高中数学复习专题讲座
高中数学竞赛专题讲座---离散极值

离 散 极 值一. 知识与方法所谓离散极值,就是指以整数、集合、点、线、圆等离散对象为背景,求它们满足某些约束条件的极大值或极小值。
这类问题的解法与一般函数(连续变量)极值的解法有很大的差异。
对于这类非常规的极值问题,要针对具体问题,认真分析,细心观察,选用灵活的策略与方法,通常可以从论证与构造两方面予以考虑。
先论证或求得该变量的上界或下界,然后构造一个实例说明此上界或下界可以达到,这样便求得了该离散量的极大值或极小值。
在论证或求解离散量的上界或下界时,通常要对离散量做出估计,在估计的过程中,构造法、分类讨论法、数学归纳法、反证法、极端原理、抽屉原理等起着重要的作用。
二. 范例选讲例1. m 个互不相同的正偶数和n 个互不相同的正奇数的总和为1987,对于所有这样的m 与n ,问3m+4n 的最大值是多少?请证明你的结论。
(1987年第二届全国数学冬令营试题)思路分析:先根据题设条件求得3m+4n 的一个上界,然后举例说明此上界可以达到,从而得到3m+4n 的最大值。
解:设a 1,a 2,…,a m 是互不相同的正偶数,b 1,b 2,…,b n 是互不相同的正奇数,使得a 1+a 2+…+a m +b 1+b 2+… +b n =1987 ①,这时分别有:a 1+a 2+…+a m ≥2+4+…+2m=m(m+1) ②,b 1+b 2+…+b n ≥1+3+…+(2n -1)=n 2 ③,由①,②,③得m²+m+n 2≤1987,因而有(m+21)2+n 2≤119874+ ④,由④及柯西不等式,得3(m+21)+4n≤4119875)21(.432222+≤+++n m ,由于3m+4n 为整数,所以3m+4n 221≤ ⑤,另一方面,当m=27,n=35时,m 2+m+n 2=1981<1987,且3m+4n=221。
故3m+4n 的最大值为221。
评注:在论证过程中用到了柯西不等式与一般二元一次不定方程的求解方法。
高中数学复习专题讲座 函数值域

高中数学复习专题讲座求函数值域的常用方法及值域的应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力典型题例示范讲解例1设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm 的空白,左右各留5 cm 空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[43,32],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图 本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力知识依托 主要依据函数概念、奇偶性和最小值等基础知识错解分析 证明S (λ)在区间[43,32]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决技巧与方法 本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决解 设画面高为x cm,宽为λx cm,则λx 2=4840,设纸张面积为S cm 2, 则S =(x +16)(λx +10)=λx 2+(16λ+10)x +160,将x =λ1022代入上式得 S =5000+4410 (8λ+λ5),5cm5cm 8cm8cm当8λ=λ5,即λ=85(85<1)时S 取得最小值此时高 x =λ4840=88 cm, 宽 λx =85×88=55 cm如果λ∈[43,32],可设32≤λ1<λ2≤43,则由S 的表达式得)58)((1044)5858(1044)()(2121221121λλλλλλλλλλ--=--+=-S S又21λλ≥8532>,故8-215λλ>0,∴S (λ1)-S (λ2)<0,∴S (λ)在区间[43,32]内单调递增从而对于λ∈[43,32],当λ=32时,S (λ)取得最小值答 画面高为88 cm,宽为55 cm 时,所用纸张面积最小 如果要求λ∈[43,32],当λ=32时,所用纸张面积最小例2已知函数f (x )=xa x x++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围命题意图 本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力知识依托 本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想错解分析 考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决技巧与方法 解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得(1)解 当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数, ∴f (x )在区间[1,+∞)上的最小值为f(2)解法一 在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3解法二 f (x )=x +xa +2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3例3设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +11-m )(1)证明 当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,则m ∈M(2)当m ∈M 时,求函数f (x )的最小值(3)求证 对每个m ∈M ,函数f (x )的最小值都不小于1(1)证明 先将f (x )变形 f (x )=log 3[(x -2m )2+m +11-m ],当m ∈M 时,m >1,∴(x -m )2+m +11-m >0恒成立,故f (x )的定义域为R反之,若f (x )对所有实数x 都有意义,则只须x 2-4mx +4m 2+m +11-m >0,令Δ<0,即16m 2-4(4m 2+m +11-m )<0,解得m >1,故m ∈M(2)解析 设u =x 2-4mx +4m 2+m +11-m ,∵y =log 3u 是增函数,∴当u 最小时,f (x )最小而u =(x -2m )2+m +11-m ,显然,当x =m 时,u 取最小值为m +11-m ,此时f (2m )=log 3(m +11-m )为最小值(3)证明 当m ∈M 时,m +11-m =(m -1)+11-m +1≥3,当且仅当m =2时等号成立∴log 3(m +11-m )≥log 33=1。
高二数学 数学学习方法讲座

祝愿同学们: 天天进步!
谢谢大家!
第八项:关注新教材更新的数学内容
第九项:用导数作为研究问题的方法上升为重要地位。
第十项:近年来高考命题改革的一个方向是试题切入容 易,深入困难。
第十一项:加强原理复习
第十二项:加强不等式复习
第十三项:高考将仍然“坚持多角度,多层次考查”的 命题思路。要求完全掌握定义法、分析法、反证法、 数学归纳法、构造法。
三、 怎样学习数学
(一)学习知识方面,狠抓联系 形成知识结构,以少胜多,以不 变应万变。 (二)重过程轻结果
(三)探究“字母代式”实质
(四)重视复习时培养规范简洁 的表达,这样既省时间又准确
四、 怎样解题
数学是应用性很强的学科,学习数学 就是学习解题。搞题海战术的方式、方法 固然是不对的,但离开解题来学习数学同 样也是错误的。其中的关键在于对待题目 的态度和处理解题的方式上。
36. 处理直线与圆的位置关系有两种方法: (1)点到直线的距离; (2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷.
37. 处理圆与圆的位置关系,可用两圆的圆心距与半 径 之间的关系.
38. 在圆中,注意利用半径、半弦长、及弦心距组成 的直角三角形. 39.还记得圆锥曲线的两种定义吗?解有关题是否 会联想到这两个定义?
3.所给图形和式子有什么特点?能否用一个图形(几何 的、函数的、示意的)或数学式子(对文字题)将问题
表示出来?能否在图上加上适当的记号?
别 4.有什么隐含条件?
1.这个题以前见过吗?在哪里见过? 以前做过吗?见过类似的问题吗?当 联 时是怎样想的? 2.题中的一部分(条件,或结论,或 想 式子,或图形)以前见过吗?在什么 问题中见过?
23. 你知道怎样的数列求和时要用“错位相减”法吗? (若 ,其中 是等差数列, 是等比数列,求 的前n 项的和)
高中数学复习专题讲座(第16讲)三角函数式的化简与求值

题目高中数学复习专题讲座三角函数式的化简与求值 高考要求三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍 重难点归纳1 求值问题的基本类型 ①给角求值,②给值求值,③给式求值,④求函数式的最值或值域,⑤化简求值2 技巧与方法 ①要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式 ②注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用 ③对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法 ④求最值问题,常用配方法、换元法来解决 快速阅读记忆:英语单词速记:/?id=330 更多资料下载:典型题例示范讲解例1不查表求sin 220°+cos 280°+3cos20°cos80°的值命题意图 本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高知识依托 熟知三角公式并能灵活应用 错解分析 公式不熟,计算易出错技巧与方法 解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会解法一 sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+ 3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°) =1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)= 41 解法二 设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°=21, x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41, 即x =sin 220°+cos 280°+3sin20°cos80°41 例2设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值 命题意图 本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力知识依托 二次函数在给定区间上的最值问题错解分析 考生不易考查三角函数的有界性,对区间的分类易出错 技巧与方法 利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等解 由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得f (a )=⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2(12a a a a a a∵f (a )=21, ∴1-4a =21⇒a =81∉[2,+∞)或 -22a -2a -1=21,解得a =-1(2,2)∈-,此时,y =2(cos x +21)2+21, 当cos x =1时,即x =2k π,k ∈Z ,y max =5例3已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值; (3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值 命题意图 本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力知识依托 熟知三角函数公式以及三角函数的性质、反函数等知识错解分析 在求f --1(1)的值时易走弯路 技巧与方法 等价转化,逆向思维解 (1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x=2cos x (sin x cos3π+cos x sin3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π (2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )取得最小值-2 (3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)=4π例4 已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________解法一 ∵2π<β<α<43π,∴0<α-β4π π<α+β<43π,∴54sin(),cos().135αβαβ-=+==- ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二 ∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=56)65406572(21=--学生巩固练习1 已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( )A21B -2 C34 D21或-2 2 已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=______3 设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________4 不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5 已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值6 已知α-β=38π,且α≠k π(k ∈Z ) 求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件7 如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积8 已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x 的值参考答案1 解析 ∵a >1,tan α+tan β=-4a <0 tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0), 又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0 解得tan 2β+α=-2 答案 B2 解析 ∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,2212()2tan 42tan 2.11tan 31()2βββ⨯-===---- 234()tan tan 743tan(2)341tan tan 2241()()43αβαβαβ-----===+⋅+-⨯- 答案247 3 解析 α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π36556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即答案6556 4 答案 2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-17 解 以OA 为x 轴 O 为原点,建立平面直角坐标系, 并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ 直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ 联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-2cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π) ∵0<θ<3π,∴6π<2θ+6π<65π ∴21<sin(2θ+6π)≤1∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为 AB 的中点,P (21,23)8 解 设u =sin α+cos β 则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4∴u 2≤1,-1≤u ≤1 即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t x 232-t2max 0.5min 0.50.50.514248242,,8log 0,5log log log 8,821.2t M t t tt t M t y M M y t x ∴===≤=++====>∴======- 当且仅当即在时是减函数时此时 课前后备注。
高中数学考试题型解题技巧专题讲座

高中数学考试题型解题技巧专题讲座数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。
下面是为大家整理的关于,希望对您有所帮助!高中数学选择题的解题方法方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.高中数学的证明题的推理方法一、合情推理1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。
高中数学复习专题讲座关于求空间距离的问题

高中数学复习专题讲座关于求空间距离的问题高考要求空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一样化归为这三种距离重难点归纳空间中的距离要紧指以下七种(1)两点之间的距离(2)点到直线的距离(3)点到平面的距离(4)两条平行线间的距离(5)两条异面直线间的距离(6)平面的平行直线与平面之间的距离(7)两个平行平面之间的距离七种距离差不多上指它们所在的两个点集之间所含两点的距离中最小的距离七种距离之间有紧密联系,有些能够相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点求点到平面的距离(1)直截了当法,即直截了当由点作垂线,求垂线段的长(2)转移法,转化成求另一点到该平面的距离(3)体积法(3)向量法求异面直线的距离 (1)定义法,即求公垂线段的长 (2)转化成求直线与平面的距离 (3)函数极值法,依据是两条异面直线的距离是分不在两条异面直线上两点间距离中最小的典型题例示范讲解例1把正方形ABCD沿对角线AC折起成直二面角,点E、F分不是AD、BC的中点,点O是原正方形的中心,求(1)EF的长;(2)折起后∠EOF的大小命题意图考查利用空间向量的坐标运算来解决立体几何咨询题知识依靠空间向量的坐标运算及数量积公式错解分析建立正确的空间直角坐标系其中必须保Array证x轴、y轴、z轴两两互相垂直技巧与方法建系方式有多种,其中以O点为原点,以、、的方向分不为x 轴、y 轴、z 轴的正方向最为简单解 如图,以O 点为原点建立空间直角坐标系O —xyz , 设正方形ABCD 边长为a ,那么A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0), D (0,0, 22a ),E (0,-42a , a ),F (42a ,42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE a OF a OE a a a a a a a a a a EF a a a a a ∴∠EOF =120°例2正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离命题意图 此题要紧考查异面直线间距离的求法知识依靠 求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得错解分析 此题容易错误认为O 1B 是A 1C 与AB 1的距离,这要紧是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离技巧与方法 求异面直线的距离,有时较难作出它们的公垂线,故通常采纳化归思想,转化为求线面距、面面距、或由最值法求得解法一 如图,在正方体AC 1中, ∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C , ∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D ∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,那么平面AB 1C ∩平面BB 1D 1D =B 1O作O 1G ⊥B 1O 于G ,那么O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 11A间的距离在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26 ∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33解法二 如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1, ∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,那么RB 1=1-x∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1) ∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1解法三〔向量法〕如图建立坐标系,那么111(1,0,0),(1,0,1),(1,1,1),(0,1,1)A A B C ∴111(0,1,1),(1,1,0)AB AC -== 设MN 是直线A 1C 1与AB 1的公垂线,且1111(0,,),(,,0)AN AB AM AC λλλμμμ-==== 那么11(,,0)(0,0,1)(0,,)MN MA A A ANμμλλ=++-+-+=- (,,1),μλμλ=--从而有11100MN A C MN AB ⎧⎪⇒⎨⎪⎩==22032113λλμλμμ⎧=⎪-=⎧⎪⇒⎨⎨-=⎩⎪=⎪⎩1A∴1113(,,)||3333MN MN =⇒=例3如图,ABCD 是矩形,AB =a ,AD =b ,P A ⊥平面ABCD ,P A =2c ,Q 是P A 的中点求 (1)Q 到BD 的距离;(2)P 到平面BQD 的距离解 (1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE , ∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b ,∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c ∴QE =22222ba b a c ++ ∴Q 到BD(2)解法一 ∵平面BQD 通过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二 设点A 到平面QBD 的距离为h ,由V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =S AQS BQDABD ==⋅∆∆学生巩固练习1 正方形ABCD 边长为2,E 、F 分不是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,假如∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )A2 B1 C2 D 122 三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,那么A 1C 1与l 的距离为( )A 10B 11C 2.6D 2.43 如左图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,那么P 与Q 的最短距离为_________4 如右上图,ABCD 与ABEF 均是正方形,假如二面角E —AB —C 的度数为30°,那么EF 与平面ABCD 的距离为_________5 在长方体ABCD —A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2,如图(1)求证 平面A 1BC 1∥平面ACD 1; (2)求(1)中两个平行平面间的距离; (3)求点B 1到平面A 1BC 1的距离6 正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B 且面EAC 与底面ABCD 所成的角为45°,AB =a ,求 (1)截面EAC 的面积; (2)异面直线A 1B 1与AC 之间的距离;(3)三棱锥B 1—EAC 的体积 7 如图,三棱柱A 1B 1C 1—ABC 的底面是边长为2的正三角形,侧棱A 1A 与AB 、AC 均成45°角,且A 1E ⊥B 1B 于E ,A 1F⊥CC 1于FF1A1A1(1)求点A 到平面B 1BCC 1的距离;(2)当AA 1多长时,点A 1到平面ABC 与平面B 1BCC 1的距离相等8 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a (1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF参考答案1 解析 过点M 作MM ′⊥EF ,那么MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线,∴∠EBM ′=45°,BM ′=2,从而MN =22 答案 A2 解析 交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,那么C 1D为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案 C3 解析 以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分不为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB , 同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ中,PQ =22)2()23(2222=-=-a a AP AQ a 答案22a 4 解析 明显∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,那么G 必在AD 上,由EF ∥平面ABCD∴FG 为EF 与平面ABCD 的距离,即FG 2a答案 2a5 (1)证明 由于BC 1∥AD 1,那么BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,那么平面A 1BC 1∥平面ACD 1(2)解 设两平行平面A 1BC 1与ACD 1间的距离为d ,那么d 等于D 1到平面A 1BC 1的距离 易求A 1C 1=5,A 1B =25,BC 1=13,那么cos A 1BC 1=652,那么sin A 1BC 1=6561,那么S111C B A ∆=61,由于111111D C A B BC A D V V --=,那么31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112, (3)解 由于线段B 1D 1被平面A 1BC 1所平分,那么B 1、D 1到平面A 1BC 1的距离相等,那么由(2)知点B 1到平面A 1BC 1 6 解 (1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45°又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a 32422322311a a a V EAC B =⋅⋅=-7 解 (1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中,∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a同理A 1F =22a ,又EF =a ∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,那么N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离∴A 1N =221a=又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分不为D 、D 1,连结AD 、DD 1和A 1D 1,那么DD 1必过点N ,易证ADD 1A 1为平行四边形∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 假设A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90°∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件8 解 (1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离确实是直线AD 与平面PBC 间的距离 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求在等腰直角三角形P AB 中,P A =AB =a∴AE =22a (2)作CM ∥AB ,由cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a 过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形 ∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F课前后备注学法指导: 立体几何中的策略思想及方法立体几何中的策略思想及方法近年来,高考对立体几何的考查仍旧注重于空间观点的建立和空间想象能力的培养题目起点低,步步升高,给不同层次的学生有发挥能力的余地大题综合性强,有几何组合体中深层次考查空间的线面关系因此,高考复习应在抓好差不多概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何咨询题的有效的策略思想及方法一、领会解题的差不多策略思想高考改革稳中有变运用差不多数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在差不多数学思想指导下,归纳一套合乎一样思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的体会,解决一样差不多数学咨询题就会自然流畅二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地〝立〞起来在具体的咨询题中,证明和运算经常依附于某种专门的辅助平面即基面那个辅助平面的猎取正是解题的关键所在,通过对那个平面的截得,延展或构造,纲举目张,咨询题就迎刃而解了三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力而数学咨询题中许多图形和数量关系都与我们熟悉模型存在着某种联系它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学咨询题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特点规律猎取优解。
高三数学复习备考讲座PPT课件

11.空间向量: 旧考纲对立体几何有A,B两种要求,
考生可以不掌握空间向量知识,新考纲 突出了空间向量的应用,要求能用向量 语言表述线面平行、垂直关系,能用向 量方法证明线面位置关系的一些定理, 解决空间三种角的计算问题.
第33页/共92页
例(09年浙江卷理)如图,平面PAC⊥平 面ABC,△ABC是以AC为斜边的等腰直角三角 形,E,F,O分别为PA,PB,AC的中点,AC= 16,PA=PC=10.
大小分别为2和4,则F3的大小为 ( )
A. 6 B. 2
C.2 5 D.2 7
第29页/共92页
9.解三角形:
新考纲要求能运用正弦定理、余弦 定理等知识和方法解决一些与测量和 几何计算有关的实际问题,强调解三 角形的实际应用.
第30页/共92页
例(09年宁夏/海南卷)为了测量两山顶M, N间的距离,飞机沿水平方向在A,B两点进行 测量,A,B,M,N在同一个铅垂平面内,飞 机能够测量的数据有俯角和A,B间的距离, 请设计一个方案,包括:①指出需要测量的 数据(用字母表示,并在图中标出);②用 文字和公式写出计算M,N间的距离的步骤.
数y=ax(a>0且a≠1)的反函数,其图像
经过点( a, a),则f(x)=
A.log2 x B.log1 x
C.
1 2x
2
() D.x2
第21页/共92页
3.圆的方程: 新考纲要求能根据给定的两个圆的方程
判定两圆的位置关系,提高了考查圆方程的 能力要求.
例(09年江苏卷)已知圆C1:(x+3)2+(y-1)2 =4和圆C2:(x-4)2+(y-5)2=4. (1)若直线l过点A(4,0),且被圆C1截得的弦长
《高考数学专题讲座》课件

平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习专题讲座------------综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题师宗三中高三数学组张永柱高考要求:函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样 本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力 重难点归纳:在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用 综合问题的求解往往需要应用多种知识和技能 因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件 学法指导怎样学好函数学习函数要重点解决好四个问题准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念 概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终 数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数 近十年来,高考试题中始终贯穿着函数及其性质这条主线(二)揭示并认识函数与其他数学知识的内在联系 函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容 在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式所谓函数观点,实质是将问题放到动态背景上去加以考虑 高考试题涉及5个方面 (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中(三)把握数形结合的特征和方法函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换(四)认识函数思想的实质,强化应用意识函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决 纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识 典型题例示范讲解例1设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0(1)求f (21)、f (41); (2)证明f (x )是周期函数;(3)记a n =f (2n +n21),求).(ln lim n n a ∞→命题意图 本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力知识依托 认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)= f (x 1)·f (x 2)找到问题的突破口错解分析 不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形技巧与方法 由f (x 1+x 2)=f (x 1)·f (x 2)变形为()()()()2222x x x x f x f f f =+=⋅是解决问题的关键(1) 解 因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=()()()02222x x x x f f f +=≥,x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0∴f (21)=a 21, f (41)=a 41(2)证明 依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ), 即 f (x )=f (2-x ),x ∈R又由f (x )是偶函数知 f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期 (3)解 由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n 21)=…… =f (n 21)·f (n 21)·……·f (n21) =[f (n 21)]n =a 21∴f (n21)=a n 21又∵f (x )的一个周期是2 ∴f (2n +n 21)=f (n21), ∴a n =f (2n +n 21)=f (n21)=a n 21因此a n =an21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n 例2甲、乙两地相距S 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?命题意图 本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力知识依托 运用建模、函数、数形结合、分类讨论等思想方法错解分析 不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件 技巧与方法 四步法 (1)读题;(2)建模;(3)求解;(4)评价解法一 (1)依题意知,汽车从甲地匀速行驶到乙地所用时间为vS,全程运输成本为y =a ·v S +bv 2·v S =S (va+bv ) ∴所求函数及其定义域为y =S (va+bv ),v ∈(0,c ] (2)依题意知,S 、a 、b 、v 均为正数 ∴S (va+bv )≥2S ab ① 当且仅当va=bv ,即v =b a 时,①式中等号成立若b a ≤c 则当v =b a 时,有y min =2S ab ; 若b a >c ,则当v ∈(0,c ]时,有S (v a +bv )-S (ca+bc ) =S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv ) ∵c -v ≥0,且c >bc 2, ∴a -bcv ≥a -bc 2>0∴S (v a +bv )≥S (ca+bc ),当且仅当v =c 时等号成立, 也即当v =c 时,有y min =S (ca+bc );综上可知,为使全程运输成本y 最小,当b ab ≤c 时,行驶速度应为v =b ab , 当bab >c 时行驶速度应为v =c解法二 (1)同解法一(2)∵函数y =S (va+bv ), v ∈(0,+∞), 当x ∈(0,ba)时,y 单调减小, 当x ∈(ba,+∞)时y 单调增加, 当x =b a时y 取得最小值,而全程运输成本函数为y =Sb (v +vb a),v ∈(0,c ]∴当b a ≤c 时,则当v =b a 时,y 最小,若ba >c 时,则当v =c 时,y 最小 结论同上 例3 设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4(1)求证 f (x )为奇函数;(2)在区间[-9,9]上,求f (x )的最值 (1)证明 令x =y =0,得f (0)=0令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x ) ∴f (x )是奇函数(2)解 1°,任取实数x 1、x 2∈[-9,9]且x 1<x 2,这时,x 2-x 1>0, f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 1)=-f (x 2-x 1) 因为x >0时f (x )<0,∴f (x 1)-f (x 2)>0 ∴f (x )在[-9,9]上是减函数故f (x )的最大值为f (-9),最小值为f (9)而f (9)=f (3+3+3)=3f (3)=-12,f (-9)=-f (9)=12∴f (x )在区间[-9,9]上的最大值为12,最小值为-12 学生巩固练习1 函数y =x +a 与y =log a x 的图象可能是( )2定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是( )A①与④B②与③C①与③D②与④3若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围是____4设a为实数,函数f(x)=x2+|x-a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值5设f(x)=xxx+-++1111(1)证明f(x)在其定义域上的单调性;(2)证明方程f-1(x)=0有惟一解;(3)解不等式f[x(x-21)]216定义在(-1,1)上的函数f(x)满足①对任意x、y∈(-1,1),都有f(x)+f(y)=f(xyyx++1);②当x∈(-1,0)时,有f(x)>0求证)21()131()111()51(2fnnfff>+++++7某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖)(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价8已知函数f(x)在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f(1)=0,又g(θ)=sin2θ-m cosθ-2m,θ∈[0,2π],设M={m|g(θ)<0,m∈R},N={m|f[g(θ)]<0},求M∩N参考答案:1解析分类讨论当a>1时和当0<a<1时答案 C2解析用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3g(b)-g(-a)=g(1)-g(-2)=1-2=-1∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1又f(b)-f(-a)=f(1)-f(-2)=1+2=3g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b)即①与③成立 答案 C3 解析 设2x =t >0,则原方程可变为t 2+at +a +1=0①方程①有两个正实根,则⎪⎩⎪⎨⎧>+=⋅>-=+≥+-=∆0100)1(421212a t t a t t a a解得 a ∈(-1,2-22]答案 (-1,2-22]4 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时f (x )为偶函数;当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (-a )≠f (a ),f (-a )≠-f (a ) 此时函数f (x )既不是奇函数也不是偶函数(2)①当x ≤a 时,函数f (x )=x 2-x +a +1=(x -21)2+a +43,若a ≤21,则函数f (x )在(-∞,a ]上单调递减,从而,函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(-∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ) ②当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43;当a ≤-21时,则函数f (x )在[a ,+∞)上的最小值为f (-21)=43-a ,且f (-21)≤f (a )若a >-21, 则函数f (x )在[a ,+∞)上单调递增,从而,函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1综上,当a ≤-21时,函数f (x )的最小值是43-a , 当-21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a 435 (1)证明 由⎪⎩⎪⎨⎧≠+>+-02011x x x得f (x )的定义域为(-1,1),易判断f (x )在(-1,1)内是减函数(2)证明 ∵f (0)=21,∴f --1(21)=0,即x =21是方程f --1(x )=0的一个解 若方程f --1(x )=0还有另一个解x 0≠21,则f --1(x 0)=0,由反函数的定义知f (0)=x 0≠21,与已知矛盾,故方程f --1(x )=0有惟一解(3)解 f [x (x -21)]<21,即f [x (x -21)]<f (0) .415121041510)21(1)21(1+<<<<-⇒⎪⎪⎩⎪⎪⎨⎧>-<-<-∴x x x x x x 或6 证明 对f (x )+f (y )=f (xyyx ++1)中的x ,y ,令x =y =0,得f (0)=0,再令y =-x ,又得f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ), ∴f (x )在x ∈(-1,1)上是奇函数设-1<x 1<x 2<0,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --),∵-1<x 1<x 2<0,∴x 1-x 2<0,1-x 1x 2>0 ∴21211x x x x --<0,于是由②知f (21211x x x x --) >0,从而f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在x ∈(-1,0)上是单调递减函数 根据奇函数的图象关于原点对称,知f (x )在x ∈(0,1)上仍是递减函数,且f (x )<02111(1)(2)()[][]131(1)(2)11(1)(2)n n f f f n n n n n n ++==++++--++111112()()()1112112n n f f f n n n n -++==-++-⋅++2111()()()51131f f f n n ∴+++++11111111[()()][()()][()()]()(),23341222f f f f f f f f n n n =-+-++-=-+++ 1101,()0,22f n n <<<++ 时有111()()(),.222f f f n ∴->+故原结论成立7 解 (1)因污水处理水池的长为x 米,则宽为x200米, 总造价y =400(2x +2×x 200)+248×x 200×2+80×200=800(x +x 324)+1600,由题设条件⎪⎩⎪⎨⎧≤<≤<162000,160x x解得12 5≤x ≤16,即函数定义域为[12 5,16](2)先研究函数y =f (x )=800(x +x324)+16000在[12 5,16]上的单调性, 对于任意的x 1,x 2∈[12 5,16],不妨设x 1<x 2,则f (x 2)-f (x 1)=800[(x 2-x 1)+324(1211x x -)]=800(x 2-x 1)(1-21324x x ), ∵12 5≤x 1≤x 2≤16∴0<x 1x 2<162<324,∴21324x x >1,即1-21324x x <0 又x 2-x 1>0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1), 故函数y =f (x )在[12 5,16]上是减函数∴当x =16时,y 取得最小值,此时,y min =800(16+16324)+16000=45000(元),16200200=x =12 5(米)综上,当污水处理池的长为16米,宽为12 5米时,总造价最低,最低为45000元 8 解 ∵f (x )是奇函数,且在(0,+∞)上是增函数, ∴f (x )在(-∞,0)上也是增函数又f (1)=0,∴f (-1)=-f (1)=0,从而,当f (x )<0时,有x <-1或0<x <1, 则集合N ={m |f [g (θ)]<θ=}={m |g (θ)<-1或0<g (θ)<1}, ∴M ∩N ={m |g (θ)<-1}由g (θ)<-1,得cos 2θ>m (cos θ-2)+2,θ∈[0,2π], 令x =cos θ,x ∈[0,1]得 x 2>m (x -2)+2,x ∈[0,1], 令① y 1=x 2,x ∈[0,1]及②y 2=m (m -2)+2,显然①为抛物线一段,②是过(2,2)点的直线系, 在同一坐标系内由x ∈[0,1]得y 1>y 2∴m >4-22,故M ∩N ={m |m >4-22}2015年10月28日。