【配套K12】2018版高考数学大一轮复习第十二章概率随机变量及其分布12.3几何概型教师用书理苏教
2018届高考(新课标)数学(理)大一轮复习检测第十二章 概率、随机变量及其分布 12-1 Word版含答案

组专项基础训练(时间:分钟).(·青岛二中月考)从,,…,中任取两数,给出下列事件:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.其中是对立事件的是().①.②④.③.①③【解析】根据题意,从,,…,中任取两数,其中可能的情况有“两个奇数”“两个偶数”“一个奇数与一个偶数”三种情况.依次分析所给的个事件可得:①恰有一个偶数和恰有一个奇数都是“一个奇数与一个偶数”这种情况,不是对立事件;②至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,与“两个数都是奇数”不是对立事件;③至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,和“两个数都是偶数”是对立事件;④至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,至少有一个偶数包括“两个偶数”与“一个奇数与一个偶数”两种情况,不是对立事件.【答案】.(·北京海淀模拟)为了估计某水池中鱼的尾数,先从水池中捕出尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出尾鱼,其中有标记的鱼为尾,根据上述数据估计该水池中鱼的尾数为()....【解析】由题意可得有记号的鱼所占的比例大约为=,设水池中鱼的尾数是,则有=),解得= .【答案】.(·河北大城一中月考)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是和,则抽检一件是正品(甲级)的概率为() ....【解析】记抽检的产品是甲级品为事件,是乙级品为事件,是丙级品为事件,这三个事件彼此互斥,因而所求概率为()=-()-()=--==.【答案】.(·孝感二模)某天下课以后,教室里还剩下位男同学和位女同学.如果他们依次走出教室,则第位走出的是男同学的概率为()【解析】已知位女同学和位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第位走出的是男同学的概率==.【答案】.(·云南一检)在,,,这组数据中,随机取出三个不同的数,则数字是取出的三个不同数的中位数的概率为()【解析】分析题意可知,共有(,,),(,,),(,,),(,,)种取法,符合题意的取法有种,故所求概率=.【答案】.(·兰州诊断)从本不同的数学书和本不同的语文书中任意抽出本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于.【解析】从本不同的数学书和本不同的语文书中任意抽出本书共有种不同的取法,其中抽出的书是同一学科的取法共有种,因此所求的概率等于=.【答案】.一根绳子长为米,绳子上有个节点将绳子等分,现从个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于米的概率为.【解析】随机选一个节点将绳子剪断共有种情况,分别为(,),(,),(,),(,),(,).满足两段绳长均不小于米的为(,),(,),(,),共种情况.所以所求概率为.【答案】.(·温州十校联考)记一个两位数的个位数字与十位数字的和为.若是不超过的奇数,从这些两位数中任取一个,其个位数为的概率为.。
2018版高考数学理人教大一轮复习讲义教师版文档第十二章概率、随机变量及其分布12.1 含答案 精品

1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1.(3)不可能事件的概率P (F )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × )(3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8答案 B解析因为必然事件发生的概率是1,所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3,故选B.4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为()A.0.5 B.0.3 C.0.6 D.0.9答案 A解析依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.答案②解析①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案(1)C(2)A(3)A解析(1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.(3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球; ②至少有1个黄球与都是黄球; ③恰有1个白球与恰有1个黄球; ④恰有1个白球与都是黄球. 其中互斥而不对立的事件共有( ) A .0组 B .1组 C .2组 D .3组 答案 B解析 ①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B. 题型二 随机事件的频率与概率例2 (2016·全国甲卷)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.(2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有 P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.25.用正难则反思想求互斥事件的概率典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均数;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均数可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[9分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]1.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( ) A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A .①B .②C .③D .④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D .1 答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.4.(2016·襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件 D .以上都不对答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.(2016·蚌埠模拟)从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( ) A .0.8 B .0.5 C .0.7 D .0.3 答案 C解析 由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2, 又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( )A .0.53B .0.5C .0.47D .0.37 答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.9.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.(2016·北京)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 解 (1)由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知, E=A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球}, 则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为 P (A 1∪A 2)=P (A 1)+P (A 2) =512+412=34. (2)取出1球为红球或黑球或白球的概率为 P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3) =512+412+212=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P(A4)=1-212-112=34.(2)因为A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-112=1112.。
[推荐学习]2018版高考数学大一轮复习第十二章概率随机变量及其分布12.2古典概型教师用书理新人教
![[推荐学习]2018版高考数学大一轮复习第十二章概率随机变量及其分布12.2古典概型教师用书理新人教](https://img.taocdn.com/s3/m/912d7620ba1aa8114531d920.png)
第十二章 概率、随机变量及其分布 12.2 古典概型教师用书 理 新人教版1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16答案 B解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2, 所以所求概率P =26=13,故选B.2.(2016·北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925答案 B解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有C 35=10(个)不同的结果,其中勾股数只有一组,故所求概率为P =110.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.答案5 6解析掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.题型一基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3答案 B解析①中,硬币质地不均匀,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限个,不是古典概型;③符合古典概型的特点,是古典概型.题型二古典概型的求法例2 (1)(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D.1(2)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A表示“排列中属性相克的两种物质不相邻”,则事件A发生的概率为________.答案 (1)B (2)56 (3)112解析 (1)从袋中任取2个球共有C 215=105(种)取法,其中恰好1个白球1个红球共有C 110C 15=50(种)取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.(2)基本事件共有C 24=6(种), 设取出两只球颜色不同为事件A ,A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A “排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112. 引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6, 所求概率为616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23 D.56答案 C解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,故选C. (2)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . ①求“抽取的卡片上的数字满足a +b =c ”的概率; ②求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解 ①由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.②设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.题型三 古典概型与统计的综合应用例3 (2015·安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解 (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示)把取两个球的所有结果列举出来↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4)↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316注意细节,P 1=\f(3,16)是n ≥m +2的概率,需转化为其,对立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分] 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为1-P1=1-316=1316.[12分]1.(2016·全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130答案 C解析第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.2.(2016·威海模拟)从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(1,-1)垂直的概率为( )A.16B.13C.14D.12答案 A解析由题意知,向量m共有C14C13=12(个),由m⊥n,得m·n=0,即a=b,则满足m⊥n的m有(3,3),(5,5),共2个,故所求概率P=212=16.3.(2015·广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4 B.0.6 C.0.8 D.1答案 B解析从5件产品中任取2件共有取法C25=10(种),恰有一件次品的取法有C12C13=6(种),所以恰有一件次品的概率为610=0.6.4.(2016·哈尔滨模拟)设a∈{1,2,3,4},b∈{2,4,8,12},则函数f(x)=x3+ax-b在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34答案 C解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f 1=1+a -b ≤0,f2=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种, 故所求概率为1116.5.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( ) A.521 B.27 C.13 D.821 答案 D解析 从编号分别为1,2,3,4,5的5个红球和5个黑球中随机取出4个,有C 410=210(种)不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的.设事件A 为“取出球的编号互不相同”,则事件A 包含了C 15·C 12·C 12·C 12·C 12=80(个)基本事件,所以P (A )=80210=821.故选D. 6.如图,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a31a 32 a 33A.37B.47C.114D.1314答案 D解析 从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314. 7.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析 如图所示,从正六边形ABCDEF 的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A 、B ,A 、C ,A 、D ,A 、E ,A 、F ,B 、C ,B 、D ,B 、E ,B 、F ,C 、D ,C 、E ,C 、F ,D 、E ,D 、F ,E 、F ,共15种.若要构成矩形,只要选相对顶点即可,有A 、D ,B 、E ,C 、F ,共3种,故其概率为315=15.8.若A 、B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 答案 0.3解析 因为A 、B 为互斥事件, 所以P (A ∪B )=P (A )+P (B ),故P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.9.(2017·成都月考)如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案 0.3解析 依题意,记题中的被污损数字为x ,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x +5)≤0,x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P =310=0.3. 10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,取到1件次品的取法为C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求事件“a ⊥b ”发生的概率; (2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种, 所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16.12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的. (1)求袋中原有白球的个数; (2)求取球2次即终止的概率; (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,从袋中任取2个球都是白球的结果数为C 2n ,从袋中任取2个球的所有可能的结果数为C 27.由题意知从袋中任取2球都是白球的概率P =C 2n C 27=17,则n (n -1)=6,解得n =3(舍去n =-2),即袋中原有3个白球.(2)设事件A 为“取球2次即终止”.取球2次即终止,即甲第一次取到的是黑球而乙取到的是白球,P (A )=C 14×C 13C 17×C 16=4×37×6=27.(3)设事件B 为“甲取到白球”,“第i 次取到白球”为事件A i ,i =1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.所以P (B )=P (A 1∪A 3∪A 5)=P (A 1)+P (A 3)+P (A 5)=37+4×3×37×6×5+4×3×2×1×37×6×5×4×3=37+635+135=2235. *13.(2016·北京海淀区期末)为了研究某种农作物在特定温度(要求最高温度t 满足:27 ℃≤t ≤30 ℃)下的生长状况,某农学家需要在10月份去某地进行为期10天的连续观察试验.现有关于该地区历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(1)根据本次试验目的和试验周期,写出农学家观察试验的起始日期;(2)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D 1,D 2,估计D 1,D 2的大小;(直接写出结论即可)(3)从10月份31天中随机选择连续3天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.解 (1)农学家观察试验的起始日期为7日或8日. (2)最高温度的方差D 1大.(3)设“连续3天平均最高温度值都在[27,30]之间”为事件A ,则基本事件空间可以设为Ω={(1,2,3),(2,3,4),(3,4,5),…,(29,30,31)},共29个基本事件,由题图可以看出,事件A 包含10个基本事件,所以P (A )=1029,所选3天每天日平均最高温度值都在[27,30]之间的概率为1029.。
(新)江苏专用2018版高考数学大一轮复习第十二章概率随机变量及其分布12_2古典概型教师用书理苏教版

第十二章 概率、随机变量及其分布 12.2 古典概型教师用书 理 苏教版1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)所有的基本事件只有有限个; (2)每个基本事件的发生都是等可能的.3.如果1次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1n.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=mn. 4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.已知书架上有3本数学书,2本物理书,若从中随机取出2本,则取出的2本书都是数学书的概率为________. 答案310解析 从5本书中取出2本书,基本事件有10个.从3本数学书中取出2本书的事件有3个,故所求的概率为310.2.(2016·北京改编)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为________. 答案 25解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ改编)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________. 答案110解析 从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110. 4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为______. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35. 5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.题型一基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为________.①向上抛一枚质地不均匀的硬币,观察正面向上的概率; ②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合; ③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率; ④在线段[0,5]上任取一点,求此点小于2的概率. 答案 1解析 ①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型;②④的基本事件都不是有限个,不是古典概型; ③符合古典概型的特点,是古典概型. 题型二 古典概型的求法例2 (1)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 答案 56解析 设取出的2只球颜色不同为事件A .基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事件A 包含5种,故P (A )=56.(2)(2016·山东)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:a.若xy≤3,则奖励玩具一个;b.若xy≥8,则奖励水杯一个;c.其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.①求小亮获得玩具的概率;②请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16.①记“xy≤3”为事件A,则事件A包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.②记“xy≥8”为事件B,“3<xy<8”为事件C. 则事件B包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率. 引申探究1.本例(1)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(1)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6, 所求概率为616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷改编)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________. 答案 23解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23. (2)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230①从该班随机选1名同学,求该同学至少参加上述一个社团的概率;②在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解 ①由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.②从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 {A 1,B 1},{A 1,B 2},{A 1,B 3}, {A 2,B 1},{A 2,B 2},{A 2,B 3}, {A 3,B 1},{A 3,B 2},{A 3,B 3}, {A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个. 根据题意,这些基本事件的出现是等可能的, 事件“A 1被选中且B 1未被选中”所包含的基本事件有 {A 1,B 2},{A 1,B 3},共2个.因此,A 1被选中且B 1未被选中的概率为P =215.题型三 古典概型与统计的综合应用例3 (2015·安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解 (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 ABC数量50150100(1)求这6件样品中来自A ,B (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例 (14分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来 ↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题)计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316↓注意细节,P 1=1316是n ≥m +2的概率,需转化为其,对立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[6分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[8分]又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[12分]故满足条件n <m +2的事件的概率为 1-P 1=1-316=1316.[14分]1.(2016·全国丙卷改编)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________. 答案115解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.答案 910解析 由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910. 3.(2015·广东改编)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,则恰有一件次品的概率为________.答案 0.6解析 设3件合格品为A 1,A 2,A 3,2件次品为B 1,B 2,从5件产品中任取2件有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种.恰有1件次品有6种,∴P =610=0.6. 4.(2016·无锡模拟)若从1,2,3,4这四个数中一次随机取两个数,则取出的两个数中一个是奇数一个是偶数的概率为________.答案 23解析 从四个数中随机取两个数,基本事件有6个.其中一奇一偶的事件有4个:(1,2),(1,4),(3,2),(3,4),故所求的概率为46=23. 5.连掷两次骰子分别得到点数m ,n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是________.答案 512解析 ∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).∴P =1536=512. 6.(2016·南通模拟)在平面直角坐标系中,从下列五个点:A (0,0),B (2,0),C (1,1),D (0,2),E(2,2)中任取三个,则这三点能构成三角形的概率是________.答案4 5解析从5个点中取3个点,列举得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10个基本事件,而其中ACE,BCD两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为810=4 5.7.(2016·苏州高三一模)若连续两次抛掷一枚质地均匀的骰子(六个面上分别有数字1,2,3,4,5,6),则两次向上的数字之和等于7的概率为________.答案1 6解析连续抛掷骰子两次,基本事件有36个.两次向上的数字之和等于7的事件有6个:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).故所求的概率为636=16.8.(2016·镇江模拟)若箱子中有形状、大小完全相同的3个红球和2个白球,一次摸出2个球,则摸到的2个球颜色不同的概率为________.答案3 5解析从5个球中摸出2个球,基本事件共有10个.摸到的2个球颜色不同的事件为:红1,白1;红1,白2;红2,白1;红2,白2;红3,白1;红3,白2,共6个.故所求的概率为610=35.9.如下图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案0.3解析依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x+5)≤0,x≥7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P=310=0.3.10.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m=________.答案7解析1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,1+6=7,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,2+6=8,…,依次列出m的可能取值,知7出现次数最多.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3).(1)求事件“a ⊥b ”发生的概率;(2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种,所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16. 12.甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )表示甲、乙抽到的牌的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3)),写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.解 (1)方片4用4′表示,则甲、乙两人抽到的牌的所有情况为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同的情况.(2)甲抽到3,乙抽到的牌只能是2,4,4′,因此乙抽到的牌的牌面数字大于3的概率为23. (3)甲抽到的牌的牌面数字比乙大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况.甲胜的概率为P 1=512,乙胜的概率为P 2=712. 因为512<712,所以此游戏不公平. *13.(2016·北京海淀区期末)为了研究某种农作物在特定温度(要求最高温度t 满足:27 ℃≤t ≤30 ℃)下的生长状况,某农学家需要在10月份去某地进行为期10天的连续观察试验.现有关于该地区历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(1)根据本次试验目的和试验周期,写出农学家观察试验的起始日期;(2)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D 1,D 2,估计D 1,D 2的大小;(直接写出结论即可)(3)从10月份31天中随机选择连续3天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.解 (1)农学家观察试验的起始日期为7日或8日.(2)最高温度的方差D 1大.(3)设“连续3天平均最高温度值都在[27,30]之间”为事件A ,则基本事件空间可以设为Ω={(1,2,3),(2,3,4),(3,4,5),…,(29,30,31)},共29个基本事件,由题图可以看出,事件A 包含10个基本事件,所以P (A )=1029,所选3天每天日平均最高温度值都在[27,30]之间的概率为1029.。
【配套K12】2018版高考数学大一轮复习第十二章概率随机变量及其分布12.5二项分布及其应用试题理

第十二章概率、随机变量及其分布 12.5 二项分布及其应用试题理北师大版1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P ABP B(P(B)>0).2.相互独立事件(1)一般地,对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.(2)如果A,B相互独立,则A与B,A与B,A与B也相互独立.(3)如果A1,A2,…,A n相互独立,则有P(A1A2…A n)=P(A1)P(A2)…P(A n).3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1-p;(3)各次试验是相互独立的.用X表示这n次试验中成功的次数,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.( ×)(2)相互独立事件就是互斥事件.( ×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( ×)(4)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(2016·江西于都三中月考)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件恰好有一个一等品的概率为( ) A.12 B.512 C.14 D.16 答案 B解析 因为两人加工为一等品的概率分别为23和34,且相互独立,所以两个零件恰好有一个一等品的概率为P =23×14+13×34=512.3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A. 4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”, 故所求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( )A.18B.14C.25D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P AB P A =14.(2)AB 表示事件“豆子落在△OEH 内”,P (B |A )=P AB P A =△OEH 的面积正方形EFGH 的面积=14.引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25,P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P AB P A =P B P A =34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P AB P B =12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P ABP A =730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T (2)设T 1,T 212T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2016·青岛模拟)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14, P (ξ=8)=14×13+14×13+12×13=13, P (ξ=9)=12×13+14×13=14, P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23=827, P (C )=C 24⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎪⎫1-232×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-12=427, P (X =3)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23×13=19. 故X 的分布列为命题点2 例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38, P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝⎛⎭⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝⎛⎭⎪⎫1-120=18, P (X =-200)=C 03×⎝ ⎛⎭⎪⎫120×⎝⎛⎭⎪⎫1-123=18.所以X 的分布列为(2)设“第i i 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, ∴P (A )=C 23(13)2(23)1+C 33(13)3=727.(2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3.P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29,P (X =2)=C 23(23)2(13)1=49,P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________. (2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243.答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A +B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P ABP A =1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012(38)10(58)2B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2.3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( ) A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生 C .事件A ,B 至多有一个发生 D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14.故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56B.45C.3132D.12答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州质检)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964.10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P ABP A =3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫234-k.这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6 元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本.所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B+A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。
2018版高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.6 离散型随机变量的均值与

第十二章概率、随机变量及其分布 12.6 离散型随机变量的均值与方差、正态分布试题理北师大版1.离散型随机变量的均值与方差若离散型随机变量X的分布列为P(X=a i)=p i(i=1,2,…r).(1)均值EX=a1p1+a2p2+…+a r p r,均值EX刻画的是X取值的“中心位置”.(2)方差DX=E(X-EX)2为随机变量X的方差,它刻画了随机变量X与其均值EX的平均偏离程度.2.二项分布的均值、方差若X~B(n,p),则EX=np,DX=np(1-p).3.正态分布(1)X~N(μ,σ2),表示X服从参数为μ和σ2的正态分布.(2)正态分布密度函数的性质:①函数图像关于直线x=μ对称;②σ(σ>0)的大小决定函数图像的“胖”“瘦”;③P(μ-σ<X<μ+σ)=68.3%;P(μ-2σ<X<μ+2σ)=95.4%;P(μ-3σ<X<μ+3σ)=99.7%.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( √)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √)(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( √)(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( √)(5)均值是算术平均数概念的推广,与概率无关.( ×)1.(教材改编)某射手射击所得环数ξ的分布列如下:已知ξ的均值E ξ=8.9A .0.4 B .0.6 C .0.7 D .0.9 答案 A解析 由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,可得y =0.4.2.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D ξ等于( )A .8B .5C .10D .12答案 A解析 E ξ=15(2+4+6+8+10)=6,D ξ=15[(-4)2+(-2)2+02+22+42]=8.3.已知随机变量X +η=8,若X ~B (10,0.6),则随机变量η的均值E η及方差D η分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 设随机变量X 的均值及方差分别为EX ,DX , 因为X ~B (10,0.6),所以EX =10×0.6=6,DX =10×0.6×(1-0.6)=2.4,故E η=E (8-X )=8-EX =2,D η=D (8-X )=DX =2.4.4.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为________. 答案 1+a,4 解析x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4.5.某班有50名学生,一次考试的数学成绩ξ服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________. 答案 10解析 由题意知,P (ξ>110)=1-2P ξ2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×50=10.题型一 离散型随机变量的均值、方差 命题点1 求离散型随机变量的均值、方差例1 (2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23,每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列和均值EX .解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,得E =ABCD +A BCD +A B CD +AB C D +ABC D , 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13⎭⎪⎫×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,得随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512, P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以均值EX =0×144+1×72+2×144+3×12+4×12+6×4=6.命题点2 已知离散型随机变量的均值与方差,求参数值例2 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c . 解 (1)由题意得ξ=2,3,4,5,6,故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136. 所以ξ的分布列为(2)由题意知η所以E η=a a +b +c +2b a +b +c +3c a +b +c =53,D η=⎝ ⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0.解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.思维升华 离散型随机变量的均值与方差的常见类型及解题策略(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布列,然后利用均值、方差公式直接求解.(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值.(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.(2015·四川)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队. (1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和均值.解 (1)由题意,参加集训的男、女生各有6名,参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100.因此,A 中学至少有1名学生入选代表队的概率为 1-1100=99100. (2)根据题意,X 的可能取值为1,2,3, P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15,所以X 的分布列为因此,X 的均值为EX =1×P (X =1)+2×P (X =2)+3×P (X =3)=1×15+2×35+3×15=2.题型二 均值与方差在决策中的应用例3 (2016·全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n =19与n =20之中选其一,应选用哪个? 解 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P (X =16)=0.2×0.2=0.04, P (X =17)=2×0.2×0.4=0.16,P (X =18)=2×0.2×0.2+0.4×0.4=0.24, P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24, P (X =20)=2×0.2×0.4+0.2×0.2=0.2, P (X =21)=2×0.2×0.2=0.08, P (X =22)=0.2×0.2=0.04.所以X 的分布列为(2)由(1)知P 故n 的最小值为19.(3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,EY =19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n =20时,EY =20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.思维升华 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.某投资公司在2016年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解 若按“项目一”投资,设获利为X 1万元,则X 1的分布列为∴EX 1=300×79+(-150)×29=200.若按“项目二”投资,设获利X 2万元,则X 2的分布列为∴EX 2=500×35+(-300)×13+0×15=200.DX 1=(300-200)2×79+(-150-200)2×29=35 000,DX 2=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.所以EX 1=EX 2,DX 1<DX 2,这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资. 题型三 正态分布的应用例4 (1)(2015·湖北)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t ) 答案 D解析 对于A 项,因为正态分布曲线关于直线x =μ对称,所以μ1<μ2.所以P (Y ≥μ1)>0.5=P (Y ≥μ2),故A 项错误;对于B 项,因为X 的正态分布密度曲线比Y 的正态分布密度曲线更“瘦高”,所以σ1<σ2.所以P (X ≤σ1)<P (X ≤σ2),故B 项错误;对于C 项,由图像可知,在y 轴的右侧某处,显然满足P (X ≥t )<P (Y ≥t ),故C 项错误; 对于D 项,在y 轴右侧作与x 轴垂直的一系列平行线,可知在任何情况下,X 的正态分布密度曲线与x 轴之间围成的图形面积都大于Y 的正态分布密度曲线与x 轴之间围成的图形面积,即对任意正数t ,P (X ≤t )≥P (Y ≤t ),故D 项正确.(2)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:①求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);②由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8<Z<212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(ⅰ)的结果,求EX.附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4. 解①抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.②(ⅰ)由①知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以EX=100×0.682 6=68.26.思维升华解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.(2015·山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)( ) A.4.56% B.13.59%C.27.18% D.31.74%答案 B解析由正态分布的概率公式知P(-3<ξ<3)=0.682 6,P(-6<ξ<6)=0.954 4,故P (3<ξ<6)=P -6<ξ-P -3<ξ2=0.954 4-0.682 62=0.135 9=13.59%,故选B.8.离散型随机变量的均值与方差问题典例 (12分)(2016·湖北六校联考)在2016年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为23,且每题正确回答与否互不影响.(1)分别写出甲、乙两考生正确回答题数的分布列,并计算其均值; (2)试用统计知识分析比较两考生的通过能力. 规范解答解 (1)甲正确回答的题目数ξ可取1,2,3. P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 36=15.[3分]故其分布列为E ξ=1×15+2×35+3×15=2.[5分]又乙正确回答的题目数η~B (3,23),其分布列为∴E η=np =3×23=2.[8分](2)∵D ξ=(2-1)2×15+(2-2)2×35+(2-3)2×15=25,D η=np (1-p )=3×23×13=23,[10分]∴D ξ<D η.∵P (ξ≥2)=35+15=45,P (η≥2)=1227+827=2027,∴P (ξ≥2)>P (η≥2).从回答对题数的均值考查,两人水平相当;从回答对题数的方差考查,甲较稳定;从至少正确回答2题的概率考查,甲获得通过的可能性大.因此可以判断甲的通过能力较强.[12分]求离散型随机变量的均值和方差问题的一般步骤: 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:根据均值、方差、进行判断,并得出结论(适用 于均值、方差的应用问题);第六步:反思回顾.查看关键点、易错点和答题规范.1.(2016·郑州一模)某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的均值为( ) A .0.9 B .0.8 C .1.2 D .1.1 答案 A解析 由题意得X =0,1,2,则P (X =0)=0.6×0.5=0.3,P (X =1)=0.4×0.5+0.6×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴EX =1×0.5+2×0.2=0.9.2.(2017·芜湖质检)若X ~B (n ,p ),且EX =6,DX =3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-8答案 C 解析 由题意知⎩⎪⎨⎪⎧np =6,np-p =3,解得⎩⎪⎨⎪⎧p =12,n =12.∴P (X =1)=C 112×12×(1-12)11=12212=3×2-10.3.设随机变量X ~N (μ,σ2),且X 落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,若P (X >2)=p ,则P (0<X <2)等于( ) A.12+p B .1-p C .1-2p D.12-p 答案 D解析 由X 落在(-3,-1)内的概率和落在(1,3)内的概率相等得μ=0. 又∵P (X >2)=p ,∴P (-2<x <2)=1-2p , ∴P (0<X <2)=1-2p 2=12-p .4.一射击测试中每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的均值与方差分别为________,________.答案 202003解析 记此人三次射击击中目标次数为X ,得分为Y , 则X ~B (3,23),Y =10X ,∴EY =10EX =10×3×23=20,DY =100DX =100×3×23×13=2003. 5.(2016·湖北宜昌一中月考)已知X ~N (μ,σ2)时,P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4,则ʃ4312πe2(1)2x --d x =________.答案 0.021 5解析 由题意,μ=1,σ=1,P (3<X ≤4)=12×[P (-2<X ≤4)-P (-1<X ≤3)]=12×(0.997 4-0.954 4)=0.021 5.6.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E ξ.解 (1)设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15.(2)由题意,得随机变量ξ可能的取值为0,1,2,3, 则P (ξ=0)=⎝ ⎛⎭⎪⎫1103=11 000,P (ξ=1)=C 13⎝⎛⎭⎪⎫1-110×⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23×⎝⎛⎭⎪⎫1-1102×110=2431 000,P (ξ=3)=⎝⎛⎭⎪⎫1-1103=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E ξ=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或因为ξ~B (3,910),所以E ξ=3×910=2710.)7.(2016·汕尾调研)为了解某市高三学生身高情况,对全市高三学生进行了测量,经分析,全市高三学生身高X (单位:cm)服从正态分布N (160,σ2),已知P (X <150)=0.2,P (X ≥180)=0.03.(1)现从该市高三学生中随机抽取一名学生,求该学生身高在区间[170,180)的概率;(2)现从该市高三学生中随机抽取三名学生,记抽到的三名学生身高在区间[150,170)的人数为ξ,求随机变量ξ的分布列和均值 E ξ.解 (1)由全市高三学生身高X 服从N (160,σ2),P (X <150)=0.2, 得P (160≤X <170)=P (150≤X <160) =0.5-0.2=0.3. 因为P (X ≥180)=0.03,所以P (170≤X <180)=0.5-0.3-0.03=0.17.故从该市高三学生中随机抽取一名学生,该学生身高在区间[170,180)的概率为0.17. (2)因为P (150≤X <170)=P (150≤X <160)+P (160≤X <170)=0.3+0.3=0.6,ξ服从二项分布B (3,0.6),所以P (ξ=0)=(1-0.6)3=0.064,P (ξ=1)=3×0.6×(1-0.6)2=0.288, P (ξ=2)=3×0.62×(1-0.6)=0.432, P (ξ=3)=0.63=0.216.所以ξ的分布列为所以E ξ=3×0.6=1.8.8.(2016·泉州模拟)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?解 方法一 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”为事件A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖的中奖次数为X 1,都选择方案乙抽奖的中奖次数为X 2,则这两人选择方案甲抽奖累计得分的均值为E (2X 1),选择方案乙抽奖累计得分的均值为E (3X 2).由已知可得,X 1~B (2,23),X 2~B (2,25),所以EX 1=2×23=43,EX 2=2×25=45,从而E (2X 1)=2EX 1=83,E (3X 2)=3EX 2=125,因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.方法二 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”为事件A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件, 因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25, P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:所以EX 1=0×19+2×49+4×49=83,EX 2=0×925+3×1225+6×425=125.因为EX 1>EX 2,所以他们都选择方案甲进行抽奖时,累计得分的均值较大.9.为回馈顾客,某商场拟通过模拟兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解 (1)设顾客所获的奖励额为X . ①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为所以顾客所获的奖励额的均值为EX =20×12+60×12=40.(2)根据商场的预算,每个顾客的平均奖励额为60元, 所以,先寻找均值为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案, 因为60元是面值之和的最大值, 所以均值不可能为60元;如果选择(50,50,50,10)的方案, 因为60元是面值之和的最小值, 所以均值也不可能为60元.因此可能的方案是(10,10,50,50),记为方案1. 对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案, 所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析.对于方案1,即方案(10,10,50,50), 设顾客所获的奖励额为X 1, 则X 1的分布列为X 1的均值为EX 1=20×16+60×23+100×6=60,X 1的方差为DX 1=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40), 设顾客所获的奖励额为X 2, 则X 2的分布列为X 2的均值为EX 2=40×16+60×23+80×6=60,X 2的方差为DX 2=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
2018版高考数学大一轮复习第十二章概率随机变量及其分布12.4离散型随机变量及其分布列教师用书理新人教版
第十二章 概率、随机变量及其分布 12.4 离散型随机变量及其分布列教师用书 理 新人教版1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示,所有取值可以一一列出的随机变量,称为离散型随机变量. 2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;② i =1np i =1.3.常见离散型随机变量的分布列 (1)两点分布若随机变量X 服从两点分布,即其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有下表形式,则称随机变量X 服从超几何分布. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( √ ) (3)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( × ) (4)从4名男演员和3名女演员中选出4名演员,其中女演员的人数X 服从超几何分布.( √ )(5)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )1.(教材改编)抛掷甲、乙两颗骰子,所得点数之和为X ,那么X =4表示的事件是( ) A .一颗是3点,一颗是1点 B .两颗都是2点C .甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点D .以上答案都不对 答案 C解析 根据抛掷两颗骰子的试验结果可知,C 正确.2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A .0 B.12 C.13 D.23答案 C解析 设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功,由p +2p =1,得p =13,故选C.3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有( )A .17个B .18个C .19个D .20个 答案 A解析 X 可能取得的值有3,4,5,…,19,共17个.4.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为答案 0.1 0.6 0.3解析 ∵X 的所有可能取值为0,1,2, ∴P (X =0)=C 22C 25=0.1,P (X =1)=C 13·C 12C 25=610=0.6,P (X =2)=C 23C 25=0.3.∴X 的分布列为5.(教材改编)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 答案27220解析 由题意知取出的3个球必为2个旧球、1个新球, 故P (X =4)=C 23C 19C 312=27220.题型一 离散型随机变量的分布列的性质例1 (1)设X 是一个离散型随机变量,其分布列为则q 等于( ) A .1 B.32±336 C.32-336 D.32+336答案 C解析 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336. (2)设离散型随机变量X 的分布列为求2X +1的分布列. 解 由分布列的性质知0.2+0.1+0.1+0.3+m =1,得m =0.3. 首先列表为从而2X +1的分布列为引申探究1.在本例(2)的条件下,求随机变量η=|X -1|的分布列. 解 由(2)知m =0.3,列表∴P (η=1)=P (X =0)+P (X =2)=0.2+0.1=0.3,P (η=0)=P (X =1)=0.1,P (η=2)=P (X =3)=0.3, P (η=3)=P (X =4)=0.3.故η=|X -1|的分布列为2.若本例(2)中条件不变,求随机变量η=X 2的分布列. 解 依题意知η的值为0,1,4,9,16.P (η=0)=P (X 2=0)=P (X =0)=0.2, P (η=1)=P (X 2=1)=P (X =1)=0.1, p (η=4)=P (X 2=4)=P (X =2)=0.1, P (η=9)=P (X 2=9)=P (X =3)=0.3, P (η=16)=P (X 2=16)=P (X =4)=0.3,思维升华 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.设随机变量X 的分布列为P (X =k5)=ak (k =1,2,3,4,5).(1)求a ; (2)求P (X ≥35);(3)求P (110<X ≤710).解 (1)由分布列的性质,得P (X =15)+P (X =25)+P (X =35)+P (X =45)+P (X =1)=a +2a +3a+4a +5a =1,所以a =115.(2)P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=3×115+4×115+5×115=45.(3)P (110<X ≤710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=615=25.题型二 离散型随机变量的分布列的求法 命题点1 与排列组合有关的分布列的求法例2 (2015·重庆改编)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列.解 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14. (2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为命题点2 与互斥事件有关的分布列的求法例3 (2015·安徽改编)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A , P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=35.故X 的分布列为命题点3 与独立事件(或独立重复试验)有关的分布列的求法例4 (2016·蚌埠模拟)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记X 为比赛决出胜负时的总局数,求X 的分布列.解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”.则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为思维升华 求离散型随机变量X 的分布列的步骤: (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2016·湖北部分重点中学第一次联考)连续抛掷同一颗均匀的骰子,令第i 次得到的点数为a i ,若存在正整数k ,使a 1+a 2+…+a k =6,则称k 为你的幸运数字. (1)求你的幸运数字为3的概率;(2)若k =1,则你的得分为6分;若k =2,则你的得分为4分;若k =3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的分布列.解 (1)设“连续抛掷3次骰子,和为6”为事件A ,则它包含事件A 1,A 2,A 3,其中A 1:三次恰好均为2;A 2:三次中恰好1,2,3各一次;A 3:三次中有两次均为1,一次为4.A 1,A 2,A 3为互斥事件,则P (A )=P (A 1)+P (A 2)+P (A 3)=C 33(16)3+C 13·16·C 12·16·C 11·16+C 23(16)2·16=5108. (2)由已知得ξ的可能取值为6,4,2,0,P (ξ=6)=16,P (ξ=4)=(16)2+2×C 12×16×16=536, P (ξ=2)=5108,P (ξ=0)=1-16-536-5108=3554. 故ξ的分布列为题型三 超几何分布例5 (2017·济南质检)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2016年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A , 则P (A )=C 13·C 27C 310=2140.(2)依据条件,ξ服从超几何分布,其中N =10,M =3,n =3,且随机变量ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3·C 3-k7C 310(k =0,1,2,3). ∴P (ξ=0)=C 03C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 07C 310=1120.故ξ的分布列为思维升华 (1)超几何分布的两个特点 ①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事); ②已知各类对象的个数; ③从中抽取若干个个体.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动.(每位同学被选到的可能性相同) (1)求选出的3名同学来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列. 解 (1)设“选出的3名同学来自互不相同的学院”为事件A , 则P (A )=C 13·C 27+C 03·C 37C 310=4960. 故选出的3名同学来自互不相同学院的概率为4960.(2)随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3). ∴P (X =0)=C 04·C 36C 310=16,P (X =1)=C 14·C 26C 310=12,P (X =2)=C 24·C 16C 310=310,P (X =3)=C 34·C 06C 310=130.故随机变量X 的分布列是17.离散型随机变量的分布列典例 某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 错解展示现场纠错解P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.1×0.1×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1.∴ξ的分布列为纠错心得(1)随机变量的分布列,要弄清变量的取值,还要清楚变量的每个取值对应的事件及其概率.(2)验证随机变量的概率和是否为1.1.(2016·太原模拟)某射手射击所得环数X的分布列为则此射手“射击一次命中环数大于7”的概率为( )A.0.28 B.0.88 C.0.79 D.0.51答案 C解析 根据X 的分布列知,所求概率为0.28+0.29+0.22=0.79. 2.(2016·岳阳模拟)设X 是一个离散型随机变量,其分布列为则q 等于( ) A .1 B .1±22 C .1-22 D .1+22答案 C解析 由题意知⎩⎪⎨⎪⎧1-2q ≥0,12+-2q +q 2=1,即⎩⎪⎨⎪⎧q ≤12,2q 2-4q +1=0,解得q =1-22. 3.(2016·郑州模拟)已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3,4),则P (2<X ≤4)等于( )A.910B.710C.35D.12 答案 B解析 由分布列的性质知, 12a +22a +32a +42a =1, 则a =5,∴P (2<X ≤4)=P (X =3)+P (X =4)=310+410=710.4.(2016·湖北孝感汉川期末)设随机变量ξ的分布列为P (ξ=i )=a (13)i,i =1,2,3,则实数a 的值为( ) A .1 B.913 C.1113 D.2713答案 D解析 ∵随机变量ξ的分布列为P (ξ=i )=a (13)i,i =1,2,3,∴a [13+(13)2+(13)3]=1,解得a =2713.故选D.5.(2017·武汉调研)从装有3个白球,4个红球的箱子中,随机取出3个球,则恰好是2个白球,1个红球的概率是( ) A.435 B.635 C.1235 D.36343 答案 C解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.6.(2017·长沙月考)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于n -m2mA 3n的是( )A .P (X =3)B .P (X ≥2)C .P (X ≤3)D .P (X =2)答案 D解析 由超几何分布知P (X =2)=n -m2mA 3n.7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了,而乙抢到了两个题目都答错了,X =0,甲没抢到题,乙抢到题目答错至少2个题或甲抢到2题,但答时一对一错,而乙答错一个题目,X =1,甲抢到1题且答对,乙抢到2题且至少答错1题或甲抢到3题,且1错2对, X =2,甲抢到2题均答对, X =3,甲抢到3题均答对.8.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________.答案 23 [-13,13]解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.9.设离散型随机变量X 的分布列为若随机变量Y =|X -2|,则P (Y =2)=________. 答案 0.5解析 由分布列的性质,知0.2+0.1+0.1+0.3+m =1,∴m =0.3. 由Y =2,即|X -2|=2,得X =4或X =0, ∴P (Y =2)=P (X =4或X =0) =P (X =4)+P (X =0) =0.3+0.2=0.5.10.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________. 答案1335解析 P (ξ≤6)=P (取到3只红球1只黑球)+P (取到4只红球)=C 34C 13C 47+C 44C 47=1335.11.(2015·山东改编)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数” ; (2)若甲参加活动,求甲得分X 的分布列.解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345. (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.所以X 的分布列为12.(2016·遂宁期末)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列.(注:若三个数字a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)解 (1)由古典概型的概率计算公式得 P =C 34+C 33C 39=584.(2)由题意知X 的所有可能取值为1,2,3,则 P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.所以X 的分布列为*13.(2016·长春模拟)某高校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2名校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为ξ,求ξ的分布列. 解 (1)设选出2人为“最佳组合”记为事件A , 则事件A 发生的概率P (A )=C 1n -6C 16C 2n =n -n n -.依题意n -n n -≥12,化简得n 2-25n +144≤0, ∴9≤n ≤16,故n 的最大值为16.(2)由题意,ξ的可能取值为0,1,2,且ξ服从超几何分布, 则P (ξ =k )=C k 6C 2-k6C 212(k =0,1,2),∴P (ξ=0)=P (ξ=2)=C 06C 26C 212=522,P (ξ=1)=C 16C 16C 212=611.故ξ的分布列为。
教育最新K122018版高考数学大一轮复习第十二章概率随机变量及其分布12.1随机事件的概率教师用书理新人教版
第十二章 概率、随机变量及其分布 12.1 随机事件的概率教师用书理 新人教版1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ).(5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × )(3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 答案 B解析 因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3,故选B.4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( )A.0.5 B.0.3 C.0.6 D.0.9答案 A解析依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.答案②解析①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一事件关系的判断例1 (1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.① B.②④ C.③ D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案(1)C (2)A (3)A解析(1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立事件.(3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )A.0组 B.1组 C.2组 D.3组答案 B解析①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.题型二随机事件的频率与概率例2 (2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.(2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n12=13,所以n =4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件, ∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.25.用正难则反思想求互斥事件的概率典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均数;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均数可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[9分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]1.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( ) A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( ) A .① B.② C.③ D.④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D .1 答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735. 4.(2016·襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件 D .以上都不对答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.(2016·蚌埠模拟)从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( ) A .0.8 B .0.5 C .0.7 D .0.3 答案 C解析 由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2, 又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37 答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.9.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P A ,0<P B,P A +P B⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12. 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.(2016·北京)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 解 (1)由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+412=34. (2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-112=1112.。
教育最新K122018版高考数学大一轮复习第十二章概率随机变量及其分布12.2古典概型教师用书理新人教版
第十二章 概率、随机变量及其分布 12.2 古典概型教师用书 理 新人教版1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16答案 B解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2, 所以所求概率P =26=13,故选B.2.(2016·北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925答案 B解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有C 35=10(个)不同的结果,其中勾股数只有一组,故所求概率为P =110.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.答案5 6解析掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.题型一基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3答案 B解析①中,硬币质地不均匀,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限个,不是古典概型;③符合古典概型的特点,是古典概型.题型二古典概型的求法例2 (1)(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D.1(2)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A表示“排列中属性相克的两种物质不相邻”,则事件A发生的概率为________.答案 (1)B (2)56 (3)112解析 (1)从袋中任取2个球共有C 215=105(种)取法,其中恰好1个白球1个红球共有C 110C 15=50(种)取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.(2)基本事件共有C 24=6(种), 设取出两只球颜色不同为事件A ,A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A “排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112. 引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6, 所求概率为616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23 D.56答案 C解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,故选C. (2)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . ①求“抽取的卡片上的数字满足a +b =c ”的概率; ②求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解 ①由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.②设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.题型三 古典概型与统计的综合应用例3 (2015·安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解 (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示)把取两个球的所有结果列举出来↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4)↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316注意细节,P 1=\f(3,16)是n ≥m +2的概率,需转化为其,对立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分] 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为1-P1=1-316=1316.[12分]1.(2016·全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130答案 C解析第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.2.(2016·威海模拟)从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(1,-1)垂直的概率为( )A.16B.13C.14D.12答案 A解析由题意知,向量m共有C14C13=12(个),由m⊥n,得m·n=0,即a=b,则满足m⊥n的m有(3,3),(5,5),共2个,故所求概率P=212=16.3.(2015·广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4 B.0.6 C.0.8 D.1答案 B解析从5件产品中任取2件共有取法C25=10(种),恰有一件次品的取法有C12C13=6(种),所以恰有一件次品的概率为610=0.6.4.(2016·哈尔滨模拟)设a∈{1,2,3,4},b∈{2,4,8,12},则函数f(x)=x3+ax-b在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34答案 C解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f =1+a -b ≤0,f=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种, 故所求概率为1116.5.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( ) A.521 B.27 C.13 D.821 答案 D解析 从编号分别为1,2,3,4,5的5个红球和5个黑球中随机取出4个,有C 410=210(种)不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的.设事件A 为“取出球的编号互不相同”,则事件A 包含了C 15·C 12·C 12·C 12·C 12=80(个)基本事件,所以P (A )=80210=821.故选D. 6.如图,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a31a 32 a 33A.37B.47C.114D.1314答案 D解析 从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314. 7.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析 如图所示,从正六边形ABCDEF 的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A 、B ,A 、C ,A 、D ,A 、E ,A 、F ,B 、C ,B 、D ,B 、E ,B 、F ,C 、D ,C 、E ,C 、F ,D 、E ,D 、F ,E 、F ,共15种.若要构成矩形,只要选相对顶点即可,有A 、D ,B 、E ,C 、F ,共3种,故其概率为315=15.8.若A 、B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 答案 0.3解析 因为A 、B 为互斥事件, 所以P (A ∪B )=P (A )+P (B ),故P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.9.(2017·成都月考)如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案 0.3解析 依题意,记题中的被污损数字为x ,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x +5)≤0,x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P =310=0.3. 10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,取到1件次品的取法为C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求事件“a ⊥b ”发生的概率; (2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种, 所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16.12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的. (1)求袋中原有白球的个数; (2)求取球2次即终止的概率; (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,从袋中任取2个球都是白球的结果数为C 2n ,从袋中任取2个球的所有可能的结果数为C 27.由题意知从袋中任取2球都是白球的概率P =C 2n C 27=17,则n (n -1)=6,解得n =3(舍去n =-2),即袋中原有3个白球.(2)设事件A 为“取球2次即终止”.取球2次即终止,即甲第一次取到的是黑球而乙取到的是白球,P (A )=C 14×C 13C 17×C 16=4×37×6=27.(3)设事件B 为“甲取到白球”,“第i 次取到白球”为事件A i ,i =1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.所以P (B )=P (A 1∪A 3∪A 5)=P (A 1)+P (A 3)+P (A 5)=37+4×3×37×6×5+4×3×2×1×37×6×5×4×3=37+635+135=2235. *13.(2016·北京海淀区期末)为了研究某种农作物在特定温度(要求最高温度t 满足:27 ℃≤t ≤30 ℃)下的生长状况,某农学家需要在10月份去某地进行为期10天的连续观察试验.现有关于该地区历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(1)根据本次试验目的和试验周期,写出农学家观察试验的起始日期;(2)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D 1,D 2,估计D 1,D 2的大小;(直接写出结论即可)(3)从10月份31天中随机选择连续3天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.解 (1)农学家观察试验的起始日期为7日或8日. (2)最高温度的方差D 1大.(3)设“连续3天平均最高温度值都在[27,30]之间”为事件A ,则基本事件空间可以设为Ω={(1,2,3),(2,3,4),(3,4,5),…,(29,30,31)},共29个基本事件,由题图可以看出,事件A 包含10个基本事件,所以P (A )=1029,所选3天每天日平均最高温度值都在[27,30]之间的概率为1029.。
2018届高考新课标数学理大一轮复习检测:第十二章 概
A 组 专项基础训练(时间:35分钟)1.(2017·青岛二中月考)从1,2,…,9中任取两数,给出下列事件:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.其中是对立事件的是( )A .①B .②④C .③D .①③【解析】 根据题意,从1,2,…,9中任取两数,其中可能的情况有“两个奇数”“两个偶数”“一个奇数与一个偶数”三种情况.依次分析所给的4个事件可得:①恰有一个偶数和恰有一个奇数都是“一个奇数与一个偶数”这种情况,不是对立事件;②至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,与“两个数都是奇数”不是对立事件;③至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,和“两个数都是偶数”是对立事件;④至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,至少有一个偶数包括“两个偶数”与“一个奇数与一个偶数”两种情况,不是对立事件.【答案】 C2.(2017·北京海淀模拟)为了估计某水池中鱼的尾数,先从水池中捕出2 000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为( )A .10 000B .20 000C .25 000D .30 000【解析】 由题意可得有记号的鱼所占的比例大约为40500=225,设水池中鱼的尾数是x ,则有225=2 000x,解得x =25 000. 【答案】 C3.(2017·河北大城一中月考)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08【解析】 记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.【答案】 C4.(2017·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )A.12B.13C.14D.15【解析】 已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12. 【答案】 A5.(2017·云南一检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34B.58C.12D.14【解析】 分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12. 【答案】 C6.(2017·兰州诊断)从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.【解析】 从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于26=13. 【答案】 137.一根绳子长为6米,绳子上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为________.【解析】 随机选一个节点将绳子剪断共有5种情况,分别为(1,5),(2,4),(3,3),(4,2),(5,1).满足两段绳长均不小于2米的为(2,4),(3,3),(4,2),共3种情况.所以所求概率为35. 【答案】 358.(2017·温州十校联考)记一个两位数的个位数字与十位数字的和为A .若A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.【解析】 根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29. 【答案】 299.(2016·北京卷)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【解析】 (1)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为100×820=40. (2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,...,5,事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2, (8)由题意可知,P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2,…,8. P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知, E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.10.(2017·辽宁沈阳二中月考)从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分组:第一组,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm 以上(含180 cm)的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件E ={|x -y |≤5},事件F ={|x -y |>15},求P (E ∪F ).【解析】 (1)第六组的频率为450=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.(2)身高在第一组的人数为2,设为A ,B ,则从中选两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB ,AB ,共15种情况,因事件E ={|x -y |≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB ,共7种情况,故P (E )=715. 由于|x -y |max =195-180=15,所以事件F ={|x -y |>15}是不可能事件,P (F )=0.由于事件E 和事件F 是互斥事件,所以P (E ∪F )=P (E )+P (F )=715. B 组 专项能力提升(时间:30分钟)11.(2017·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”【解析】 A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.【答案】 D12.(2017·合肥一模)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A.13B.23C.14D.34【解析】 由题意知,此人从小区A 前往小区H 的所有最短路径为:A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A →B →O →E →H ,A →B →O→G →H ,A →D →O →E →H ,A →D →O →G →H ,共4个,所以P (M )=46=23,即他经过市中心O的概率为23. 【答案】 B13.(2017·云南昆明3月月考)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.【解析】 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928. 【答案】 192814.(2017·河南洛阳一模)经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.【解析】 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C ,所以P (G )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)方法一 记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.方法二 记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.15.(2015·陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.【解析】 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P =2630=1315. (2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78. 以频率估计概率,运动会期间不下雨的概率为78.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小初高试卷类教案类 K12分别是小学初中高中 第十二章 概率、随机变量及其分布 12.3 几何概型教师用书 理 苏教版
1.几何概型的概念 设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型. 2.几何概型的概率计算公式 一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,
则事件A发生的概率P(A)=d的测度D的测度. 3.几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法 (1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法. (2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随
机数的个数M和总的随机数个数N;③计算频率fn(A)=MN作为所求概率的近似值. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ ) (2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ ) (3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) 小初高试卷类教案类 K12分别是小学初中高中 (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P=19.( × )
1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为________. 答案 13
解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间的长度为3,故所求概率为13. 2.(2015·山东改编)在区间[0,2]上随机地取一个数x,则事件“-1≤log12x+12≤1”发生的概率为________. 答案 34
解析 由-1≤log12x+12≤1,得12≤x+12≤2, ∴0≤x≤32. ∴由几何概型的概率计算公式得所求概率
P=32-02-0=34.
3.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
答案 0.18 解析 由题意知,这是个几何概型问题, S阴
S正
=1801 000=0.18,
∵S正=1,∴S阴=0.18. 4.(2016·南通模拟)一个边长为3π cm的正方形薄木板的正中央有一个直径为2 cm的圆孔,一只小虫在木板的一个面内随机地爬行,则小虫恰在离四个顶点的距离都大于2 cm的区域内的概率等于________.
答案 12 小初高试卷类教案类 K12分别是小学初中高中 解析 如图所示,分别以正方形的四个顶点为圆心,2 cm为半径作圆,与正方形相交截得四个圆心角为直角的扇形,当小虫落在图中的黑色区域时,它离四个顶点的距离都大于2 cm,其中黑色区域面积为S1=S正方形-4S扇形-S小圆=(3π)2-π×22-π×12=9π-5π=4π,
所以小虫离四个顶点的距离都大于2 cm的概率为P=S19π-π=4π8π=12.
5.(高考改编)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是________.
答案 π4 解析 设质点落在以AB为直径的半圆内为事件A,
则P(A)=阴影面积长方形面积=12π·121×2=π4.
题型一 与长度、角度有关的几何概型 例1 (1)(2016·全国甲卷改编)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为________.
(2)在区间[-π2,π2]上随机取一个数x,则cos x的值介于0到12之间的概率为________.
答案 (1)58 (2)13 解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58. (2)当-π2≤x≤π2时,由0≤cos x≤12, 小初高试卷类教案类 K12分别是小学初中高中 得-π2≤x≤-π3或π3≤x≤π2, 根据几何概型概率公式得所求概率为13. (3)如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=3,在∠BAC内作射线AM交BC于点M,求BM<1的概率.
解 因为∠B=60°,∠C=45°,所以∠BAC=75°. 在Rt△ABD中,AD=3,∠B=60°,
所以BD=ADtan 60°=1,∠BAD=30°. 记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则可得∠BAM<∠BAD时事件N发生.
由几何概型的概率公式,得P(N)=30°75°=25. 引申探究 1.本例(2)中,若将“cos x的值介于0到12”改为“cos x的值介于0到32”,则概率如何? 解 当-π2≤x≤π2时,由0≤cos x≤32, 得-π2≤x≤-π6或π6≤x≤π2, 根据几何概型概率公式得所求概率为23. 2.本例(3)中,若将“在∠BAC内作射线AM交BC于点M”改为“在线段BC上找一点M”,求BM<1的概率. 解 依题意知BC=BD+DC=1+3,
P(BM<1)=11+3=3-12.
思维升华 求解与长度、角度有关的几何概型的方法 求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度). 小初高试卷类教案类 K12分别是小学初中高中 (1)(2016·全国乙卷改编)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________.
(2)已知集合A={x|-10,在集合A中任取一个元素x,则事件“x∈(A∩B)”的概率是________. 答案 (1)12 (2)16 解析 (1)如图所示,画出时间轴.
小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P=10+1040=12. (2)由题意得A={x|-1集合A中任取一个元素x,则x∈(A∩B)的概率为P=16. 题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题 例2 (2016·全国甲卷改编)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为________.
答案 4mn 解析 由题意得 (xi,yi)(i=1,2,…,n)在如图所示方格中,而平方和小于1的点均在如
图所示的阴影中,由几何概型概率计算公式知π41=mn,
∴π=4mn. 命题点2 与线性规划知识交汇命题的问题 小初高试卷类教案类 K12分别是小学初中高中 例3 (2016·徐州模拟)由不等式组 x≤0,y≥0,y-x-2≤0确定的平面区域记为Ω1,不等式组
x+y≤1,
x+y≥-2
确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概
率为________. 答案 78 解析 如图,平面区域Ω1就是三角形区域OAB,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD,
易知C(-12,32),故由几何概型的概率公式,得所求概率 P=S四边形OACDS△OAB=2-142=78.
思维升华 求解与面积有关的几何概型的注意点 求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.
(1)(2016·泰州模拟)设不等式组 y≤x,y≥-x,2x-y-4≤0所表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概
率为________. (2)(2015·福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D
在函数f(x)= x+1,x≥0,-12x+1,x<0的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于________.