B.1,2 C.3,3 D.2,2【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列.数据2小时出现了三次最多为众数;2处在第5位为中位数.所以本题这组数据的中位数是2,众数是2.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.下列计算正确的是()A.﹣x3+3x3=2x3B.x+x=x2C.x3+2x5=3x3D.x5﹣x4=x【分析】根据合并同类项的法则逐项运算即可.【解答】解:A.﹣x3+3x3=(﹣1+3)x3=2x3,所以此选项正确;B.x+x=2x,所以此选项错误;C.x3与2x5不是同类项,所以不能合并,所以此选项错误;D.x5与x4不是同类项,所以不能合并,所以此选项错误;故选A.【点评】本题主要考查了合并同类项的运算法则,注意“同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.”是解答此题的关键.7.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.11和13【分析】利用因式分解法求出方程的解得到第三边长,即可求出此时三角形的周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.8.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.【分析】找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选B.【点评】难点是构造相应的直角三角形利用勾股定理求得∠ABC所在的直角三角形的斜边长,关键是理解余弦等于邻边比斜边.9.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<0【分析】分别把点P1(1,y1)和P2(2,y2)代入反比例函数求出y1,y2的值,再比较出其大小即可.【解答】解:∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>0.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.不等式组的解集在数轴上表示为()A. B. C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.11.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+2【分析】要求△BDE周长的最小值,就要求DE+BE的最小值.根据勾股定理即可得.【解答】解:过点B作BO⊥AC于O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小.连接CB′,易证CB′⊥BC,根据勾股定理可得DB′==2,则△BDE周长的最小值为2+2.故选C.【点评】此题考查了线路最短的问题,确定动点E何位置时,使DE+BE的值最小是关键.12.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()A.(0,﹣) B.(0,﹣) C.(0,﹣) D.(0,﹣)【分析】由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得OD,即可得出点D的坐标.【解答】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,∴OC∥AB,∴∠BAC=∠DCA,∴∠B′AC=∠DCA,∴AD=CD,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6﹣x)2,解得:x=,∴点D的坐标为:(0,﹣),故选:B.【点评】本题主要考查了翻折变换的性质、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解决问题的关键.13.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是()A. B. C.D.【分析】本题考查动点函数图象的问题.【解答】解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选:C.【点评】本题主要考查学生对圆周角、圆内的角及函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.14.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2﹣4ac>0;③方程ax2+bx+c=0的另一个根在2和3之间;④2c<3b;⑤a十b>m(am+b),(m≠1的实数)其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】根据抛物线开口方向得到a<0,根据对称轴为直线x=﹣=1,即b=﹣2a,得到b>0,根据抛物线与y轴的交点在x轴上方得到c>0,则有abc<0;根据抛物线与x轴有两个交点得到b2﹣4ac>0;利用对称性可得抛物线与x轴的另一个交点在点(2,0)和点(3,0)之间,于是得到方程ax2+bx+c=0的另一个根在2和3之间;把x=﹣1代入二次函数y=ax2+bx+c得到a﹣b+c <0,然后利于a=﹣b,可变形得到2c<3b;利用二次函数最大值问题得到x=1时,函数值最大,最大值为a+b+c,则a+b+c>am2+mb+c(m≠1),整理后得到a十b>m(am+b).【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=1,即b=﹣2a,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以②正确;∵抛物线与x轴的一个交点在点(﹣1,0)和原点之间,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(2,0)和点(3,0)之间,∴方程ax2+bx+c=0的另一个根在2和3之间,所以③正确;∵x=﹣1时,y<0,∴a﹣b+c<0,而a=﹣b,∴2c<3b,所以④正确;∵x=1时,函数值最大,最大值为a+b+c,∴a+b+c>am2+mb+c(m≠1),即a十b>m(am+b),所以⑤正确.故选D.【点评】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下,函数有最大值;抛物线的对称轴为直线x=﹣,顶点坐标为(﹣,);抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0时,抛物线与x轴有两个交点.二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中横线上)16.分解因式:2x2+4x+2=2(x+1)2.【分析】根据提公因式,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:原式=2(x2+2x+1)=2(x+1)2,故答案为:2(x+1)2.【点评】本题考查了因式分解,先提取公因式2,再利用和的平方公式.17.当x≤2时,在实数范围内有意义.【分析】直接利用二次根式的性质化简求出答案.【解答】解:2﹣x≥0,解得:x≤2.故答案为:≤2.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.18.袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是和,则袋中黄球有15个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【解答】解:∵摸到黄球的概率是,∴袋中黄球有袋中黄球有×25=15个.故本题答案为:15.【点评】此题考查概率的求法的应用:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为.【分析】首先连接OA,OB,由∠C=45°,易得△AOB是等腰直角三角形,继而求得答案.【解答】解:连接OA,OB,∵∠C=45°,∴∠AOB=2∠C=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴OA=ABcos45°=2×=.故答案为:.【点评】此题考查了圆周角定理以及等腰直角三角形性质.注意准确作出辅助线是解此题的关键.20.如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y=(x>0)上,则S△OBP=4.【分析】过A作AF垂直于OB,过P作PG垂直于OB,由△AOB和△ACD均为等边三角形,利用等边三角形的性质得到一对同位角相等,利用同位角相等两直线平行得到AD 与OB平行,利用平行线间的距离处处相等得到AF=PG,根据同底等高的三角形面积相等得到三角形OBP与三角形OBA面积相等,再利用反比例函数k的几何意义求出三角形BEO面积,即可确定出三角形OBP面积.【解答】解:过A作AF⊥OB,作P作PG⊥OB,∵△OAB与△ADC都为等边三角形,∴∠BOA=∠DAC=60°,∴AD∥OB,∴AF=PG(平行线间的距离处处相等),∵OB为△OBA和△OBP的底,∴OBAF=OBPG,即S△OBP=S△OAB(同底等高的三角形面积相等),过B作BE⊥x轴,交x轴于点E,可得S△OBE=S△ABE=S△OBA,∵顶点B在双曲线y=(x>0)上,即k=4,∴S△OBE===2,则S△OBP=S△OBA=2S△OBE=4,故答案为:4【点评】此题考查了反比例函数系数k的几何意义,以及等边三角形的性质,熟练掌握反比例函数k的几何意义是解本题的关键.21.如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为.【分析】连接OC,由O为正方形的中心,得到∠DCO=∠BCO,又CF与CE为圆O的切线,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,在直角三角形BCE中,设BE=x,利用30°所对的直角边等于斜边的一半得到EC=2x,再由正方形的边长为4,得到BC为4,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可得到EC的长.【解答】解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,又∵CF与CE都为圆O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,又∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BCE中,设BE=x,则CE=2x,又BC=4,根据勾股定理得:CE2=BC2+BE2,即4x2=x2+42,解得:x=,∴CE=2x=.故答案为:【点评】此题考查了切线的性质,正方形的性质,勾股定理,切线长定理,以及折叠的性质,熟练掌握定理及性质是解本题的关键.三、解答题(本大题共7个小题,共57分.解答时写出必要的文字说明、证明过程或演算步骤)22.计算:÷+|﹣4|﹣2cos30°.【分析】原式利用二次根式除法,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+4﹣2×=4.【点评】此题考查了实数的运算,熟练掌握运算法则,牢记特殊角的三角函数值是解本题的关键.23.解方程: =.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x﹣3,解得:x=﹣1,检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.24.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.【分析】根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.【解答】证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.25.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况显示牌BC的长度.(结果保留根号)【分析】在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3m,∴DA=3m,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=m∴BC=CA﹣BA=(3﹣3)米.【点评】本题考查了解直角三角形的应用﹣仰角俯角,解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.26.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)15 35售价(元/件)20 45若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【分析】利用图表假设出两种商品的进价,得出它们的和为160件,也可表示出利润,得出二元方程组求出即可.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.【点评】此题主要考查了二元一次方程组的应用,假设出未知数寻找出题目中的等量关系是解决问题的关键.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M的横坐标与纵坐标之和是偶数的概率.【分析】(1)列表得出所有等可能的情况结果即可;(2)列表得出点M的横坐标与纵坐标之和是偶数的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)则点M坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)求出横纵坐标之和,如图所示:1 2 31 2 3 42 3 4 53 4 5 6得到之和为偶数的情况有5种,故P(点M的横坐标与纵坐标之和是偶数)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.28.如图,在平面直角坐标系xOy中,矩形OBCD的顶点B,D的坐标分别为(8,0),(0,4).若反比例函数y=(x>0)的图象经过对角线OC的中点A,分别交DC边于点E,交BC边于点F.设直线EF的函数表达式为y=k2x+b.(1)反比例函数的表达式是y=;(2)求直线EF的函数表达式,并结合图象直接写出不等式k2x+b的解集;(3)若点P在直线BC上,将△CEP沿着EP折叠,当点C恰好落在x轴上时,点P的坐标是(8,3)或(8,﹣3﹣5).【分析】(1)求出点A坐标代入y=即可解决.(2)根据一次函数的图象在反比例函数图象的下面,即可写出不等式的解集.(3)如图作EM⊥OB于M,利用翻折不变性,设设PC=PN=x,利用△EMN∽△NBP得=,求出x即可解决问题.【解答】解:(1)∵四边形OBCD是矩形,∴OD=BC=4,OB=CD=8,∵OA=OC,∴点A坐标(4,2),∵点A在反比例函数y=上,∴k1=8,∴反比例函数为y=,故答案为y=.(2)∵点E、F在反比例函数图象上,∴点E坐标(2,4),点F坐标(8,1),设直线EF为y=kx+b,则,解得,∴直线EF为y=﹣x+5,于图象可知不等式k2x+b<的解集为x<2或x>8.(3)如图作EM⊥OB于M,∵∠DOM=∠EMO=∠EDO=90°,∴四边形DEMO是矩形,∴EM=DO=4,∵△EPN是由△EPC翻折得到,∴EC=EN=6,PC=PN,∠ECP=∠ENP=90°,设PC=PN=x,MN==2,∵∠ENM+∠PNB=90°,∠PNB+∠NPB=90°,∴∠ENM=∠NPB,∵∠EMN=∠PBN,∴△EMN∽△NBP,∴=,∴=,∴x=9﹣3,∴PB=BC﹣PC=4﹣(9﹣3)=3﹣5.当点P′在CB延长线上时,由△EMN′∽△N′BP′,设P′B=x,∵=,∴=,∴x=3+5,此时点P坐标(8,﹣3﹣5)故答案为(8,3﹣5)或(8,﹣3﹣5))【点评】本题考查反比例函数、一次函数的有关知识、翻折变换等知识,解题的关键是添加辅助线构造相似三角形,学会待定系数法确定函数解析式,学会利用函数图象确定自变量的取值范围,属于中考压轴题.29.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.【分析】(1)由条件可以得出AM=DM,∠A=∠ADF=90°,∠AME=∠DMF,可以证明△AEM≌△DFM,就可以得出结论.(2)过点G作GH⊥AD于H,通过条件可以证明△AEM≌△HMG,得出ME=MG,进而得出∠EGM=45°,再由(1)的结论可以得出∠EGF=90°,从而得出结论.(3)①当点G、C重合时利用三角形相似就可以求出AE的值,从而求出AE的取值范围.②过点G作GH⊥AD交AD延长线于点H,证明△AEM∽△HMG,可以得出,从而求出tan∠MEG=,就可以求出∠MEG=60°,就可以得出结论.【解答】解:(1)如图1,证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H,如图2,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.∴△AEM≌△HMG.∴ME=MG.∴∠EGM=45°.由(1)得△AEM≌△DFM,∴ME=MF.∵MG⊥EF,∴GE=GF.∴∠EGF=2∠EGM=90°.∴△GEF是等腰直角三角形.(3 )①当C、G重合时,如图4,∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∴∠AME+∠AEM=90°.∵MG⊥EF,∴∠EMG=90°.∴∠AME+∠DMC=90°,∴∠AEM=∠DMC,∴△AEM∽△DMC∴,∴,∴AE=∴<AE≤.②△GEF是等边三角形.证明:过点G作GH⊥AD交AD延长线于点H,如图3,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.又∵∠A=∠GHM=90°,∴△AEM∽△HMG.∴.在Rt△GME中,∴tan∠MEG==.∴∠MEG=60°.由(1)得△AEM≌△DFM.∴ME=MF.∵MG⊥EF,∴GE=GF.∴△GEF是等边三角形.【点评】本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用,等边三角形的判定,等腰直角三角形的判定.在解答时添加辅助线构建全等形和相似形是关键.30.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C 分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y 轴,设F(m,﹣ m2+m+),则E(m,m+1),从而得出(m+1)﹣(﹣m2+m+)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.【解答】解:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0),∴解得,∴抛物线C1的解析式为y=﹣x2+x+,∵y=﹣x2+x+=﹣(x﹣1)2+2,∴顶点C的坐标为(1,2);(2)如图1,作CH⊥x轴于H,∵A(﹣1,0),C(1,2),∴AH=CH=2,∴∠CAB=∠ACH=45°,∴直线AC的解析式为y=x+1,∵△DEF是以EF为底的等腰直角三角形,∴∠DEF=45°,∴∠DEF=∠ACH,∴EF∥y轴,∵DE=AC=2,∴EF=4,设F(m,﹣ m2+m+),则E(m,m+1),∴(m+1)﹣(﹣m2+m+)=4,解得m=3(舍)或m=﹣3,∴F(﹣3,﹣6);(3)①tan∠ENM的值为定值,不发生变化;如图2,∵DF⊥AC,BC⊥AC,∴DF∥BC,∵DF=BC=AC,∴四边形DFBC是矩形,作EG⊥AC,交BF于G,∴EG=BC=AC=2,∵EN⊥EM,∴∠MEN=90°,∵∠CEG=90°,∴∠CEM=∠NEG,∴△ENG∽△EMC,∴=,∵F(﹣3,﹣6),EF=4,∴E(﹣3,﹣2),∵C(1,2),∴EC==4,∴==2,∴tan∠ENM==2;∵tan∠ENM的值为定值,不发生变化;②点P经过的路径是线段P1P2,如图3,∵四边形BCEG是矩形,GP2=CP2,∴EP2=BP2,∵△EGN∽△ECB,∴=,∵EC=4,EG=BC=2,∴EB=2,∴=,∴EN=,∵P1P2是△BEN的中位线,∴P1P2=EN=;∴点M到达点C时,点P经过的路线长为.【点评】本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,难点在于(3)作辅助线构造出相似三角形和三角形的中位线.。

2018年济南市市中区中考数学三模试卷(解析版)

2018年济南市市中区中考数学三模试卷(解析版)

2018年济南市市中区中考数学三模试卷一、选择题(每小题4分,共48分)1.下图中几何体的主视图是()A.B.C.D.2.请将780000用科学计数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×1063.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()A.30°B.45°C.60°D.70°4.下列既是中心对称又是轴对称图形的()A.B.C.D.5.下列计算正确的是()A.a4+a2=a6B.2a•4a=8a C.(a2)3=a5D.a5÷a2=a36.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份分利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.化简:的结果是()A.﹣1 B.(x+1)(x﹣1)C.D.8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=9.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.410.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC 的中点,则矮建筑物的高CD为()A.20米B.米C.米D.米11.如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,点E作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF 上方作等边△EFG,则边EG的中点H所经过的路径长是()A.2B.3C.D.12.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x =1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④二、填空题(每小题4分,共24分)13.分解因式:2x3﹣8=.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.15.分式方程=1﹣的解为.16.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为.17.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.18.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.三、解答题(本大题共9小题,共78分)19.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.20.(6分)解不等式组:21.(6分)如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.22.(8分)某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用2000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元.设A品牌文具套装买了x包,请求出y与x之间的函数关系式.23.(8分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.24.(10分)“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.25.(10分)如图1所示,已知函数y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP 上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.26.(12分)(1)如图①,点E是正方形ABCD边BC上任意一点,过点C作直线CF⊥AE,垂足为点H,直线CF交直线AB于点F,过点E作EG∥AB,交直线AC于点G.则线段AD,EG,BF之间满足的数量关系是;(2)如图②,若点E在边CB的延长线上,其他条件不变,则线段AD,EG,BF之间满足的数量关系是,证明你的结论;(3)如图③,在(2)的条件下,若正方形ABCD的边长为4,tan∠F=,将一个45°角的顶点与点A重合,并绕点A旋转,这个角的两边分别交直线EG于M,N两点.当EN=2时,求线段GM的长.27.(12分)如图,过点C(4,3)的抛物线的顶点为M(2,﹣1),交x轴于A、B两点(点A在点B的左侧),交y轴于点D.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线对称轴上的一个动点,求使△PBC为直角三角形的点P坐标;(3)若点Q在第一象限内,且tan∠AQB=2,线段DQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.参考答案一、选择题1.下图中几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.解:从正面可看到的几何体的左边有2个正方形,中间只有1个正方形,右边有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.请将780000用科学计数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×106【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:780000=7.8×105,故选:B.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()A.30°B.45°C.60°D.70°【分析】依据平行线的性质,可得∠ABC,再根据∠CBD=90°,即可得到∠α=90°﹣30°=60°.解:如图所示,∵l1∥l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.下列既是中心对称又是轴对称图形的()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列计算正确的是()A.a4+a2=a6B.2a•4a=8a C.(a2)3=a5D.a5÷a2=a3【分析】直接利用合并同类项法则以及幂的乘方运算法则、单项式乘以单项式、同底数幂的乘除运算法则分别计算得出答案.解:A、a4+a2,无法计算,故此选项错误;B、2a•4a=8a2,故此选项错误;C、(a2)3=a6,故此选项错误;D、a5÷a2=a3,故此选项正确;故选:D.【点评】此题主要考查了合并同类项以及幂的乘方运算、单项式乘以单项式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份分利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【分析】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选:C.【点评】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.7.化简:的结果是()A.﹣1 B.(x+1)(x﹣1)C.D.【分析】根据分式的运算法则即可求出答案.解:原式=•=故选:D.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=【分析】根据方程的系数结合根的判别式,即可得出△=9﹣8m=0,解之即可得出结论.解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32﹣4×2m=9﹣8m=0,解得:m=.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.4【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心、5为半径的圆与直线y=﹣的交点上.在直线y=﹣中,当x=0时y=4,即Q(0,4),当y=0时x=,即点P(,0),则PQ==,过AB中点E(﹣3,0),作EF⊥直线l于点F,则∠EFP=∠QOP=90°,∵∠EPF=∠QPO,∴△EFP∽△QOP,∴=,即=,解得:EF=5,∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.所以直线y=﹣上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.【点评】本题考查的是一次函数综合题,在解答此题时要分三种情况进行讨论,关键是根据圆周角定理判断∠C为直角的情况是否存在.10.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC 的中点,则矮建筑物的高CD为()A.20米B.米C.米D.米【分析】根据点G是BC中点,可判断EG是△ABC的中位线,求出AB,在Rt△ABC中求出BC,在Rt△AFD中求出DF,继而可求出CD的长度.解:∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∠CAB=30°,则BC=AB tan∠BAC=30×=10米.如图,过点D作DF⊥AF于点F.在Rt△AFD中,AF=BC=10米,则FD=AF•tanβ=10×=10米,综上可得:CD=AB﹣FD=30﹣10=20米.故选:A.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.11.如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,点E作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF 上方作等边△EFG,则边EG的中点H所经过的路径长是()A.2B.3C.D.【分析】连接FH,取EF的中点M,连接BM,HM,依据BM=EM=HM=FM,可得点B,E,H,F四点共圆,连接BH,则∠HBE=∠EFH=30°,进而得到点H在以点B为端点,BC上方且与射线BC夹角为30°的射线上,再过C作CH'⊥BH于点H',根据点E 从点B出发,沿BC边运动到点C,即可得到点H从点B沿BH运动到点H',再利用在Rt△BH'C中,BH'=BC•cos∠CBH'=3×=,即可得出点H所经过的路径长是.解:如图,连接FH,取EF的中点M,连接BM,HM,在等边三角形EFG中,EF=FG,H是EG的中点,∴∠FHE=90°,∠EFH=∠EFG=30°,又∵M是EF的中点,∴FM=HM=EM,在Rt△FBE中,∠FBE=90°,M是EF的中点,∴BM=EM=FM,∴BM=EM=HM=FM,∴点B,E,H,F四点共圆,连接BH,则∠HBE=∠EFH=30°,∴点H在以点B为端点,BC上方且与射线BC夹角为30°的射线上,如图,过C作CH'⊥BH于点H',∵点E从点B出发,沿BC边运动到点C,∴点H从点B沿BH运动到点H',在Rt△BH'C中,∠BH'C=90°,∴BH'=BC•cos∠CBH'=3×=,∴点H所经过的路径长是.故选:C.【点评】本题属于四边形综合题,主要考查了等边三角形的性质,矩形的性质,轨迹问题,解直角三角形以及四点共圆的综合运用,解决问题的关键是作辅助线构造直角三角形,利用直角三角形斜边上中线的性质以及含30°角的直角三角形的性质得出结论.12.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x =1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④【分析】利用图象与坐标轴交点以及M值的取法,分别利用图象进行分析即可得出答案.解:∵当x>0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y≠y2,取y1、y2中的较小值记为M;1∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;∴使得M大于2的x值不存在,∴③正确;∵当﹣1<x<0时,使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,当y2=2x+2=1,解得:x=﹣,由图象可得出:当x=>0,此时对应y1=M,∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),∴当﹣1<x<0,此时对应y2=M,故M=1时,x1=,x2=﹣,使得M=1的x值是或.∴④正确;故正确的有:③④.故选:D.【点评】此题主要考查了二次函数与一次函数综合应用,利用数形结合得出函数增减性是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)13.分解因式:2x3﹣8=2(x3﹣4).【分析】直接找出公因式,再提取公因式法分解因式即可.解:2x3﹣8=2(x3﹣4).故答案为:2(x3﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.解:抬头看信号灯时,是绿灯的概率为.故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.15.分式方程=1﹣的解为x=﹣1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为 1 .【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径.解:设底面圆的半径为r,则:2πr==2π.∴r=1.故答案是:1.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.17.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是1+.【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣2,2)得到k=﹣4,即反比例函数解析式为y=﹣,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣2=|﹣|=,然后解方程可得到满足条件的t的值.解:如图,∵点A坐标为(﹣2,2),∴k=﹣2×2=﹣4,∴反比例函数解析式为y=﹣,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣2=|﹣|=,整理得t2﹣2t﹣4=0,解得t1=1+,t2=1﹣(不符合题意,舍去),∴t的值为1+.故答案为1+.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.18.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.【分析】根据定义先列不等式:2x﹣1≥﹣x+3和2x﹣1≤﹣x+3,确定其y=min{2x﹣1,﹣x+3}对应的函数,画图象可知其最大值.解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故答案为:.【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.三、解答题(本大题共9小题,共78分)19.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.【分析】直接利用负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.解:原式=2﹣1+2﹣+2×=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.解:∵解不等式①得:x>1,解不等式②得:x<2,∴不等式组的解集为1<x<2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.21.(6分)如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.【分析】首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠B=∠DCF,即可证明△ABE≌△DCF,再根据全等三角形性质可得到结论.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠DCF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF.【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质,关键是找到证明△ABE≌△DCF的条件.22.(8分)某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用2000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元.设A品牌文具套装买了x包,请求出y与x之间的函数关系式.【分析】(1)根据题意可以得到相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到y与x的函数关系式,本题得以解决.解:(1)设购买A种品牌的文具x套、B种品牌的文具y套,解得,,答:购买A种品牌的文具1000套、B种品牌的文具0套;(2)由题意可得,y=500+[20x+25(1000﹣x)]×0.8=﹣4x+20500,即y与x之间的函数关系式是y=﹣4x+20500.【点评】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和函数关系式.23.(8分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.【分析】(1)连接OD,求出∠CAD=∠OAD=∠ODA,得出OD∥AC,推出OD⊥BC,根据切线判定推出即可;(2)根据含30度角的直角三角形性质求出BO,AC,根据勾股定理求出BD、BC,求出CD,根据勾股定理求出AD即可.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.【点评】本题考查了切线的判定定理、勾股定理的应用、垂径定理、三角形相似的性质和判定,熟练掌握三角形相似的性质是关键.24.(10分)“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.【分析】(1)利用频数÷百分比=总数,求得总人数;(2)根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.【点评】本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.25.(10分)如图1所示,已知函数y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP 上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.【分析】(1)首先连接OP,可得S△PAB=S△PAO=xy;(2)由四边形BQNC是菱形,AB⊥BQ,C是AQ的中点,易求得△ABQ≌△ANQ(SAS),继而可得S菱形BQNC=2=×CQ×BN,然后设CQ=BQ=x,求得x的值,继而求得答案;(3)首先由(2),求得点D,Q,N的坐标,然后分别从以QD、DN、QN为对角线去分析求解即可求得答案.解:(1)如图2,连接OP,则S△PAB=S△PAO=xy=×6=3;(2)如图1,∵四边形BQNC是菱形,∴BQ=BC=NQ,∠BQC=∠NQC,∵AB⊥BQ,C是AQ的中点,∴BC=CQ=AQ,∴∠BQC=60°,∠BAQ=30°,在△ABQ和△ANQ中,,∴△ABQ≌△ANQ(SAS),∴∠BAQ=∠NAQ=30°,∴∠BAO=30°,∵S菱形BQNC=2=×CQ×BN,设CQ=BQ=x,则BN=2×(x×)=x,解得:x=2,∴BQ=2,∵在Rt△AQB中,∠BAQ=30°,∴AB=BQ=2,∵∠BAO=30°,∴OA=AB=3,又∵P点在函数y=的图象上,∴P点坐标为(3,2);(3)∵在Rt△AOB中,OA=3,∠OAB=30°,∴AB=OA÷cos30°=2,∵BC=BQ=2,∴在Rt△BMQ中,BM=BQ•cos30°=,MQ=BQ•sin30°=1,∴OM=OB+BM=2,∴Q的坐标为:(1,2),N的坐标为:(3,2),在Rt△ABD中,∠BAD=60°,AB==2,∴AD=2AB=4,∴点D的坐标为:(3,4),∴若四边形QNDS是平行四边形,则DS∥QN,DS=QN,则点S的坐标为:(1,4),若四边形QNSD是平行四边形,则DS∥QN,DS=QN,则点S的坐标为:(5,4),若四边形QSND是平行四边形,则QS∥DN,QS=DN,则点S的坐标为:(1,0).综上所述:点S的坐标为:(1,4)或(5,4)或(1,0).【点评】此题属于反比例函数综合题.考查了反比例函数的k几何意义、勾股定理、菱形的性质、平行四边形的性质以及全等三角形的判定与性质.注意掌握分类讨论思想的应用是解此题的关键.26.(12分)(1)如图①,点E是正方形ABCD边BC上任意一点,过点C作直线CF⊥AE,垂足为点H,直线CF交直线AB于点F,过点E作EG∥AB,交直线AC于点G.则线段AD,EG,BF之间满足的数量关系是AD=EG+BF;(2)如图②,若点E在边CB的延长线上,其他条件不变,则线段AD,EG,BF之间满足的数量关系是AD=EG﹣BF,证明你的结论;(3)如图③,在(2)的条件下,若正方形ABCD的边长为4,tan∠F=,将一个45°角的顶点与点A重合,并绕点A旋转,这个角的两边分别交直线EG于M,N两点.当EN=2时,求线段GM的长.【分析】(1)由正方形的性质得出AD=AB=BC,∠ABC=90°,∠ACB=45°,由平行线的性质得出∠CEG=∠ABC=90°,得出△CEG是等腰直角三角形,EG=CE,由AAS 证明△ABE≌△CBF,得出对应边相等BE=BF,即可得出AD=EG+BF;(2)由正方形的性质得出AD=AB=BC,∠ABC=90°,∠ACB=45°,由平行线的性质得出∠CEG=∠ABC=90°,得出△CEG是等腰直角三角形,EG=CE,由AAS证明△ABE≌△CBF,得出BE=BF,即可得出AD=EG﹣BF;(3)过A作AP⊥EG于P,过M作MQ⊥AG于Q,则四边形ABEP为矩形,得出AB=PE,AP=BE,由正方形的性质得出AB=BC=AD=PE=4,由三角函数得出BE=BF=AP=6,得出PN=2,证明△AQM∽△APN,得出对应边成比例,AQ=3QM,由勾股定理求出AG,证明△AGP∽△GMQ,得出对应边成比例,GM=QM,设GM=x,由勾股定理得出方程,解方程即可.解:(1)AD=EG+BF,理由如下:∵四边形ABCD是正方形,∴AD=AB=BC,∠ABC=90°,∠ACB=45°,∵EG∥AB,∴∠CEG=∠ABC=90°,∴△CEG是等腰直角三角形,∴EG=CE,∵CF⊥AE,垂足为点H,∴∠CHE=∠CBF=90°,∴∠F=∠CEH,∵∠CEH=∠AEB,∴∠F=∠AEB,在△ABE和△CBF中,,∴△ABE≌△CBF(AAS),∴BE=BF,∴BC=EC+BE=EG+BF,∴AD=EG+BF;故答案为:AD=EG+BF;(2)AD=EG﹣FB,理由如下:∵四边形ABCD是正方形,∴AD=AB=BC,∠ABC=90°,∠ACB=45°,∵EG∥AB,∴∠CEG=∠ABC=90°,∴△CEG是等腰直角三角形,∴EG=CE,∵CF⊥AE,垂足为点H,∴∠FHA=∠FBC=∠ABE=90°,∴∠FAH=∠BCF,∵∠FAH=∠BAE,∴∠BCF=∠BAE,在△ABE和△CBF中,,∴△ABE≌△CBF(AAS),∴BE=BF,EG=CE=BE+BC=BF+AD,∴AD=EG﹣BF;故答案为:AD=EG﹣BF;(3)过A作AP⊥EG于P,过M作MQ⊥AG于Q,如图所示:则四边形ABEP为矩形,∴AB=PE,AP=BE,∵正方形ABCD的边长为4,∴AB=BC=AD=PE=4,∵tan∠F==,∴BF==6,∴BE=BF=AP=6,∵EN=2,∴PN=2,∵∠PAQ=∠MAN=45°,∴∠MAQ=∠NAP,。

精选2019年4月山东省济南市市中区中考数学模拟试卷(有答案解析)

精选2019年4月山东省济南市市中区中考数学模拟试卷(有答案解析)

2018年山东省济南市市中区中考模拟试卷(4月份)数学一.选择题(共12小题,满分48分)1.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.0.18×107B.1.8×105C.1.8×106D.18×1052.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.3.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°4.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a75.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.不等式组的解集在数轴上可表示为()A.B.C.D.8.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.59.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米10.关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣111.直线y=﹣x+与x轴,y轴交于A、B两点,若把△ABO沿直线AB翻折,点O落在第一象限的C 处,则C点的坐标为()A.(,)B.(,)C.(,)D.(,)12.在平面直角坐标系xOy中,抛物线y=﹣x2+4x﹣3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,记s=x1+x2+x3,则s的取值范围为()A.5<s<6 B.6<s<7 C.7<s<8 D.8<s<9二.填空题(共6小题,满分24分,每小题4分)13.分解因式:a3﹣a=.14.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.15.方程组的解是.16.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.17.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.18.如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是三.解答题(共9小题,满分66分)19.(6分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.20.(6分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.21.(6分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD.22.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.23.(8分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应的圆心角的度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.24.(10分)如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.25.(10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.26.(12分)如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.27.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题1.解:1800000这个数用科学记数法可以表示为1.8×106,故选:C.2.解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.3.解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.4.解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.5.解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.6.解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.7.解:,由①得,x≥1,由②得,x>3,故此不等式组的解集为:x>3,在数轴上表示为:故选:D.8.解:∵一组数据x1,x2,x3…,x n的方差为3,∴另一组数据2x1,2x2,2x3…,2x n的方差为22×3=12.故选:C.9.解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.10.解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)≥0,解得k≤0且k≠﹣1.故选:D.11.解:过C作CD⊥x轴,∵y=﹣x+与x轴,y轴交于A、B两点分别是(1,0),(0,),∴AB=2,则∠ABO=30°,CD=,AD=,OD=,则C点的坐标为(,).故选:B.12.解:当y=0时,﹣x2+4x﹣3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=﹣x2+4x﹣3=﹣3,则C(0,﹣3),∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1),易得直线BC的解析式为y=x﹣3,∵x1<x2<x3,∴0<y1=y2=y3≤1,当y3=1时,x﹣3=1,解得x=4,∴3<x3<4,∵点P和点Q为抛物线上的对称点,∴x2﹣2=2﹣x1,∴x1+x2=4,∴s=4+x3,∴7<s<8.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).14.解:列表如下:∴积为大于﹣4小于2的概率为=,故答案为:.15.解:,①+②得,3x=﹣6,解得,x=﹣2,把x=﹣2代入①得,y=﹣5,则方程组的解为:,故答案为:.16.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为:﹣1.17.解:∵反比例函数y=的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,∴1+2m >0,故m 的取值范围是:m >﹣.故答案为:m >﹣. 18.解:阴影部分的面积=三角形ABG 的面积+三角形DFG 的面积 =5×(5﹣3)÷2+3×(5﹣3)÷2 =5+3 =8.故答案为:8.三.解答题(共9小题,满分66分)19.解:原式=+1﹣2×+=.20.解:原式=[﹣]÷=•=,∵x 2﹣2x ﹣2=0, ∴x 2=2x +2=2(x +1),则原式==.21.证明:(1)在矩形ABCD 中,∵AD ∥BC , ∴∠AEB=∠DAF , 又∵DF ⊥AE , ∴∠DFA=90°, ∴∠DFA=∠B , 又∵AD=EA , ∴△ADF ≌△EAB , ∴DF=AB .(2)∵∠ADF +∠FDC=90°,∠DAF +∠ADF=90°, ∴∠FDC=∠DAF=30°, ∴AD=2DF ,∵DF=AB,∴AD=2AB=8.22.解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.23.解:(1)该班全部人数:12÷25%=48人.社区服务的人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应的圆心角的度数为360°×=45°;(3)分别用A,B,C,D表示“社区服务、助老助残、生态环保、网络文明”四个服务活动,画树状图得:∵共有16种等可能的结果,他们参加同一服务活动的有4种情况,∴他们参加同一服务活动的概率为.24.解:(1)∵直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴﹣a+2=3,﹣3+2=b,∴a=﹣1,b=﹣1,∴A(﹣1,3),B(3,﹣1),∵点A(﹣1,3)在反比例函数y=上,∴k=﹣1×3=﹣3,∴反比例函数解析式为y=﹣;(2)设点P(n,﹣n+2),∵A(﹣1,3),∴C(﹣1,0),∵B(3,﹣1),∴D(3,0),∴S△ACP=AC×|x P﹣x A|=×3×|n+1|,S△BDP=BD×|x B﹣x P|=×1×|3﹣n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3﹣n|,∴n=0或n=﹣3,∴P(0,2)或(﹣3,5);(3)设M(m,0)(m>0),∵A(﹣1,3),B(3,﹣1),∴MA2=(m+1)2+9,MB2=(m﹣3)2+1,AB2=(3+1)2+(﹣1﹣3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m﹣3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=﹣1+或m=﹣1﹣(舍),∴M(﹣1+,0)③当MB=AB时,(m﹣3)2+1=32,∴m=3+或m=3﹣(舍),∴M(3+,0)即:满足条件的M(﹣1+,0)或(3+,0).25.解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,.. ∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.26.解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,.. ∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.27.解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,M(1,4)设直线MB的解析式为y=kx+n,则有解得∴直线MB的解析式为y=﹣2x+6∵PQ⊥x轴,OQ=m,∴点P的坐标为(m,﹣2m+6)S四边形ACPQ=S△AOC+S梯形PQOC=AO•CO+(PQ+CO)•OQ(1≤m<3)=×1×3+(﹣2m+6+3)•m=﹣m2+m+;(3)线段BM上存在点N(,),(2,2),(1+,4﹣)使△NMC为等腰三角形CM=,CN=,MN=①当CM=NC时,,解得x1=,x2=1(舍去)此时N(,)②当CM=MN时,,解得x1=1+,x2=1﹣(舍去),此时N(1+,4﹣)③当CN=MN时,=解得x=2,此时N(2,2).。

2019.3济南市中考数学模拟试卷附答案解析

2019.3济南市中考数学模拟试卷附答案解析

2019.3 济南市中考数学模拟试卷附答案分析济南市 2019 年中考数学模拟试卷( 3 月份)一.选择题(满分48 分,每题 4 分)1.的算术平方根是()A.2B.4C.± 2D.± 42.由五个同样的立方体搭成的几何体以下图,则它的左视图是()A.B.C.D.3.共享单车为市民短距离出行带来了极大便利.据2017 年“深圳互联网自行车发展评估报告”表露,深圳市日均使用共享单车2590000 人次,此中2590000 用科学记数法表示为()A .259× 104B.×105C.× 106D.× 1074.以下图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.5.如图,将直尺与含30°角的三角尺摆放在一同,若∠1= 20°,则∠ 2 的度数是()A .30°B.40°C.50°D.60°6.以下计算正确的有()个①(﹣ 2a 2)3=﹣ 6a6② (x﹣2)(x+3)=x2﹣ 62=x24④ ﹣2m3 3=﹣m3⑤ ﹣ 16 1③(x﹣2)﹣+m =﹣.A .0 B. 1 C. 2 D.37.对于 x 的方程 3x+2a=x﹣ 5 的解是负数,则 a 的取值范围是()A .a<B. a>C. a<﹣D.a>﹣8.以下 4 个点,不在反比率函数y=﹣图象上的是()A .( 2,﹣ 3)B.(﹣ 3,2)C.(3,﹣ 2)D.( 3,2)9.在平面直角坐标系中,将点P (﹣ 4,2)绕原点 O 顺时针旋转90°,则其对应点Q 的坐标为()A .( 2,4)B.( 2,﹣ 4)C.(﹣ 2,4)D.(﹣ 2,﹣ 4)10.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了以下图的折线统计图,则该班这些学生一周锻炼时间的中位数是()A .10B.11C.12D.1311.如图①是半径为 2 的半圆,点 C 是弧 AB 的中点,现将半圆如图② 方式翻折,使得点 C 与圆心 O 重合,则图中暗影部分的面积是()A.B.﹣C.2+D.2﹣12.如图,二次函数 y= ax 2+bx+c( a≠0)的图象经过点(﹣ 1,2),且与 x 轴交点的横坐标分别为 x1,x2,此中﹣ 2<x1<﹣ 1,0< x2< 1,以下结论:① 4a﹣ 2b+c< 0;② 2a﹣b< 0;③ a<0;④ b 2+8a>4ac,其中正确的有()A.1 个B.2 个C.3 个D.4 个二.填空题(满分24 分,每题 4 分)13.分解因式: 9﹣ 12t+4t 2=.14.不透明的袋中有四张完好同样的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,则抽取的卡片上数字是偶数的概率是.15.假如一个多边形的各个外角都是40°,那么这个多边形的内角和是度.16.对于 x 的方程=的解是x=.17. A、B 两地之间为直线距离且相距600 千米,甲开车从 A 地出发前去 B 地,乙骑自行车从 B 地出发前往 A 地,已知乙比甲晚出发 1 小时,两车平均速行驶,当甲抵达 B 地后立刻原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离 B 地的距离为千米.18.如图,已知矩形ABCD 中,点 E 是 BC 边上的点, BE= 2,EC= 1,AE= BC,DF ⊥ AE,垂足为 F.则以下结论:① △ADF ≌△ EAB;② AF=BE;③ DF 均分∠ ADC;④ sin∠CDF=.此中正确的结论是.(把正确结论的序号都填上)2019.3 济南市中考数学模拟试卷附答案分析三.解答题(共 9 小题,满分 78 分)19.(6 分)计算: | |+2﹣1﹣ cos60°﹣( 1﹣).20.(6 分)已知不等式组的解集为﹣ 6<x< 3,求 m, n 的值.21.( 6 分)如图,在 ? CBCD 中, E 是对角线 BD 上的一点,过点 C 作 CF∥ DB,且 CF =DE,连结 AE,BF, EF.(1)求证:△ ADE≌△ BCF ;(2)若∠ ABE+∠ BFC =180°,则四边形 ABFE 是什么特别四边形?说明原因.22.( 8 分)为传承中华文化,学习六艺技术,某中学组织初二年级学生到孔学堂研学旅游.已知大型客车每辆能坐 60 人,中型客车每辆能坐 45 人,现该校有初二年级学生 375 人.依据题目供给的信息解决以下问题:(1)此次研学旅游需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为 1500 元/辆,中型客车租金为 1200 元/辆,请帮该校设计一种最划算的租车方案.23.( 8 分)如图,在等腰△ABC 中, AB=BC,以 AB 为直径的半圆分别交AC、BC 于点 D、E 两点, BF 与⊙O 相切于点 B,交 AC 的延伸线于点F.( 1)求证: D 是 AC 的中点;( 2)若 AB= 12, sin∠CAE=,求CF的值.24.( 10 分)在礼拜一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计剖析,绘制了频数散布表和统计图,按得分区分红A、B、C、D、E、F 六个等级,并绘制成以下两幅不完好的统计图表.等级得分 x(分)频数(人)A 95 x 1004 <≤B90<x≤95mC85<x≤90nD 80<x≤85 24E 75<x≤80 8F 70<x≤75 4请你依据图表中的信息达成以下问题:1)本次抽样检查的样本容量是.此中m=,n=.2)扇形统计图中,求 E 等级对应扇形的圆心角α的度数;3)我校九年级共有700 名学生,预计体育测试成绩在A、 B 两个等级的人数共有多少人?4)我校决定从本次抽取的 A 等级学生(记为甲、乙、丙、丁)中,随机选择 2 名成为学校代表参加全市体能比赛,请你用列表法或画树状图的方法,求恰巧抽到甲和乙的概率.25.( 10 分)如图,直线y =﹣ x+2 与反比率函数 y = ( k ≠ 0)的图象交于 A (a ,3),B ( 3, b )两点,过点 A 作 AC ⊥ x 轴于点 C ,过点 B 作 BD ⊥ x 轴于点 D .( 1)求 a , b 的值及反比率函数的分析式;( 2)若点 P 在直线 y =﹣ x+2 上,且 S △ACP =S △ BDP ,恳求出此时点 P 的坐标; ( 3)在 x 轴正半轴上能否存在点 M ,使得△ MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明原因.26.( 12 分)如图,在△ ABC 中,∠ BAC = 90°, AB =AC ,点 D 是 BC 上一动点,连结AD ,过点 A 作 AE⊥ AD ,而且一直保持 AE = AD ,连结 CE .( 1)求证:△ ABD ≌△ ACE ;( 2)若 AF 均分∠ DAE 交 BC 于 F ,研究线段 BD , DF ,FC 之间的数目关系,并证明;( 3)在( 2)的条件下,若 BD = 3, CF =4,求 AD 的长.27.(12 分)如图 1,已知二次函数 y = ax 2+bx+c ( a ≠ 0)的图象与 x 轴交于 A (﹣ 1,0),B ( 3,0)两点,与 y 轴交于点 C ( 0,﹣ 2),极点为 D ,对称轴交 x 轴于点 E .( 1)求该二次函数的分析式;( 2)设 M 为该抛物线对称轴左边上的一点,过点M 作直线 MN∥ x 轴,交该抛物线于另一点N.能否存在点 M ,使四边形 DMEN 是菱形?若存在,恳求出点M 的坐标;若不存在,请说明原因;( 3)连结 CE(如图 2),设点 P 是位于对称轴右边该抛物线上一点,过点 P 作 PQ⊥ x 轴,垂足为 Q.连结PE,恳求出当△ PQE 与△ COE 相像时点 P 的坐标.参照答案一.选择题1.解:=4,4 的算术平方根是2,应选: A .2.解:从左边看第一层是三个小正方形,第二层左边一个小正方形,应选: D .3.解:将 2590000 用科学记数法表示为:×106.应选: C .4.解: A 、不是轴对称图形,是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、是轴对称图形,不是中心对称图形.故错误.应选: C .5.解:如图,∵∠ BEF 是△ AEF 的外角,∠ 1= 20°,∠ F = 30°,∴∠ BEF =∠ 1+∠ F =50°,∵ AB ∥CD ,∴∠ 2=∠ BE F =50°,应选: C .6.解: ① (﹣ 2a 2) 3=﹣ 8a 6,错误;② (x ﹣2)( x+3)= x 2+x ﹣6,错误;③ (x ﹣2)2=x 2﹣ 4x+4,错误333⑤ ﹣16=﹣1,正确.计算正确的有 2 个.应选: C.7.解:解方程3x+2a= x﹣ 5 得: x=﹣ a﹣,∵对于 x 的方程 3x+2a= x﹣ 5 的解是负数,∴﹣ a﹣<0,解得: a>﹣,应选: D.8.解: A、∵ 2×(﹣ 3)=﹣ 6,点在反比率函数图象上,故本选项错误;B、∵﹣ 3×2=﹣ 6,点在反比率函数图象上,故本选项错误;C、∵ 3×(﹣ 2)=﹣ 6,点在反比率函数图象上,故本选项错误;D、∵ 3× 2= 6≠﹣ 6,点不在反比率函数图象上,故本选项正确;应选: D.9.解:作图以下,∵∠ MPO +∠ POM= 90°,∠ QON+∠ POM= 90°,∴∠ MPO =∠ QON,在△ PMO 和△ ONQ 中,∵,∴△ PMO ≌△ ONQ,∴PM=ON,OM=QN,∵P 点坐标为(﹣ 4,2),∴ Q 点坐标为( 2,4),应选: A .10.解:由统计图可得,本班学生有: 6+9+10+8+7 = 40(人),该班这些学生一周锻炼时间的中位数是:11,应选: B .11.解:连结 OC 交 MN 于点 P ,连结 OM 、 ON ,由题意知, OC ⊥MN ,且 OP =PC = 1,在 Rt △ MOP 中,∵ O M = 2, OP =1,∴ cos ∠POM == , AC == ,∴∠ POM =60°, MN =2MP =2,∴∠ AOB = 2∠ AOC =120°,则图中暗影部分的面积= S 半圆 ﹣2S 弓形 MCN= ×π×22﹣ 2×(﹣ × 2× 1)= 2 ﹣ π,应选: D .12.解:二次函数 y =ax 2+bx+c ( a ≠ 0)的图象经过点(﹣ 1,2),与 y 轴交于( 0, 2)点,且与 x 轴交点的横坐标分别为 x 1、x 2,此中﹣ 2<x 1<﹣ 1, 0< x 2<1,以下结论① 4a ﹣ 2b+c < 0;当 x =﹣ 2 时, y = ax 2+bx+c , y = 4a ﹣ 2b+c ,∵﹣ 2< x 1<﹣ 1,∴ y < 0,故 ① 正确;② 2a ﹣ b < 0;∵二次函数 y = ax 2+bx+c ( a ≠ 0)的图象经过点(﹣ 1,2),∴ a ﹣b+c = 2,与 y 轴交于( 0, 1)点, c = 1,∴ a ﹣b = 1,二次函数的张口向下, a < 0,又﹣ 1<﹣<0,∴ 2a ﹣ b <0,故 ② 正确;③ 因为抛物线的张口方向向下,因此a <0,故 ③ 正确;④ 因为抛物线的对称轴大于﹣1,因此抛物线的极点纵坐标应当大于 2,即> 2,因为 a < 0,所以 4ac ﹣b 2< 8a ,即 b 2+8a > 4ac ,故 ④ 正确,应选: D .二.填空题(共 6 小题,满分 24 分,每题4 分)13.解:原式=( 3﹣2t ) 2.故答案为:( 3﹣ 2t )214.解:∵有四张完好同样的卡片,把它们分别标上数字1、 2、 3、4,此中卡片上数字是偶数的有 2 张,∴抽取的卡片上数字是偶数的概率是= ;故答案为:.15.解:设多边形的边数为n ,∵多边形的每个外角都等于40°,∴ n =360÷ 40= 9,∴这个多边形的内角和=(9﹣ 2)× 180°= 1260°.故答案为: 1260.16.解:去分母得:2x+3= 3x﹣ 3,移项归并得:﹣ x=﹣ 6,解得: x=6,故答案为: 617.解:设甲的速度为akm/h,乙的速度为bkm/h,,解得,,设第二次甲追上乙的时间为m 小时,100m﹣25(m﹣ 1)= 600,解得, m=,∴当甲第二次与乙相遇时,乙离 B 地的距离为: 25×()=千米,故答案为:.18.解:∵四边形ABCD 是矩形,∴AD=BC, AD∥BC,∠ B=90°,∵BE=2,EC=1,∴AE=AD= BC=3,AB==,∵AD∥BC,∴∠ DAF =∠ AEB,∵DF ⊥AE,∴∠ AFD =∠ B= 90°,∴△ EAB≌△ ADF ,∴AF=BE=2,DF =AB=,故①② 正确,不如设 DF 均分∠ ADC ,则△ ADF 是等腰直角三角形,这个明显不行能,故③ 错误,∵∠ DAF +∠ADF = 90°,∠ CDF +∠ ADF = 90°,∴∠ DAF =∠ CDF ,∴ sin∠ CDF = sin∠ AEB=,故④ 错误,故答案为①② .三.解答题(共9 小题,满分 78 分)19.解:原式= 2﹣+﹣﹣1=1﹣.20.解:不等式组整理得:,即3m﹣3<x<2n+1,由不等式组的解集为﹣6< x< 3,可得 3m﹣ 3=﹣ 6,2n+1=3,解得: m=﹣ 1, n=1.21.证明:(1)∵四边形 ABCD 是平行四边形,∴AD=BC, AD∥BC,∴∠ ADB =∠ DBC,∵CF∥DB,∴∠ BCF =∠ DBC,∴∠ ADB =∠ BCF在△ ADE 与△ BCF 中,∴△ ADE ≌△ BCF( SAS).(2)四边形 ABFE 是菱形原因:∵ CF∥DB,且 CF=DE,∴四边形 CFED 是平行四边形,∴CD=EF, CD∥EF,∵四边形 ABCD 是平行四边形,∴AB=CD, AB∥CD,∴AB=EF,AB∥EF,∴四边形 ABFE 是平行四边形,∵△ ADE ≌△ BCF,∵∠ AED +∠AEB= 180°,∴∠ ABE=∠ AEB,∴AB=AE,∴四边形 ABFE 是菱形.22.解:( 1)设需要大型客车x 辆,中型客车y 辆,依据题意,得: 60x+45y= 375,当 x= 1 时, y= 7;当 x=2 时, y=;当x=3时,y=;当 x= 4 时, y= 3;当 x=5 时, y=;当x=6时,y=;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车 1 辆,中型客车 7 辆;方案二:需要大型客车 4 辆,中型客车 3 辆.(2)方案一: 1500× 1+1200× 7= 9900(元),方案二: 1500× 4+1200× 3=9600(元),∵ 9900> 9600,∴方案二更划算.23.( 1)证明:连结DB ,∴AB 是⊙O 直径,∴∠ ADB = 90°,∴DB ⊥AC.又∵AB=BC.14∴D 是 AC 的中点.(2)解:∵ BF 与⊙O 相切于点 B,∴∠ ABF= 90°,∵∠ CAE=∠ CBD,∴∠ CBD =∠ ABD,∠ ABD=∠ F,∴ sin∠ CAE=sin∠ F= sin∠ ABD ,∴在△ ADB 和△ ABF 中,=,∵AB=12,∴AF=,AD=,∴CF=AF﹣AC=.24.解:( 1) 24÷ 30%=80,因此样本容量为80;m=80× 15%=12,n=80﹣ 12﹣4﹣ 24﹣ 8﹣ 4= 28;故答案为 80,12,28;( 2)E 等级对应扇形的圆心角α的度数=×360°=36°;(3)700×=140,因此预计体育测试成绩在A、B 两个等级的人数共有140 人;( 4)画树状图以下:共 12 种等可能的结果数,此中恰巧抽到甲和乙的结果数为2,因此恰巧抽到甲和乙的概率==.25.解:( 1)∵直线 y=﹣ x+2 与反比率函数y=(k≠ 0)的图象交于A(a,3),B(3, b)两点,∴﹣ a+2=3,﹣ 3+2=b,∴a=﹣ 1, b=﹣ 1,∴A(﹣ 1,3),B(3,﹣ 1),∵点 A(﹣ 1,3)在反比率函数y=上,∴k=﹣ 1× 3=﹣ 3,∴反比率函数分析式为 y=﹣;(2)设点 P(n,﹣n+2),∵A(﹣ 1,3),∴C(﹣1,0),∵B(3,﹣1),∴D(3,0),∴ S△ACP=AC× |x P﹣ x A|=× 3× |n+1|,S△BDP=BD× |x B﹣ x P|=× 1× |3﹣n|,∵S△ACP=S△BDP,∴× 3× |n+1|=× 1× |3﹣n|,∴n=0 或 n=﹣ 3,∴P(0,2)或(﹣ 3,5);16∵A (﹣ 1, 3), B (3,﹣ 1),∴ MA 2=( m+1)2+9,MB 2=( m ﹣3) 2+1, AB 2=( 3+1) 2+(﹣ 1﹣ 3)2=32,∵△ MAB 是等腰三角形,∴① 当 MA =MB 时,∴( m+1) 2+9=( m ﹣ 3) 2+1,∴ m = 0,(舍)② 当 MA =AB 时,∴( m+1) 2+9= 32,∴ m =﹣ 1+或 m =﹣ 1﹣ (舍),∴ M (﹣ 1+,0)③ 当 MB = AB 时,( m ﹣ 3) 2+1= 32,∴ m = 3+或 m =3﹣ (舍),∴ M (3+,0)即:知足条件的 M (﹣ 1+,0)或( 3+ ,0).26.( 1)证明:∵ AE ⊥ AD ,∴∠ DAE =∠ DAC+ ∠2= 90°,又∵∠ BAC =∠ DAC +∠ 1=90°,∴∠ 1=∠ 2,在△ ABD 和△ ACE 中,∴△ ABD ≌△ ACE .( 2)解:结论: BD 2+FC 2=DF 2.原因以下:连结 FE ,∵∠ BAC = 90°, AB = AC ,∴∠ B =∠ 3=45°由( 1)知△ ABD ≌△ ACE∴∠ 4=∠ B = 45°, BD = CE∴∠ ECF =∠ 3+∠4=90°,∴ CE 2+CF 2=EF 2,∴ BD 2+FC 2= EF 2,∵ AF 均分∠ DAE , ∴∠ DAF =∠ EAF ,在△ DAF 和△ EAF 中,∴△ DAF ≌△ EAF∴ DF =EF∴ BD 2+FC 2= DF 2.( 3)解:过点 A 作 AG ⊥BC 于 G ,由( 2)知 DF 2=BD 2+FC 2=32+42=25∴ DF =5,∴ BC =BD+DF +FC =3+5+4=12,∵AB =AC ,AG ⊥BC ,∴ BG =AG = BC = 6,∴ DG =BG ﹣BD = 6﹣3=3,∴在 Rt △ ADG 中, AD === 3 .27.解:( 1)设抛物线分析式为 y = a (x+1)( x ﹣ 3), 将点 C ( 0,﹣ 2)代入,得:﹣ 3a =﹣ 2,解 得 a = ,则抛物线分析式为 y = (x+1)( x ﹣ 3)= x 2﹣ x ﹣ 2; ( 2)∵ y = x 2﹣ x ﹣2= (x ﹣1)2﹣ , ∴极点 D (1,﹣ ),即 DE = ,∵四边形 DMEN 是菱形,∴点 M 的纵坐标为﹣ ,则 x 2﹣ x ﹣2=﹣ ,解得 x =1± ,∵ M 为该抛物线对称轴左边上的一点,∴ x < 1,则 x = 1﹣ ,∴点 M 坐标为( 1﹣ ,﹣ );( 3)∵ C (0,﹣ 2), E ( 1,0),∴OC =2,OE =1,如图,设 P ( m , m 2﹣ m ﹣ 2)( m >1),则 PQ=| m 2﹣ m﹣2|,EQ= m﹣1,①若△ COE∽△ PQE,则=,即=,解得 m= 0(舍)或 m= 5 或 m=2 或 m=﹣ 3(舍),此时点 P 坐标为( 5, 8)或( 2,﹣ 2);②若△ COE∽△ EQP,则=,即=,解得 m=(负值舍去)或m=,此时点 P 的坐标为(,)或(,);综上,点 P 的坐标为( 5, 8)或( 2,﹣ 2)或(,)或(,).。

┃附加五套中考模拟卷┃2018-2019学年山东省济南市市中区中考数学三模试卷

┃附加五套中考模拟卷┃2018-2019学年山东省济南市市中区中考数学三模试卷

2019年山东省济南市市中区中考数学三模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共15小题,每小题3分,满分45分)1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1094.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50° B.45° C.40° D.30°5.下列运算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a56.下列是轴对称图形的是()A.B.C.D.7.下列说法正确的是()A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B.审查书稿中有哪些学科性错误适合用抽样调查法C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为8.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N9.化简分式÷,正确的结果是()A. B.C.a﹣1 D.a10.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,﹣3).则经画图操作可知:△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(﹣2,﹣1)D.(2,0)11.三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定12.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+1013.如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.414.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.15.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③二、填空题(本大题共6小题,每小题3分,共18分)16.分解因式:a3﹣a= .17.计算:﹣0﹣4c os45°=.18.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的中位数是.19.不等式的解集是.20.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.21.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4其中正确有 .三、解答题(本大题共7小题,共57分)22.(1)先化简,再求值:a (a ﹣2b )+(a+b )2,其中a=﹣1,b=.(2)解方程: =.23.(1)如图1,已知AD=BC ,AC=BD .求证:△ADB ≌△BCA .(2)如图2,已知AB 是⊙O 的一条直径,延长AB 至点C ,使AC=3BC ,CD 与⊙O 相切于点D ,若CD=,求⊙O的半径.24.有一个运输队承包了一家公司运送货物的业务,第一次运送18吨,派了一辆大卡车和5辆小卡车;第二次运送38吨,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满.两种车型的载重量各是多少? 25.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.26.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y=的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S,求点D的坐标.△DFO(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.27.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)28.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)说明ED是⊙P的切线,若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线上吗?请说明理由;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】14:相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:根据图形可得主视图为:故选:C.3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.4.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50° B.45° C.40° D.30°【考点】JA:平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.5.下列运算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【考点】78:二次根式的加减法;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据二次根式的加减法的法则,合并同类项的法则,幂的乘方与积的乘方即可做出判断.【解答】解:A、﹣=2﹣=,故正确;B、(﹣3)2=9,故错误;C、3a4﹣2a2不是同类项不能合并;故错误;D、(﹣a3)2=a6,故错误;故选A.6.下列是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.7.下列说法正确的是()A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B.审查书稿中有哪些学科性错误适合用抽样调查法C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为【考点】X6:列表法与树状图法;V2:全面调查与抽样调查;W1:算术平均数;W7:方差;X1:随机事件.【分析】由随机事件和必然事件的定义得出A错误,由统计的调查方法得出B错误;由方差的性质得出C正确,由概率的计算得出D错误;即可得出结论.【解答】解:A、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上不是必然事件,是随机事件,选项A错误;B、审查书稿中有哪些学科性错误适合用全面调查法,选项B错误;C、甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,选项C正确;D、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,不是,选项D错误;故选:C.8.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】SC:位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.9.化简分式÷,正确的结果是()A. B.C.a﹣1 D.a【考点】6A:分式的乘除法.【分析】根据分式的乘除法即可求出答案.【解答】解:原式=×=a,故选(D)10.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,﹣3).则经画图操作可知:△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(﹣2,﹣1)D.(2,0)【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【解答】解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选C.11.三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【分析】求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边长为2,5,8,不能构成三角形,舍去;当x=4时,三角形三边长为4,5,8,周长为4+5+8=17,故选B12.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【考点】FA:待定系数法求一次函数解析式;LB:矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.13.如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4【考点】MC:切线的性质;KS:勾股定理的逆定理.【分析】设QP中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三边关系知,CF+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,由直角三角形的面积公式知,此时由直角三角形ABC的面积等于两直角边乘以的一半来求,也利用由斜边乘以斜边上的高CD来求出,根据面积相等可得出CD的长,即为线段PQ长度的最小值.【解答】解:线段PQ长度的最小值时,PQ为圆的直径,如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,∵圆F与AB相切,∴FD⊥AB,∵AB=5,AC=4,BC=3,∴∠ACB=90°,FC+FD=PQ,∴CF+FD>CD,且PQ为圆F的直径,∵当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,即CD为圆F的直径,且S△ABC=BC•CA=CD•AB,∴CD=4.8.故选B.14.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断,不要只靠感觉.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x•2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.15.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【考点】59:因式分解的应用;4I:整式的混合运算;H7:二次函数的最值.【分析】根据新定义可以计算出各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.二、填空题(本大题共6小题,每小题3分,共18分)16.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).17.计算:﹣0﹣4cos45°=﹣1 .【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣0﹣4cos45°=2﹣1﹣4×=2﹣1﹣2=﹣1故答案为:﹣1.18.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的中位数是 5 .【考点】W4:中位数;W1:算术平均数.【分析】首先根据平均数的概念求出a的值,然后根据中位数的概念求解.【解答】解:∵该组数据的平均数为5,∴=5,∴a=5,将这组数据按照从小到大的顺序排列为:3,4,5,6,7,可得中位数为:5.故答案为:5.19.不等式的解集是﹣5≤x<2 .【考点】CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≥﹣5,由②得,x<2,不等式组的解集为:﹣5≤x<2.故答案为:﹣5≤x<2.20.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【考点】L8:菱形的性质;G6:反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.21.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4其中正确有①④⑤.【考点】LO:四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE,在用锐角三角函数即可判断;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠AD O=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,在Rt△ADE中,tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确.∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF=═2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤共三个.故答案为①④⑤.三、解答题(本大题共7小题,共57分)22.(1)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.(2)解方程: =.【考点】B3:解分式方程;4J:整式的混合运算—化简求值.【分析】(1)根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将a、b的值代入即可解答本题;(2)根据解分式方程的方法可以解答此方程,注意分式方程要检验.【解答】解:(1)a(a﹣2b)+(a+b)2=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式==2+2=4;(2)=方程两边同乘以x(x﹣2),得x﹣2=3x移项及合并同类项,得2x=﹣2系数化为1,得x=﹣1,经检验,x=﹣1是原分式方程的解,故原分式方程的解是x=﹣1.23.(1)如图1,已知AD=BC,AC=BD.求证:△ADB≌△BCA.(2)如图2,已知AB是⊙O的一条直径,延长AB至点C,使AC=3BC,CD与⊙O相切于点D,若CD=,求⊙O的半径.【考点】ME:切线的判定与性质;KD:全等三角形的判定与性质.【分析】(1)根据全等三角形的判定即求证;(2)连接OD,利用AC=3BC可知OB=OC,在Rt△ODC中,cos∠DOC==,从而可知∠DOC=60°,∠AOD=120°,在Rt△POC中,利用勾股定理即可求出OD的长度.【解答】解:在△ADB与△BCA中,∴△ADB≌△BCA(SSS)(2)连接OD,∵CD与⊙O相切,∴OD⊥CD,∴∠ODC=90°,∵AC=3BC,AB=2OB,∴OB=BC,∴OB=OC又OB=OD,∴OD=OC在Rt△ODC,cos∠DOC==,∴∠DOC=60°,∴∠AOD=120°在Rt△POC中,由勾股定理可知:OD2+DC2=OC2,∵CD=,∴OD2+3=4OD2,∴OD=124.有一个运输队承包了一家公司运送货物的业务,第一次运送18吨,派了一辆大卡车和5辆小卡车;第二次运送38吨,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满.两种车型的载重量各是多少? 【考点】9A :二元一次方程组的应用.【分析】设一辆大卡车的载重量为x 吨,一辆小卡车的载重量为y 吨,根据“第一次运送18吨,派了一辆大卡车和5辆小卡车;第二次运送38吨,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满”,即可得出关于x 、y 的二元一次方程,解之即可得出结论.【解答】解:设一辆大卡车的载重量为x 吨,一辆小卡车的载重量为y 吨, 根据题意得:,解得:.答:一辆大卡车的载重量为8吨,一辆小卡车的载重量为2吨.25.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;X6:列表法与树状图法. 【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解; (2)利用总户数540乘以对应的百分比求解;(3)在2≤x <3范围的两户用a 、b 表示,8≤x <9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.【解答】解:(1)调查的总数是:2÷4%=50(户), 则6≤x <7部分调查的户数是:50×12%=6(户),则4≤x <5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x <3范围的两户用a 、b 表示,8≤x <9这两个范围内的两户用1,2表示.则抽取出的2个家庭来自不同范围的概率是: =.26.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y=的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S,求点D的坐标.△DFO(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.【考点】GB:反比例函数综合题.【分析】(1)由条件可求得OA,由△AOB∽△CEB可求得CE,则可求得C点坐标,代入反比例函数解析式可求得m的值,可求得反比例函数解析式;(2)设出D的坐标,从而可分别表示出△BAF和△DFO的面积,由条件可列出方程,从而可求得D点坐标;(3)在△BCD中,由三角形三边关系可知CD﹣CB≤BC,当B、C、D三点共线时,其差最大,联立直线BC与反比例函数解析式可求得D点坐标.【解答】解:(1)∵tan∠ABO=,∴=,且OB=4,∴OA=2,∵CE⊥x轴,即CE∥AO,∴△AOB∽△CEB,∴=,即=,解得CE=3,∴C(﹣2,3),∴m=﹣2×3=﹣6,∴反比例函数解析式为y=﹣;(2)设D(x,﹣),∵D在第四象限,∴DF=x,OF=,∴S△DFO=DF•OF=x×=3,由(1)可知OA=2,∴AF=x+,∴S△BAF=AF•OB=(x+)×4=2(x+),∵S△BAF=4S△DFO,∴2(x+)=4×3,解得x=3+或x=3﹣,当x=3+时,﹣的值为3﹣,当x=3﹣时,﹣的值为3+,∵D在第四象限,∴x=3﹣不合题意,舍去,∴D(3+,3﹣);(3)∵D在第四象限,∴在△BCD中,由三角形三边关系可知CD﹣CB≤BC,即当B、C、D三点共线时,其差最大,设直线AB解析式为y=kx+b,由题意可得,解得,∴直线AB解析式为y=﹣x+2,联立直线AB和反比例函数解析式可得,解得或(舍去),∴D(6,﹣1),即当线段DC与线段DB之差达到最大时求点D的坐标为(6,﹣1).27.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA (ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.28.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)说明ED是⊙P的切线,若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线上吗?请说明理由;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解直角三角形得到D(0,2),设抛物线的解析式为y=(x+4)(x﹣2),把D(0,2)即可得到结论;(2)根据平行四边形的性质得到AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,根据相似三角形的性质得到∠ADE=∠CDO,于是得到CD为⊙P的直径,根据切线的判定定理得到ED是⊙P的切线;E点的对应点E′不会落在抛物线上,根据相似三角形的想知道的DE=3,根据旋转的想知道的E点的对应点在射线DC上,而点D,C在抛物线上,于是得到点E′不能在抛物线上;(3)根据二次函数的解析式得到M(﹣1,),由B(﹣4,0),D(0,2),当BM为平行四边形BDMN的对角线时,当DM为平行四边形BDMN的对角线时,当BD为平行四边形BDMN的对角线时,根据平移的性质即可得到结论.【解答】解:(1)∵C点坐标为(2,0),BC=6,∴B(﹣4,0),在Rt△OCD中,∵tan∠OCD=,∴OD=2tan60°=2,∴D(0,2),设抛物线的解析式为y=(x+4)(x﹣2),把D(0,2)代入得a•4•(﹣2)=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)在Rt△OCD中,CD=2OC=4,∵四边形ABCD是平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴, ==,∴,∵∠DAE=∠DCB,∴△AED∽△DCB,∴∠ADE=∠CDO,∵∠ADE+∠ODE=90°,∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线;E点的对应点E′不会落在抛物线上,理由:∵△AED∽△COD,∴,即=,解得:DE=3,∵∠CDE=90°,DE>DC,∴将△ADE绕点D逆时针旋转90°,E点的对应点在射线DC上,而点D,C在抛物线上,∴点E′不能在抛物线上;(3)存在,∵y=﹣x2﹣x+2=﹣(x+1)2+,。

山东省济南市数学中考三模试卷

山东省济南市数学中考三模试卷

山东省济南市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)对于任意实数x,下列各式中一定成立的是()A . =•B . =x+1C . =•D . =6x22. (2分) (2019九下·十堰月考) 在最近很火的节目《中国诗词大会》中,除才女武亦姝实力超群外,其他选手的实力也不容小觑.以下是随机抽取的10名挑战者答对的题目数量的统计:人数3421答对题数4578这10名挑战者答对题目数量中的中位数和众数分别是()A . 4和5B . 5和4C . 5和5D . 6和53. (2分)(2014·徐州) 如图是用五个相同的立方块搭成的几何体,其主视图是()A .B .C .D .4. (2分)(2017·河北模拟) 已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A . b=﹣1B . b=2C . b=﹣2D . b=05. (2分)已知等腰三角形一腰上的高线等于另一腰长的一半,那么此等腰三角形的一个底角等于()A . 15°或75°B . 15°C . 75°D . 150°或30°6. (2分)(2016·镇江) 如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A .B .C . 2D . 37. (2分) (2019七下·侯马期中) 根据图中提供的信息,可知一把暖瓶的价格是()A . 8元B . 27元C . 29元D . 35元8. (2分)如图,两个正比例函数y=k1x(k1>0),y=k2x(k2>0)的图象与反比例函数y=的图象在第一象限分别相交于A、B两点.已知k1≠k2 , OA=OB,则k1k2的值为()A . 1B . 2C . 3D . 4二、填空题 (共8题;共10分)9. (1分)若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=________,b=________10. (2分)(2019·宁波模拟) 在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是,则白色棋子的个数是________.11. (1分)已知方程组的解x与y的和为0,则k的值为________.12. (1分)已知一面积为6πcm2的扇形的弧长为πcm,则该扇形的半径=________13. (1分)(2019·营口模拟) 如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为________.14. (1分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为________ .15. (2分)(2017·泰州) 如图,在平面直角坐标系xOy中,点A,B,P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为________.16. (1分)若等腰直角三角形斜边长为2,则它的直角边长为________三、解答题 (共10题;共67分)17. (5分) (2016七下·仁寿期中) 解方程或不等式(组)(1)(2)(并写出不等式的整数解)18. (2分) (2019八上·香洲期末) 解方程:.19. (5分) (2016九上·仙游期末) 在平面直角坐标系中,的三个顶点坐标分别为A(2,-4),B (3,-2), C(6,-3)①画出△ABC关于x轴对称的△A1B1C1;②以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 ,使△A2B2C2与△A1B1C1的相似比为2:1.20. (11分)(2017·如皋模拟) 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.21. (10分) (2017九上·黄岛期末) 已知:如图,▱ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.(1)求证:△FBE≌△COE;(2)将▱ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.22. (10分) (2016八上·江山期末) 我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:西瓜种类A B C每辆汽车运载量(吨)456每吨西瓜获利(百元)161012(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?23. (10分) (2019八下·芜湖期中) 如图,在平行四边形ABCD中,点E,F在对角线AC上,且AE=CF。

∥3套精选试卷∥济南市2018-2019中考适应性考试数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【答案】C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.3.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.4.cos30°=()A.12B.2C.3D.3【答案】C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】3 cos302︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.5.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)【答案】D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.6.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3,故选C 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 7.30cos ︒的值是()A 2B 3C .12D 3【答案】D【解析】根据特殊角三角函数值,可得答案. 【详解】解:3302cos ︒=, 故选:D . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 8.估计624的值应在( ) A .5和6之间 B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】56﹣24=562636=54-=,∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.9.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣91255,)B.(﹣12955,)C.(﹣161255,)D.(﹣121655,)【答案】A【解析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.10.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤【答案】C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0, 则①当x=1时,y=a+b+c <0,正确; ②当x=-1时,y=a-b+c >1,正确; ③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误; ⑤对称轴x=-2ba=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤. 故选C二、填空题(本题包括8个小题)11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元. 【答案】3【解析】试题分析:设最大利润为w 元,则w=(x ﹣30)(30﹣x )=﹣(x ﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3. 考点:3.二次函数的应用;3.销售问题.12.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.【答案】30°【解析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可. 【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD , ∴∠BOD=45°, 又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°.13.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m 、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得到-2m=n 故②正确;把A (-2,m )、B (1,n )代入y=k 1x+b 得到y=-mx-m ,求得P (-1,0),Q (0,-m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确. 详解:由图象知,k 1<0,k 2<0, ∴k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得-2m=n , ∴m+12n=0,故②正确; 把A (-2,m )、B (1,n )代入y=k 1x+b 得112m k bn k b -+⎧⎨+⎩==, ∴1323nm k n m b -⎧⎪⎪⎨+⎪⎪⎩==,∵-2m=n , ∴y=-mx-m ,∵已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点, ∴P (-1,0),Q (0,-m ), ∴OP=1,OQ=m , ∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ;故③正确; 由图象知不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .【答案】1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,22AC BC +22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm ),故答案为1. 考点:旋转的性质.15.已知α ,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____. 【答案】3.【解析】可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.【详解】得α+β=-2m-3,αβ=m 2,又因为211+-2m-3+===-1mαβαβαβ,所以m 2-2m-3=0,得m=3或m=-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m+3)2-4×m 2=12m+9>0,所以m >4-3,所以m=-1舍去,综上m=3. 【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键. 16.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:∵CD 是ABC ∆的高线, ∴90BDC ∠=︒, ∵30B ∠=︒,2CD =, ∴24BC CD cm ==. 故答案为:4cm. 【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.17.计算:|-3|-1=__. 【答案】2【解析】根据有理数的加减混合运算法则计算. 【详解】解:|﹣3|﹣1=3-1=2. 故答案为2. 【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键. 18.若3,a ,4,5的众数是4,则这组数据的平均数是_____.【答案】4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.三、解答题(本题包括8个小题)19.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=;试估算盒子里黑、白两种颜色的球各有多少只?【答案】(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.20.观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【答案】(1)225412--=4;(2)22(1)12n n+--=n.【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4;(2)第n个等式是:22(1)12n n+--=n.证明如下:∵22(1)12n n +--=[(1)][(1)]12n n n n +++-- =2112n +- =n∴第n 个等式是:22(1)12n n +--=n .点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子. 21.如图,△ABC 中,点D 在边AB 上,满足∠ACD=∠ABC ,若AC=3,AD=1,求DB 的长.【答案】BD= 2.【解析】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长. 试题解析: ∵∠ACD=∠ABC , 又∵∠A=∠A , ∴△ABC ∽△ACD , ∴AD ACAC AB=, ∵3,AD=1, ∴33AB=, ∴AB=3,∴BD= AB ﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB 的长是解题关键.22.先化简代数式222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,再从12x -≤≤范围内选取一个合适的整数作为x 的值代入求值。

{3套试卷汇总}2018-2019济南市某名校中考数学模拟联考试题

【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
∵对称轴x= =1,∴b=-2a,即2a+b=0,故B选项错误;
当x=-1时,y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
5.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )
A.56×108B.5.6×108C.5.6×109D.0.56×1010
故选B.
【点睛】
考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
2.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米
A. B. C. +1D.3
【答案】C
【解析】由题意可知,AC=1,AB=2,∠CAB=90°
A.2到3之间B.3到4之间
C.4到5之间D.5到6之间
【答案】D
【解析】解: = ቤተ መጻሕፍቲ ባይዱ∵2< <3,∴ 在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
7.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()
据勾股定理则BC= m;
∴AC+BC=(1+ )m.
答:树高为(1+ )米.
故选C.

山东省济南市2018年中考数学试卷(含答案解析)

山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。

2018年山东省济南市历下区中考第三次模拟考试数学试题(含答案)

2018年九年级学业水平第三次模拟考试数 学 试 题考试时间:120分钟 满分:150分第I 卷 (选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求的。

)1.√5是介于下列哪两个整数之间( )A. 0与1B. 1与2C. 2与3D. 3与42.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是( )主视方向 A B C D 3.2018年4月8日-11日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”。

开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元。

6000亿用科学记数法可以表示为( ) A .6×10³亿 B. 6×104亿 C. 0.6×103亿 D. 0.6×104亿 4.如图,将三角形的直角顶点放在两条平行线a 、b 中的直线b 上,如果 ∠1=40°,则∠2的度数是( )A .30° B. 40° C. 45° D. 50° 5.下列计算正确的是( )A. x 4+x 4=x 8B. x 3·x 2=x 6C. (x 2y)3=x 6y 3D. (x −y)2=x 2-y 26.一个不透明的袋子中有2个红球和3个黄球(除颜色外其余均相同),从中随机摸出一个球,则摸到红球的概率是( )A. 15B. 25C. 13D. 127.一个多边形,其余内角和是外角和的3倍,则这个多边形的边数为( ) A. 6 B. 7 C. 8 D. 9 8.若解分式方程x−1x+4=mx+4时产生增根,则m=( )A. -5B. -4C. 0D. 19.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长度为()A. 165B.185C.√75D.2√35第10题图10.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30日,在A点测得D点的仰角∠EAD=45°,在B点测得D点的仰角为∠CBD=60°,测得甲、乙这两座建筑物的高度分别为()米A. 10√3,30B. 30,30√3C. 30√3-3,30D. 30√3-30,30√311.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届山东省济南市市中区中考数学三模试卷
一、选择题(共15小题,每小题3分,满分45分)
1.﹣2的相反数是()
A.﹣ B.C.﹣2 D.2
2.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()
A.B.C.D.
3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()
A.3.386×108B.0.3386×109C.33.86×107D.3.386×109
4.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()
A.50° B.45° C.40° D.30°
5.下列运算正确的是()
A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5
6.下列是轴对称图形的是()
A.B.C.D.
7.下列说法正确的是()
A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件
B.审查书稿中有哪些学科性错误适合用抽样调查法
C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
8.图中的两个三角形是位似图形,它们的位似中心是()。

相关文档
最新文档