大学数学复习专题讲座

合集下载

【问题】高考数学二轮专题复习与策略第2部分专题讲座1四大数学思想教师用书理

【问题】高考数学二轮专题复习与策略第2部分专题讲座1四大数学思想教师用书理

【关键字】问题专题讲座1 四大数学思想思想1 函数与方程思想函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数学思想.方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想.(1)设函数f(x)的导函数为f′(x),对任意x∈R都有f(x)>f′(x)成立,则(ln 2)与(ln 3)的大小关系为________.(2)直线y=kx+2和椭圆+=1在y轴左侧部分交于A,B两点,直线l过点P(0,-2)和线段AB的中点M,则l在x轴上的截距a的取值范围为________.(1)(ln 2)>(ln 3) (2) [(1)令F(x)=,则F′(x)=.因为对∀x∈R都有f(x)>f′(x),所以F′(x)<0,即F(x)在R上单调递减.又ln 2<ln 3,所以F(ln 2)>F(ln 3),即>,所以>,即3f(ln 2)>2f(ln 3).(2)设A(x1,y1),B(x2,y2),M(x0,y0),直线l与x轴的交点为N(a,0).由得(3+4k2)x2+16kx+4=0.因为直线y=kx+2和椭圆+=1在y轴左侧部分交于A,B两点,所以解得k>.又M为线段AB的中点,所以由P(0,-2),M(x0,y0),N(a,0)三点共线,所以=,所以-=2k+.又因为k>,所以2k+≥2,当且仅当k=时等号成立,所以-≥2,则-≤a≤0.]函数与方程思想在解题中的应用1.函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.2.数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.3.解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.4.立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.[变式训练1] 将函数y=sin的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值为________.【导学号:】[把y=sin的图象上所有的点向左平移m个单位长度后,得到y=sin=sin的图象,而此图象关于y轴对称,则4m-=kπ+(k∈Z),解得m=kπ+(k∈Z).又m>0,所以m的最小值为.]思想2 数形结合思想数形结合思想,就是通过数与形的相互转化来解决数学问题的思想.其应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质,如应用函数的图象来直观地说明函数的性质.(2)“以数定形”,把直观图形数量化,使形更加精确,如应用曲线的方程来精确地阐明曲线的几何性质.(2016·山东高考)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是_____.(3,+∞) [作出f(x)的图象如图所示.当x>m时,x2-2mx+=(x-m)2+-m2,∴要使方程f(x)=b有三个不同的根,则-m2<m,即m2->0.又m>0,解得m>3.]数形结合思想在解题中的应用1.建立函数模型并结合其图象求参数的取值范围或解不等式.2.建立函数模型并结合其图象研究方程根或函数的零点的范围.3.建立解析几何模型求最值或范围.4.建立函数模型并结合其图象研究量与量之间的大小关系.[变式训练2] (1)若方程x2+(1+a)x+1+a+b=0的两根分别为椭圆、双曲线的离心率,则的取值范围是________.(2)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是________.(1) (2)(0,1)∪(1,+∞) [(1)由题意可知,方程的一个根位于(0,1)之间,另一根大于1.设f(x)=x2+(1+a)x+1+a+b,则即作出可行域如图阴影部分所示.可以看作可行域内的点(a,b)与原点(0,0)连线的斜率,由图可知kOA=-,∴-2<<-.(2)设y =g(x)=(x ≠0),则g ′(x)=,当x>0时,xf ′(x)-f(x)<0, ∴g ′(x)<0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=-f(-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数, ∴g (x )的图象的示意图如图所示. 当x >0,g (x )>0时,f (x )>0,0<x <1, 当x <0,g (x )<0时,f (x )>0,x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).]思想3 分类讨论思想分类讨论思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.(1)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是________.(2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________. (1)⎣⎢⎡⎭⎪⎫23,+∞ (2)2或72 [(1)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.(2)若∠PF 2F 1=90°, 则PF 21=PF 22+F 1F 22.∵PF 1+PF 2=6,F 1F 2=25, 解得PF 1=143,PF 2=43,∴PF 1PF 2=72. 若∠F 2PF 1=90°, 则F 1F 22=PF 21+PF 22 =PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2, ∴PF 1PF 2=2. 综上所述,PF 1PF 2=2或72.] 分类讨论思想在解题中的应用1.由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.2.由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.3.由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.4.由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类,如:角的终边所在的象限;点、线、面的位置关系等.[变式训练3] (1)已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 等于________.(2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________.(1)-3或38 (2)32或6 [(1)当a >0时,f (x )在[-3,-1]上单调递减,在[-1,2]上单调递增,故当x =2时,f (x )取得最大值,即8a +1=4,解得a =38.当a <0时,易知f (x )在x =-1处取得最大,即-a +1=4,∴a =-3.综上可知,a =38或-3.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立;当q ≠1时,由题意, 得⎩⎪⎨⎪⎧a 1q 2=a 3=32,a 11-q 31-q =S 3=92.所以⎩⎪⎨⎪⎧a 1q 2=32, ①a 11+q +q 2=92,②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0,所以q =-12或q =1(舍去). 当q =-12时,a 1=a 3q 2=6.综上可知,a 1=32或a 1=6.]思想4 转化与化归思想转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.(1)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则PFPA的最小值是________.(2)已知函数f (x )=3e |x |.若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,则m 的最大值为________.【导学号:】[解题指导] (1)利用抛物线的定义把PFPA的最值问题等价转化成直线PA 的斜率问题. (2)f (x +t )≤3e x ――→x +t ≥0e x +t≤e x ――→两边取对数t ≤1+ln x -x――→令hx =1+ln x -xh (x )min ≥-1.(1)22 (2)3 [(1)如图,作PH ⊥l 于H ,由抛物线的定义可知,PH =PF ,从而PFPA的最小值等价于PH PA的最小值,等价于∠PAH 最小,等价于∠PAF 最大,即直线PA 的斜率最大.此时直线PA 与抛物线y 2=4x 相切,由直线与抛物线的关系可知∠PAF =45°,所以PF PA =PHPA=sin 45°=22. (2)因为当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, 所以f (x +t )≤3e x ⇔ex +t≤e x ⇔t ≤1+ln x -x .所以原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (x ≥1). 因为h ′(x )=1x-1≤0,所以函数h (x )在[1,+∞)上为减函数. 又x ∈[1,m ],所以h (x )min =h (m )=1+ln m -m . 所以要使得对x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.因为h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e=-1,且函数h (x )在[1,+∞)上为减函数,所以满足条件的最大整数m 的值为3.]转化与化归思想在解题中的应用1.在三角函数中,涉及到三角式的变形,一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化等.2.换元法:是将一个复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的函数、方程、不等式的一种重要的方法.3.在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言进行转化.4.在解决数列问题时,常将一般数列转化为等差数列或等比数列求解.5.在利用导数研究函数问题时,常将函数的单调性、极值(最值)、切线问题,转化为其导函数f ′(x )构成的方程.[变式训练4] (1)(2016·杭州二模)在正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体的边长为1,则四面体B -EB 1D 1的体积为________.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.(1)105 16 (2)⎝ ⎛⎭⎪⎫-373,-5 [(1)连结BD ,DE (图略),因为BD ∥B 1D 1,所以∠EBD 就是异面直线BE 与B 1D 1所成的角,设A 1A =1,则DE =BE =52,BD =2,cos ∠EBD =54+2-542×52×2=105,由V 三棱锥B -EB 1D 1=V 三棱锥D 1-BEB 1得V 三棱锥B -EB 1D 1=13×12×1×1=16. (2)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t-3t恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以若函数g (x )在区间(t,3)上总不为单调函数,则m 的取值范围为-373<m <-5.]此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

高考数学复习专题讲座

高考数学复习专题讲座
回归课本,关注数学概念的发生发展过程, 应该是考查余弦定理的最主要原因。
2020/3/23
2019年我省进入实施新课标的高考,到2019年的 高考,从结果上看,领会《课标大纲》的精神,把握 “课标大纲”的本质,科学有效的备考,是考前非常 重要的工作。已经实施新课标高考的各省新课标考纲 说明都是严格按照课程标准、全国新课标考纲编写的 ,且都没有超出范围。全国新课标考纲自从2019年底 制定以来变化不大,特别是主干知识几乎没有太大变 化,正所谓“保留主干,去其枝蔓”。对新增内容的 考察力度较大,考查要求逐年提高,但相对稳定。
2020/3/23
⑤ 数据处理能力
对现实生活中的问题的研究,一般先获取数 据,对数据用列表或作图等方法进行分析,再结合 数学、物理、化学、地理等自然科学的知识,采用 某个数学模型来刻画它,通过对模型的研究,发现 该类问题具有的属性,并对它作出决策和判断。
数据处理一般分三步:第一步,收集数据;第 二步,整理并分析数据,得出这些数据资料所遵循 的规律;第三步,依据统计方法对数据进行整理、 分析,抽取出有用的信息,作出判断。
掌握空间向量的正交分解及量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直)
② 空间向量的应用(理解直线的方向向量与平面的法向量,
能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系, 能用向量方法证明有关直线和平面位置关系的一些定理,能用向量解决直线 与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究 立体几何问题中的应用)
2020/3/23
(三)考查余弦定理的意义 余弦定理是高中数学的重要知识,也是解
决数学问题的重要工具。因此,从知识上讲, 考查余弦定理理所当然。
余弦定理的证明过程是推理论证的重要体 现,能充分地考查学生的推理论证能力。

高考数学复习专题讲座化归思想

高考数学复习专题讲座化归思想

高考数学复习专题讲座 化归思想高考要求化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想 等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法重难点归纳转化有等价转化与不等价转化 等价转化后的新问题与原问题实质是一样的 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正应用转化化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化典型题例示范讲解例1对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去现定义124)(+-=x x x f (1)若输入x 0=6549,则由数列发生器产生数列{x n },请写出{x n }的所有项; (2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; (3)若输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求x 0的取值范围命题意图 本题主要考查学生的阅读审题,综合理解及逻辑推理的能力知识依托 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键就是应用转化思想将题意条件转化为数学语言错解分析 考生易出现以下几种错因(1)审题后不能理解题意(2)题意转化不出数学关系式,如第2问(3)第3问不能进行从一般到特殊的转化技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于陌生不易理解并将文意转化为数学语言 这就要求我们慎读题意,把握主脉,体会数学转换解 (1)∵f (x )的定义域D =(–∞,–1)∪(–1,+∞)∴数列{x n }只有三项,1,51,1911321-===x x x (2)∵x x x x f =+-=124)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时n n n n x x x x =+-=+1241故当x 0=1时,x n =1,当x 0=2时,x n =2(n ∈N *) (3)解不等式124+-<x x x ,得x <–1或1<x <2 要使x 1<x 2,则x 2<–1或1<x 1<2对于函数164124)(+-=+-=x x x x f 若x 1<–1,则x 2=f (x 1)>4,x 3=f (x 2)<x 2 若1<x 1<2时,x 2=f (x 1)>x 1且1<x 2<2 依次类推可得数列{x n }的所有项均满足 x n +1>x n (n ∈N *) 综上所述,x 1∈(1,2) 由x 1=f (x 0),得x 0∈(1,2)例2设椭圆C 1的方程为12222=+b y a x (a >b >0),曲线C 2的方程为y =x1,且曲线C 1与C 2在第一象限内只有一个公共点P(1)试用a 表示点P 的坐标;(2)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;(3)记min{y 1,y 2,……,y n }为y 1,y 2,……,y n 中最小的一个 设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,试求函数f (a )=min{g (a ), S (a )}的表达式命题意图 本题考查曲线的位置关系,函数的最值等基础知识,考查推理运算能力及综合运用知识解题的能力知识依托两曲线交点个数的转化及充要条件,求函数值域、解不等式错解分析 第(1)问中将交点个数转化为方程组解的个数,考查易出现计算错误,不能借助Δ找到a 、b 的关系 第(2)问中考生易忽略a >b >0这一隐性条件 第(3)问中考生往往想不起将min{g (a ),S (a )}转化为解不等式g (a )≥S (a )技巧与方法 将难以下手的题目转化为自己熟练掌握的基本问题,是应用化归思想的灵魂 要求必须将各知识的内涵及关联做到转化有目标、转化有桥梁、转化有效果解 (1)将y =x1代入椭圆方程,得 112222=+xb a x 化简,得b 2x 4–a 2b 2x 2+a 2=0由条件,有Δ=a 4b 4–4a 2b 2=0,得ab =2 解得x =2a 或x =–2a(舍去) 故P 的坐标为(aa 2,2) (2)∵在△ABP 中,|AB |=222b a -,高为a2, ∴)41(22221)(422aa b a a S -=⋅-⋅=∵a >b >0,b =a2 ∴a >a 2,即a >2,得0<44a<1 于是0<S (a )<2,故△ABP 的面积函数S (a )的值域为(0,2) (3)g (a )=c 2=a 2–b 2=a 2–24a 解不等式g (a )≥S (a ),即a 2–24a≥)41(24a - 整理,得a 8–10a 4+24≥0,即(a 4–4)(a 4–6)≥0 解得a ≤2(舍去)或a ≥46故f (a )=min{g (a ), S (a )}⎪⎪⎩⎪⎪⎨⎧<-≤<-=)6()41(262(444422a a a a a例3一条路上共有9个路灯,为了节约用电,拟关闭其中3个,要求两端的路灯不能关闭,任意两个相邻的路灯不能同时关闭,那么关闭路灯的方法总数为解析9个灯中关闭3个等价于在6个开启的路灯中,选3个间隔(不包括两端外边的装置)插入关闭的过程故有C 35=10种答案 10例4 已知平面向量a =(3–1), a =(23,21) (1)证明a ⊥b ;(2)若存在不同时为零的实数k 和t ,使x =a +(t 2–3) b ,y =–k a +t b ,且x ⊥y ,试求函数关系式k =f (t);(3)据(2)的结论,讨论关于t 的方程f (t )–k =0的解的情况(1)证明 ∵a ·b =23)1(213⋅-+⨯=0,∴a ⊥b (2)解 ∵x ⊥y ,∴x ·y =0即[a +(t 2–3) b ]·(–k a +t b )=0,整理后得 –k a 2+[t –k (t 2–3)]a ·b +t (t 2–3)·b 2=0∵a ·b =0, a 2=4, b 2=1 ∴上式化为–4k +t (t 2–3)=0,∴k =41t (t 2–3) (3)解 讨论方程41t (t 2–3)–k =0的解的情况, 可以看作曲线f (t )=41t (t 2–3)与直线y =k 的交点个数于是f ′(t )=43(t 2–1)=43(t +1)(t –1)令f ′(t )=0,解得t =1 的变化情况如下表 t (–∞,–1)–1 (–1,1) 1 (1,+∞) f ′(t ) + 0 – 0 + f (t )↗极大值↘极小值↗当t =–1时,f (t )有极大值,f (t )极大值=2; 当t =1时,f (t )有极小值,f (t )极小值=21而f (t )=41(t 2–3)t =0时,得t =–33所以f (t )的图象大致如右于是当k >21或k <–21时,直线y =k 与曲线y =f (t )仅有一个交点,则方程有一解;当k =21或k =–21时,直线与曲线有两个交点,则方程有两解;当k =0,直线与曲线有三个交点,但k 、t 不同时为零,故此时也有两解;当–21<k <0或0<k <21时,直线与曲线有三个交点,则方程有三个解学生巩固练习1 已知两条直线l 1:y =x ,l 2:ax –y =0,其中a ∈R ,当这两条直线的夹角在(0,2π)内变动时,a 的取值范围是( )A (0,1)B (33,3) C (33,1)∪(1,3) D (1,3) 2 等差数列{a n }和{b n }的前n 项和分别用S n 和T n 表示,若534+=n n T S n n ,则nn n b a ∞→lim 的值为( )A34 B 1 C 36 D 94f(t)=14t(t 2-3)1-1-1212y=koyt3 某房间有4个人,那么至少有2人生日是同一个月的概率是 (列式表示)4 函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是5 已知f (x )=lg(x +1),g (x )=2lg(2x +t ),(t ∈R 是参数)(1)当t =–1时,解不等式f (x )≤g (x );(2)如果x ∈[0,1]时,f (x )≤g (x )恒成立,求参数t 的取值范围6 已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,n ∈N *且a 1、a 2、a 3、……、a n 构成一个数列{a n },满足f (1)=n 2(1)求数列{a n }的通项公式,并求1lim+∞→n nn a a ;(2)证明0<f (31)<1 7 设A 、B 是双曲线x 2–22y=1上的两点,点N (1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?8 直线y =a 与函数y =x 3–3x 的图象有相异三个交点,求a 的取值范围参考答案1 解析 分析直线l 2的变化特征,化数为形,已知两直线不重合,因此问题应该有两个范围即得解答案 C2 解析 化和的比为项的比∵n n n n n b n T a n a a n S )12(;)12(2)12(1212112-=-=+-=--- ∴26485)12(3)12(41212+-=+--==--n n n n T S b a n n n n ,取极限易得 答案 A3 解析 转化为先求对立事件的概率即四人生日各不相同的概率答案 441212A 1-4 解析 转化为f ′(x )=3x 2–3b 在(0,1)内与x 轴有两交点只须f ′(0)<0且f ′(1)>0答案 0<b <15 解 (1)原不等式等价于⎪⎩⎪⎨⎧>->⎪⎩⎪⎨⎧-≤+>->+05421)12(10120122x x x x x x x 即即⎪⎪⎩⎪⎪⎨⎧≥≤>45021x x x 或 ∴x ≥45∴原不等式的解集为{x |x ≥45} (2)x ∈[0,1]时,f (x )≤g (x )恒成立∴x ∈[0,1]时⎪⎩⎪⎨⎧+≤+>+>+2)2()1(0201t x x t x x 恒成立 即⎪⎩⎪⎨⎧++-≥->>+12201x x t x t x 恒成立即x ∈[0,1]时,t ≥–2x +1+x 恒成立,于是转化为求–2x +x +1,x ∈[0,1]的最大值问题 令μ=1+x ,则x =μ2–1,则μ∈[1,2]∴2x +1+x =–2(μ–41)2817 当μ=1即x =0时,–2x +1+x 有最大值1 ∴t 的取值范围是t ≥16 (1)解 {a n }的前n 项和S n =a 1+a 2+…+a n =f (1)=n 2,由a n =S n –S n –1=n 2–(n –1)2=2n –1(n ≥2),又a 1=S 1=1满足a n =2n –1故{a n }通项公式为a n =2n –1(n ∈N *) ∴11212lim lim1=+-=∞→+∞→n n a a n n n n(2)证明 ∵f (31)=1·31+3·91+…+(2n –1)n 31①∴31f (31)=1·91+3·271+…+(2n –3)n 31+(2n –1)131+n ②①–②得 32f (31)=1·31+2·91+2·271+…+2·n 31–(2n –1)·131+n∴f (31)=21+31+91+271+…+131-n –(2n –1)131+n =1n n 31+∵n n n n n n +>+>+⋅+⋅+=+=1212C 2C 1)21(3221 (n ∈N *)∴0<n n 31+<1,∴0<1–nn 31+<1,即0<f (31)<1 7 解 (1)设AB ∶y =k (x –1)+2代入x 2–22y=1整理得(2–k 2)x 2–2k (2–k )x –(2–k )2–2=0 ①设A (x 1,y 1)、B (x 2,y 2),x 1,x 2为方程①的两根 所以2–k 2≠0且x 1+x 2=22)2(2kk k -- 又N 为AB 中点, 有21(x 1+x 2)=1 ∴k (2–k )=2–k 2,解得k =1 故AB ∶y =x +1 (2)解出A (–1,0)、B (3,4)得CD 的方程为y =3–x 与双曲线方程联立 消y 有x 2+6x –11=0②记C (x 3,y 3)、D (x 4,y 4)及CD 中点M (x 0,y 0)由韦达定理可得x 0=–3,y 0=6∵|CD |=104)()(243243=-+-y y x x ∴|MC |=|MD |=21|CD |=210 又|MA |=|MB |=102)()(210210=-+-y y x x 即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆8 提示 f ′(x )=3x 2–3=3(x –1)(x +1)易确定f (–1)=2是极大值,f (1)=–2是极小值 当–2<a <2时有三个相异交点课前后备注。

数学讲座稿及课件模板

数学讲座稿及课件模板

讲座时间:2023年4月15日讲座地点:XX大学数学学院报告厅一、讲座引言尊敬的各位老师、亲爱的同学们:大家好!今天,我们聚集在这里,共同探讨一个永恒的话题——数学。

数学,作为人类智慧的结晶,贯穿了人类文明的发展历程。

从古至今,数学不仅是一门学科,更是一种文化的传承。

今天,我将带领大家穿越时空,一起领略数学之美,感受数学的魅力。

二、讲座内容(一)古代数学的辉煌1. 古埃及数学同学们,你们知道吗?早在公元前2000年,古埃及人就已经掌握了加减乘除等基本运算,并且有了完善的几何知识。

他们用数学来测量土地、建造金字塔,为人类文明的发展做出了巨大贡献。

2. 巴比伦数学在古埃及的同时,古巴比伦人也发展了自己的数学。

他们用六十进制来表示数字,并且掌握了三角函数的基本知识。

这些数学成就,为后来的数学发展奠定了基础。

3. 希腊数学古希腊数学家欧几里得创立了《几何原本》,奠定了几何学的基础。

阿基米德则研究了圆周率、浮力等数学问题,为后世留下了宝贵的数学遗产。

(二)中世纪数学的发展1. 伊斯兰数学在中世纪,阿拉伯人将古希腊、古印度等地的数学知识传入欧洲。

他们在代数、三角学等领域取得了显著成就,为欧洲数学的复兴奠定了基础。

2. 欧洲数学的复兴14世纪,欧洲数学开始复兴。

法国数学家费马、意大利数学家卡尔达诺等人为代数的发展做出了巨大贡献。

同时,德国数学家莱布尼茨发明了微积分,使数学进入了一个崭新的时代。

(三)现代数学的辉煌1. 微积分的发展17世纪,牛顿和莱布尼茨发明了微积分,为自然科学的发展提供了强大的工具。

微积分的创立,使数学与物理学、天文学等领域紧密相连。

2. 概率论与数理统计18世纪,概率论与数理统计开始发展。

这些数学分支在保险、金融等领域得到了广泛应用。

3. 20世纪数学的突破20世纪,数学取得了许多突破性成果。

哥德尔的不完备性定理、图灵机的发明等,使数学成为一门具有无限潜力的学科。

三、讲座总结同学们,数学之美无处不在。

专题讲座数学

专题讲座数学

专题讲座数学专题讲座数学数学是一门抽象而又精密的学科,它无处不在,影响着我们生活的方方面面。

为了帮助大家更好地理解数学的重要性和应用价值,我们学校特邀请了数学教授李老师来为我们做一场关于数学的专题讲座。

本次讲座主要分为以下几个部分:数学的基础概念、数学的应用和数学思维的培养。

一、数学的基础概念在本部分,李老师首先向我们介绍了数学的基础概念。

数学作为一门学科,它的基石是数的概念。

李老师从整数、有理数、无理数等方面详细讲解了数的分类和性质。

他还通过一些例题,帮助我们更好地理解和运用这些数的概念。

除此之外,李老师还大致介绍了数学的其他重要概念,如代数、几何、概率等。

在他的讲解下,我们对这些概念有了初步的了解,对于后续的数学学习打下了基础。

二、数学的应用在这一部分,李老师分享了数学在现实生活中的应用。

他以生活中的实际问题为例,通过运用数学知识解决问题的方法和思维过程,向我们展示了数学的实际应用价值。

例如,李老师通过解释如何计算折扣、利率和百分比,让我们了解了数学在金融领域中的应用。

他还介绍了数学在工程、物理、生物学等领域中的应用,让我们深刻认识到数学是一门与各行各业密切相关的学科。

三、数学思维的培养在数学领域,数学思维的培养是至关重要的。

李老师在这部分向我们介绍了一些培养数学思维的方法和技巧。

首先,他强调了问题解决的重要性。

解决数学问题需要我们善于提出问题、分析问题和归纳总结问题的解决方法。

通过反复练习和思考,我们可以逐渐培养出良好的数学思维。

其次,李老师提醒我们要保持对数学的兴趣和好奇心,学习数学应该是一种享受和发现的过程。

他鼓励我们多参与数学竞赛和数学社团,通过与他人的交流和合作,不断提高自己的数学思维水平。

最后,李老师还分享了一些学习数学的方法和技巧,如刻意练习、巧用工具和资源等。

这些方法能够帮助我们更高效地学习数学,提升我们的数学能力。

总结:通过这次专题讲座,我们对数学的基础概念、应用和数学思维的培养有了更深入的认识。

2020高考数学精英备考专题讲座 第八讲运用数学思想方法解题的策略 第五节推理证明与算法初步 文 精品

2020高考数学精英备考专题讲座 第八讲运用数学思想方法解题的策略 第五节推理证明与算法初步 文 精品

第五节 推理证明与算法初步推理证明与算法初步是我们高考关注的几个新课标中重点话题,主要涉及到合情推理和演绎推理,直接证明和间接证明,以及算法初步中的框图知识和算法案例等. 题型可能是选择题、填空题,主要考查类比或归纳推理、循环结构为主的框图等;也可能是解答题,结合多个知识点进行命题的综合试题.其中推理与证明部分常与数列、不等到式问题综合,难度一般在0.3~0.7之间.考试要求 (1)合情推理与演绎推理① 了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;② 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③ 了解合情推理和演绎推理之间的联系和差异;(2)直接证明与间接证明① 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;② 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点;(3)了解算法的含义;理解程序框图的三种基本结构:顺序、选择、循环;理解几种基本算法语句. 题型一:合情推理例1(1)若∆ABC 内切圆半径为r ,三边长为a 、b 、c ,则∆ABC 的面积S =12 r (a +b +c ) 类比到空间,若四面体内切球半径为R ,四个面的面积为S 1、S 2 、S 3 、S 4,则四面体的体积= .(2)在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n 个三角形数为( ). A.n B.)1(21+n n C.12-n D.)1(21-n n点拨:(1)类比推理是指两类对象具有一些类似特征,由其中一类的某些已知特征推出另一类对象的某些特征;(2)这是一种归纳推理方法,要善于发现其中的数字间的特征才能找到规律,得到一般形式. 解:(1)比较两个对象,三边对四面,面积对体积,内切圆对内切球,三边长对四个面的面积,由S =12 r (a +b +c )等式两边的量,类比对应到体积、系数13 、半径R 、面积S 1+S 2+S 3+S 4.答:13R(S 1+S 2+S 3+S 4).(2)在给出的一三角形数中,其中第一个三角形数1,第二个三角形数3=1+2,第三个三角形数6=1+2=3,第四个三角形数10=1+2+3+4,第五个三角形数15=1+2+3+4+5,故推测出的一般结论是:第n 个三角形数为1123(1)2n n n +++⋅⋅⋅+=+易错点:(1)类似特征不明确,类比结论错误;(2)不善于寻找数字间的 规律,导致结论错误.变式与引申1:(1) 在Rt△ABC 中,CA⊥CB,斜边AB 上的高为h 1, 则2221111CBCA h +=;类比此性质,如图,在四 面体P —ABC 中,若PA ,PB ,PC 两两垂直,底面ABC 上的高为h ,则得到的正确结论为 ;(2)(2020江西文数)观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49 题型二:演绎推理 例2如图,在直三棱柱111ABCA B C -中,E,F 分别是11A B,AC 的中点,点D 在11B C 上,11A D B C ⊥. 求证:(1)EF ∥ABC 平面;(2)111A FD BB C C ⊥平面平面.点拨:数学的证明主要是通过演绎推理来进行的,证明线面平行时一定要注意注明直线在平面内及直线在平面外这两个条件.解:证明:(1)因为E,F 分别是11A B,AC 的中点,所以EF//BC ,又EF ⊄面ABC ,BC ⊂面ABC ,所以EF ∥ABC 平面;(2)因为直三棱柱111ABC A B C -,所以1111BB ABC ⊥面, 11BB A D ⊥,又11A D B C ⊥,所以111AD BC C ⊥面B ,又11A D A FD ⊂面,所以111A FD BB C C ⊥平面平面. 易错点:三段论是演绎推理的一般形式,包括大前提、小前提、结论三部分,在书写证明的过程中,很多学生会出现跳步现象, 逻辑关系不清楚是常见的错误. 变式与引申2:(1)已知①正方形的对角相等;②平行四边形的对角相等;③正方形是平行四边形.根据三段论推理得到一个结论,则这个结论的序号是 .(2)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点.(Ⅰ)求证:AF ∥平面BCE ;(Ⅱ)求证:平面BCE ⊥平面CDE .题型三:直接证明例3 已知,0,0>>b a 求证:.b a ab ba +≥+点拨:综合法着力分析已知和求证之间的差异和联系,并合理运用已知 条件进行有效的变换是证明的关键,综合法可以使证明过程表述简洁,但必须首先考虑从哪开始,这一点比较困难,分析法就可以帮助我们克服这一点,运用分析DO 图332--AB CDEF图334--法比较容易探求解题的途径,但过程不及综合法简单,所以应把它们结合起来. 证法1:(综合法),0,0>>b a Θ a b ba 2≥+∴,当且仅当b a =时等号成立,b a ab 2≥+∴当且仅当b a =时等号成立, ,22b a a ab b ba +≥+++∴ 即.b a ab ba +≥+证法2:(分析法) 要证.b a ab ba +≥+,只要证,ab b a b b a a +≥+ 即证0)()(≥-+-a b b b a a ,即证,0))((≥--b a b a 即0)()(2≥+-b a b a由,0,0>>b a Θ ,0)(2≥-b a ,0>+b a 得0)()(2≥+-b a b a ,所以原不等式成立易错点: (1)用综合法证明时难找到突破口,解题受阻;(2)分析法是寻找使不等式成立的充分条件,最后要充分说明推出的结论为什么成立.变式与引申3:设n a = (*n N ∈),比较n a 、(1)2n n +、2(1)2n +的大小,并证明你的结论.题型四:间接证明 例4:已知函数y=a x+12+-x x (a >1). (1)证明:函数f(x)在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根.点拨:用反证法证明把握三点(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即把结论的反面作为条件,且必须依据这一条件进行推证,(3)导致的矛盾可能多种多样,但推导出的矛盾必须是明显的.证明 (1)任取x 1,x 2∈(-1,+∞), 不妨设x 1<x 2,则x 2-x 1>0,由于a >1, ∴a 12x x ->1且a 1x >0, ∴a 2x -a 1x =a 1x (a 12x x --1)>0. 又∵x 1+1>0,x 2+1>0, ∴1222+-x x -1211+-x x =)1)(1()1)(2()1)(2(212112+++--+-x x x x x x =)1)(1()(32112++-x x x x >0,于是f(x 2)-f(x 1)=a 2x -a 1x +1222+-x x -1211+-x x >0, 故函数f (x )在(-1,+∞)上为增函数.(2)方法一 假设存在x 0<0 (x 0≠-1)满足f(x 0)=0, 则a 0x =-1200+-x x . ∵a >1,∴0<a 0x <1, ∴0<-1200+-x x <1,得21<x 0<2,与假设x 0<0相矛盾,故方程f(x)=0没有负数根. 方法二 假设存在x 0<0 (x 0≠-1)满足f(x 0)=0, ①若-1<x 0<0,则1200+-x x <-2,a 0x <1, ∴f(x 0)<-1,与f(x 0)=0矛盾. ②若x 0<-1,则1200+-x x >0,a 0x >0, ∴f(x 0)>0,与f(x 0)=0矛盾, 故方程f(x)=0没有负数根. 易错点:(1)不是把求证结论的反面作为条件证题(2)不写明与什么相矛盾.变式与引申4:证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根 题型五: 算法初步例5 若程序框图如图输出的 S 是 126,则①应为( ) A .n ≤5? B .n ≤6? C .n ≤7? D .n ≤8?点拨 由nS S 2+=知,在第n 次循环时,n S 2...2221+++=,由题意只需找到满足方程1262 (222)1=+++n的n 的值.再结合语句1+=n n 推出判断框①.解析 因126222222654321=+++++=S ,则当n =7时退出循环,所以 n ≤6.故选 B.易错点 不能准确判断循环终止的条件 变式与引申5. 下面是一个用基本语句编写的程序如图,阅读后解决所给出的问题: INPUT xIF 2<x THEN5+=x yELSEx x x y *-*=2END IF PRINT yEND(1)请说明该算法程序的功能,并写出程序中的函数表达式; (2)将该程序语句转化为相应的程序框图.本节主要考查:(1)知识点有:归纳推理、类比推理两种合情推理和演绎推理;直接证明与间接证明;算法的含义、几种基本的算法语句、程序框图.(2)推理渗透在每个高考试题中,证明是推理的一种形式,有的问题需要很强的推理论证能力和技巧.推理问题常常以探索性命题的方式出现在高考题中;(3)常见的论证方法有:综合法、分析法及反证法等. 点评:(1)归纳猜想是一种重要的思维方法,是对有限的资料进行观察、分析、归纳、整理,然后提出带有规律性的结论,是由部分到整理,由个别到一般的推理;结果的正确性还需进一步论证,一般地,考查的个体越多,归纳出的结论可靠性越大.(2)类比的关健是能把两个系统之间的某些一致性确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚,在学习中要注意通过类比去发现探索新问题.(3)综合法的特点是:以“已知”看“可知”,逐步推向“未知”,实际上是寻找使问题成立的必要条件,是一个由因导果的过程;分析法的特点是:从“未知”看“需知”逐步靠拢“已知”,即寻找使问题成立的充分条件,是一个执果索因的过程.(4)一般来说:分析法有两种证明途径:①由命题结论出发,寻找结论成立的充分条件,逐步推导下去;②由命题结论出发,寻找结论成立的充要条件,逐步推导下去.(5)反证法在高考中的要求不高,但这种“正难则反”的思维方式值得重视,解决问题时要注意从多方面考虑,提高解决问题的灵活性.(6)算法是指解决某类问题的程序或步骤,这些程序或步骤必须是明确和有效的,且在有限步内完成.算法过程要简练,每一步执行的操作必须为下一步做准备.程序框图是由框图和流程线组成的,是算法的一种表现形式.通常是先写出算法步骤,再转化为程序框图.算法初步在高考中的要求不高,同学们在学习时要通过对解决具体问题过程与步骤的分析,体会算法的基本思想.习题8-51.(2020高考天津卷·理)阅读右边的程序框图,运行相应的 程序,则输出i 的值为( ) A .3 B .4 C .5 D .62.将正奇数数列1,3,5,7,9,…进行如下分组:第一组含一个数 {1};第二组含两个数{3,5};第三组含三个数{7,9,11};第四组含 四个数{13,15,17,19};……记第n 组内各数之和为S n ,则S n 与n 的关系为 ( )A .S n =n 2B .S n =n 3C .S n =2n +1D .S n =3n -13.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列三个接收信息:(1)11010(2)01100(3)10111,一定有误的是 (填序号). 4. 已知函数ln ()xf x x x=-. (1)求函数()f x 的单调区间;(2)试证明:对任意n N *∈,不等式211lnn nn n++<恒成立. 5.如图所示,点P 为斜三棱柱ABC-A 1B 1C 1的侧棱BB 1上一点,PM⊥BB 1交AA 1于点M ,PN⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF·EF·cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个 侧面所成的二面角之间的关系式,并予以证明.6.已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线2222b y a x -=1写出具有类似特性的性质,并加以证明.【答案】变式与引申1【解析】(1)22221111PCPB PA h ++=; (2)答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x Θ变式与引申2 【解析】(1)演绎推理是从一般性原理出发,推出某个特殊情况下的结论,三段论是演绎推理的一般形式,包括大前提、小前提、结论三部分.这里②③可推出①,其中②是大前提,③是小前题①是结论; 答:①; (2)19.方法一:(1)证:取CE 的中点G ,连FG BG 、.∵F 为CD 的中点,∴//GF DE 且12GF DE =.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴//AB DE ,∴//GF AB .又12AB DE =,∴GF AB =.∴四边形GFAB 为平行四边形,则//AF BG . ∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴//AF 平面BCE .(2)证:∵ACD ∆为等边三角形,F 为CD 的中点,∴AF CD ⊥图335--∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE AF ⊥. 又CD DE D =I ,故AF ⊥平面CDE . ∵//BG AF ,∴BG ⊥平面CDE . ∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .方法二:设22AD DE AB a ===,建立如图所示的坐标系A xyz -, 则()()()()()000200,0,0,,,3,0,,3,2A C a B a D a a E a a a ,,,,,.∵F 为CD 的中点,∴33,,02F a a ⎛⎫ ⎪ ⎪⎝⎭. (1)证:()()33,,0,,3,,2,0,2AF a a BE a a a BC a a ⎛⎫===- ⎪ ⎪⎝⎭u u u r u u u r u u u r , ∵()12AF BE BC =+u u u r u u u r u u u r,AF ⊄平面BCE ,∴//AF 平面BCE .(2)证:∵()()33,,0,,3,0,0,0,22AF a a CD a a ED a ⎛⎫==-=- ⎪ ⎪⎝⎭u u u r u u u r u u u r ,∴0,0AF CD AF ED ⋅=⋅=u u u r u u u r u u u r u u u r ,∴,AF CD AF ED ⊥⊥u u u r u u u r u u u r u u u r . ∴AF ⊥u u u r平面CDE ,又//AF 平面BCE , ∴平面BCE ⊥平面CDE .变式与引申3 【解析】∵(1)1223(1)122n n n a n n n +=⋅+⋅+⋅⋅⋅++>+++=L 又∵1223(1)n a n n =⋅+⋅+⋅⋅⋅++1223(1)222n n ++++<+++L 221223(1)222(1)(3)2(1)422n n n n n n n n n ++++<++++++++==<L∴(1)2n n +<n a <2(1)2n +变式与引申4证明:假设方程()0f x =在区间[,]a b 上至少有两个不同的实数根α、β,即()()0f f αβ==.不妨设αβ<,由于函数f (x )在区间[,]a b 上是增函数,故()()f f αβ<,这与()()0f f αβ==矛盾,所以方程()0f x =在区间[,]a b 上至多只有一个实数根. 5. 解:(1)由算法程序可知,该算法程序的功能是计算分段函数⎩⎨⎧≥-<+=)2(,2)2(,52x x x x x y 的函数值.(2)程序框图如图:习题8-51 . B ;2 .B ;3. 【解析】新背景下的信息转换问题,需要认真分析对应关系,在对应关系下求出原象,如对于第一个接受信息,依据对应关系可知012101a a a =,求得001101h a a =⊕=⊕=,同理求得10h =,故(1)正确;对于(3),若原信息为011,则接收信应为10110.答:(3);4. 【解析】解:(1)∵21ln '()1xf x x-=- 令'()0f x =得21ln x x =- 显然1x =是上方程的解令2()ln 1g x x x =+-,(0,)x ∈+∞,则1'()2g x x x=+0> ∴函数()g x 在(0,)+∞上单调递增 ∴1x =是方程'()0f x =的唯一解∵当01x <<时21ln '()1xf x x -=-0>,当1x >时'()0f x < ∴函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减 (2)由(1)知当(0,)x ∈+∞时,max ()(1)1f x f ==-∴在(0,)+∞上恒有ln ()xf x x x=-1≤-,当且仅当1x =时“=”成立∴对任意的(0,)x ∈+∞恒有ln (1)x x x ≤- ∵11n n +> ∴21111ln (1)n n n n n n n n++++<-=即对n N *∀∈,不等式211ln n n n n++<恒成立.5【解析】(1)∵PM ⊥BB 1,PN ⊥BB 1, ∴BB 1⊥平面PMN.∴BB 1⊥MN .又CC 1∥BB 1,∴CC 1⊥MN .(2)在斜三棱柱ABC-A 1B 1C 1中,有S 211A ABB =S 211B BCC +S 211AACC -2S 11B BCC S 11A ACC cos α.其中α为平面CC 1B 1B与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP .在△PMN 中, ∵PM 2=PN 2+MN 2-2PN ·MN cos∠MNP∴P M 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN·CC 1)cos∠MNP ,由于S 11B BCC =PN ·CC 1,S 11A ACC =MN·CC 1,S 11A ABB =PM·BB 1=PM ·CC 1,∴S 211A ABB =S 211B BCC +S 211AACC -2S 11B BCC ·S 11A ACC ·cos α.上,所以n 2=22ab m 2-b 2.同理y 2=22ab x 2-b 2.则k PM ·k PN=m x n y --·m x n y ++=2222m x n y --=22a b ·2222mx m x --=22a b (定值).。

大学数学(高数微积分)专题七第2讲(课堂讲义)

大学数学(高数微积分)专题七第2讲(课堂讲义)

力和速度.具体操作时,应注意以下几点:
(1)准确画出函数图象,注意函数的定义域.
5
思想方法概述
(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一
本 种行之有效的方法,值得注意的是首先要把方程两边的代数
讲 栏
式看作是两个函数的表达式(有时可能先作适当调整,以便于
目 开
作图),然后作出两个函数的图象,由图求解.

目 开
由图可知x·f(x)<0的x的取值范围是
关 (-1,0)∪(0,1).
13
热点分类突破
求参数范围或解不等式问题经常联系函数的图象,
本 讲
根据不等式中量的特点,选择适当的两个(或多个)函数,利
栏 用两个函数图象的上、下位置关系转化数量关系来解决问

开 题,往往可以避免繁琐的运算,获得简捷的解答.
由图知10<c<12,∴abc∈(10,12).
答案 (1)(-1,0)
(2)C
16
热点分类突破
类型三 利用数形结合思想求最值
例3 若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,
则|a+b-c|的最大值为
()
A. 2-1 B.1
C. 2
D.2

讲 解析 设a=(1,0),b=(0,1),c=(x,y),
目 开
速度.
关 5.数形结合思想常用模型:一次、二次函数图象;斜率公
式;两点间的距离公式(或向量的模、复数的模);点到直
线的距离公式等.
22
名师押题我来做
1.已知0<a<1,则方程a|x|=|logax|的实根个数为
A.1
B.2

高等数学专题讲座--空间解析几何与向量代数(张晓强)

高等数学专题讲座--空间解析几何与向量代数(张晓强)

November 24, 2019
学习重点难点
曲线
空间曲线在坐标面上的投影: F(x, y, z) 0 G(x, y, z) 0
6666
H(x, y) 0 z 0
21 高等数学专题讲座:空间解析几何与向量代数 主讲:张晓强
November 24, 2019
常见错解分析
学习重点难点
曲线
x x(t)
参数方程: y y(t)
z z(t)
z
例如 ,圆柱螺旋线
6666
x a cos

y

a
sin
M
z b
o
x
y
当 2 时,上升高度h 2 b,称为螺距.
20 高等数学专题讲座:空间解析几何与向量代数 主讲:张晓强
bx by bz
两向量的夹角:
cos a b
axbx ayby azbz
ab
ax2

a
2 y

az2
bx2 by2 bz2
5 高等数学专题讲座:空间解析几何与向量代数 主讲:张晓强
November 24, 2019
学习重点难点
向量
向量关系 :
a ∥b bx by bz a b =0
November 24, 2019
常见错解分析
考虑不周
例5 确定直线 x 3 y 5 z 8 与平面间 3 1 4
x y z 6 0的关系。 错解:
因 3,1, 41,1,1=0,因6此66直 6 线与平面垂直。 错误 或 因 3,1, 41,1,1=0,因此直线与平面平行。 不准确
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数学复习专题讲座
导言
大学数学是建立在高中数学基础上的一门较为抽象和理论性较
强的学科。

为了帮助同学们更好地复和掌握大学数学知识,我们将
举办一场大学数学复专题讲座。

本讲座将涵盖大学数学的主要内容,并以简洁直观的方式呈现,以便帮助同学们更好地理解和记忆。

讲座内容
1. 高等代数:
- 线性方程组的解法和应用
- 矩阵的运算和性质
- 特征值和特征向量的概念与计算
2. 微积分:
- 极限和连续性
- 导数和微分法
- 积分和积分法
3. 概率论与数理统计:
- 随机变量和概率分布
- 均值和方差的计算
- 参数估计和假设检验
4. 离散数学:
- 集合论和逻辑
- 图论和树结构
- 拓扑排序和最短路径算法
讲座安排
- 时间:XX月XX日(星期X)
- 地点:XX大楼XX教室
讲座特点
1. 简明扼要:重点讲解大学数学的核心知识点,避免不必要的延伸和复杂推导。

2. 实例说明:通过具体实例和问题,帮助同学们更好地理解和应用数学知识。

3. 互动讨论:鼓励同学们积极参与讲座,提问和讨论,以促进交流和思考。

参加要求
1. 面向对象:本讲座主要面向大一、大二的本科生,希望对大学数学有一定基础的同学能够参加。

2. 提前准备:请同学们在讲座前复相关的高中数学知识,以便更好地跟上讲座内容。

3. 准时参加:请同学们按时到达讲座地点,准时参加讲座,以免错过重要内容。

结语
大学数学复专题讲座旨在帮助同学们回顾与巩固大学数学的基
础知识,为进一步研究和研究打下坚实的基础。

我们诚挚邀请对数
学感兴趣的同学参加本讲座,并期待与大家共同探索数学的美妙和
应用。

如果您有任何问题或需要更多信息,请随时与我们联系。

谢谢!
---
备注:本文档内容仅供参考,具体讲座信息以学校通知为准。

相关文档
最新文档