试论大学物理中的“对称性”与力学三大守恒定律的关系

合集下载

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律对称性和守恒定律是物理学中的基本概念,它们在理解和解释自然界中各种物理现象和规律中起着重要作用。

本文将探讨物理学中的对称性和守恒定律,并探讨它们之间的密切关系。

一、对称性在物理学中的意义对称性是物理学中的重要概念,它描述了物理系统在某些变换下保持不变的性质。

在物理学中,对称性可以分为时空对称性和内禀对称性两种。

1. 时空对称性时空对称性是指物理系统在时空变换下保持不变。

在相对论物理学中,洛伦兹变换是描述时空变换的数学工具。

根据洛伦兹变换的不同类型,物理系统可以表现出平移对称性、旋转对称性和洛伦兹对称性等。

平移对称性是指物理系统在空间位置上的平移不会改变其物理性质。

例如,一个均匀介质中的物理规律在空间中的任何位置都是相同的。

旋转对称性是指物理系统在空间方向的旋转下保持不变。

例如,地球的自转周期不会影响物理规律的成立。

洛伦兹对称性是指物理系统在洛伦兹变换下保持不变,包括时间和空间的坐标变换。

相对论物理学中的基本原理就是洛伦兹对称性。

2. 内禀对称性内禀对称性是指物理系统在内部变换下保持不变。

在粒子物理学中,内禀对称性描述了粒子的基本性质。

例如,电荷共轭对称性指粒子与其反粒子具有相同的物理性质。

对称性在物理学中具有广泛的应用。

它不仅可以用于解释物理定律的成因,还可以帮助物理学家发现新的规律和预测新的物理现象。

二、守恒定律与对称性的关系守恒定律是物理学中的基本定律,描述了物理系统在某些变换下某个物理量保持不变的规律。

守恒定律与对称性之间存在着密切的关系。

以能量守恒定律为例,它描述了物理系统的能量在各种变换下保持不变。

能量守恒定律与时间平移对称性密切相关,即物理规律在时间上的平移不变性保证了能量守恒。

动量守恒定律是另一个重要的守恒定律,它描述了物理系统的总动量在某些变换下保持不变。

动量守恒定律与空间平移对称性密切相关,即物理规律在空间上的平移不变性保证了动量守恒。

角动量守恒定律和电荷守恒定律等也与对称性有着密切的联系。

物理中的对称性与守恒定律

物理中的对称性与守恒定律

物理中的对称性与守恒定律对称性与守恒定律是物理学中的两个核心概念。

在研究自然界中的各种现象和规律时,科学家们发现,许多物理量在特定条件下保持不变。

通过研究这些对称性和守恒定律,我们可以深入理解自然界的行为规律,并从中揭示出许多有意义的结果。

对称性对称性是自然界中普遍存在的一种特征。

物理学中的对称性可以分为时空对称性、内禀对称性和运动对称性等多种形式。

时空对称性时空对称性是指物理系统在时间和空间上的表现保持不变。

根据相对论的原理和经验事实,我们知道自然界中的物理规律应该在任意惯性参考系下都具有相同的形式。

这就要求物理规律在时间和空间上具有一定的对称性,在不同时间和不同位置下保持一致。

内禀对称性内禀对称性是指物理系统在某些内部属性上保持不变。

例如,电荷守恒定律表明,在粒子相互作用过程中,总电荷数目保持不变。

这就是电荷守恒所基于的内禀对称性。

运动对称性运动对称性是指物理系统在某些运动操作下保持不变。

例如,当一个场被平移或旋转时,其物理效应保持不变。

这就是平移对称性和旋转对称性所基于的运动对称性。

守恒定律守恒定律是物理量在某些条件下保持不变的规律。

根据不同情况和背景,我们可以得到各种守恒定律,如能量守恒、动量守恒、角动量守恒等。

能量守恒定律能量守恒定律是自然界中最基本也最重要的一条守恒定律。

它表明在一个孤立系统中,能量总量保持不变。

能量可以在不同形式之间相互转化,但总能量保持恒定。

动量守恒定律动量守恒定律表明,在没有外力作用的封闭系统中,系统的总动量保持不变。

当一个物体受到一个力时,它会产生一个与力方向相反大小相等的反作用力,使得系统总动量保持不变。

角动量守恒定律角动量守恒定律是描述旋转系统行为规律的基本原理之一。

当一个物体绕着固定轴旋转时,其角动量大小和方向保持不变。

对称性与守恒定律关系对称性与守恒定律之间存在着密切的关系。

实际上,许多守恒定律都可以从对称性原理推导出来。

能量-时间对称性与能量守恒能量-时间对称性指出,在自然界中时间流逝方向无法区分,即物理规律在未来和过去具有相同的形式。

大学物理 第三章 守恒定律与对称性剖析

大学物理 第三章 守恒定律与对称性剖析
转动60º的整数 倍形状不变。
转动对称P4:
转动90º的整数 倍形状不变。
缔合转换引起 的对称:滑移 反射对称,平 移加镜像反射 后形状不变。
图选自李政道《物理 的挑战》中国经济出 版社, 2002年
缔合转换引起 的对称:将镜 像的黑白两种 颜色互换图形 不变。
图选自杨振宁《基本粒 子发现简史》上海科学 技术出版社, 1963年。原 图为荷兰画家M.C.Escher 所画。
体所做的功。
dA F dr cos Ft dr F dr Biblioteka drFtB F
L
质点沿曲线 L 从A到B力所做的功:
Fn
B
B A
A dA F dr
A
A
L
L
质点沿曲线 L 从A到B力所做的功为力F 沿路径 L 从A到B
的线积分。显然,功是标量其大小与路径有关。
3.合力做的功
若 F F1 F2 Fn
图选自李政道《物理 的挑战》中国经济出 版社, 2002年
对称性在微观世界非常重要:铂针尖上原子对称排 列在场离子显微镜下显示的花样
图选自李政道《物理的挑战》中国经济出版社, 2002年
自然界中非生命的宏观的结构大多是非对称性?
对称性——是时空性质的反映。时间和空间具有各向 同性和均匀性,所以有能量、动量和角动量的守恒。
§2 功和功率
问题提出:考察作用力在空间累积作用的结果使运动 产生怎样的变化? 力在空间上作用的结果:物体在力的作用下产生位移。 功:描述力在空间上积分的物理量。
1.恒力对直线运动物体所作的功
F
S
定义:力对物体所做的功为:
A FS cos F S
2.变力对曲线运动物体所作的功——元功

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。

对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。

这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。

本文将深入探讨对称性与守恒定律的关系。

首先,让我们来了解对称性的概念。

对称性可以简单地理解为某种变换下系统保持不变的性质。

在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。

平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。

对称性在物理学中起着非常重要的作用。

与对称性相关联的是守恒定律。

守恒定律描述了系统在各种变化中某些物理量守恒的性质。

守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。

根据对称性的不同,我们可以得到不同的守恒定律。

首先,根据时间平移对称性,我们可以得到能量守恒定律。

能量守恒定律指的是系统的能量在时间上保持不变。

这是因为系统的物理规律在时间上的不变性导致的。

无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。

其次,根据空间平移对称性,我们可以得到动量守恒定律。

动量守恒定律指的是系统的动量在空间上保持不变。

这是因为系统的物理规律在空间上的不变性导致的。

无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。

此外,根据空间旋转对称性,我们可以得到角动量守恒定律。

角动量守恒定律指的是系统的角动量在空间上保持不变。

这是因为空间旋转对称性导致的。

无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。

最后,根据粒子对称性,我们可以得到电荷守恒定律。

电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。

对称性和守恒律

对称性和守恒律

对称性和守恒律作者|胡竭末编辑|Trader Joe's简介对称性在现代物理理论中非常重要,一般来说一个理论对称性越多,就越方便我们处理。

更进一步,诺特定理(Noether's theorem)给出了(连续)对称性和守恒量之间的关系。

这是一个非常非常强大的定理。

本文的主要目的就是简要的介绍对称性和守恒律之间的关系。

埃米·诺特(图片来自维基百科)整体对称性和诺特定理我们首先来看最清晰也最简单的情形–––整体对称性。

设一个经典体系有拉式量,则作用量为运动方程为如果有一个整体变换满足那么我们就说这是一个整体对称变换。

对于连续的整体对称变换,我们可以取一个无穷小变换满足那么很显然我们有假如有这么一个函数(微分形式),满足在边界上为0的边界条件。

那么我们由斯托克斯定理(Stokes' theorem)可知这告诉我们,可以写为可以看到以上的推导要求的是对称变换,但并没有要求满足运动方程。

现在如果我们要求一个无穷小变换保持运动方程,但并不要求保持作用量不变,这会发生什么呢?如下因为我们已经要求满足运动方程了,所以上式第二行的第一项就为0,所以得现在如果我们要求既满足对称变换,又满足运动方程,那么根据前式的对比可知其中所以就是一个守恒量,这就是诺特定理(有时候也叫做诺特第一定理)。

对于场论中的诺特定理推导是十分类似的,设其中为拉式密度,则其中总结一下,诺特定理告诉我们任何一个连续对称性有相应的守恒量。

图片来源 /noethers-theorem-kindergarten-phd/特别指出的是,这里的对称性是针对有动力效应(dynamical)的变量而言的,对于属于背景(background)的量则没有以上的结果。

规范对称性规范对称性(gauge symmetry)在现代物理理论中非常重要。

然而虽然我们把它叫做'对称性',但比较现代的观点是把它看成一种'冗余',它告诉我们描述不同物理的是一族数学上的等价类。

粒子物理学中的对称性与守恒定律

粒子物理学中的对称性与守恒定律

粒子物理学中的对称性与守恒定律粒子物理学是研究物质的最基本组成部分和相互作用的学科。

在这个领域中,对称性与守恒定律是非常重要的概念。

对称性指的是在某种变换下,系统的性质保持不变;而守恒定律则是指物理量在时间和空间上的变化率为零。

一、对称性在粒子物理中的重要性对称性是粒子物理学中一项基本原则。

根据量子力学和相对论的理论基础,我们知道,自然界的基本定律应该具有某种形式的对称性。

首先是空间对称性,即物理系统的性质在空间位置的变换下保持不变。

例如,相对论性量子场论中的拉格朗日量具有洛伦兹对称性,这意味着在任何洛伦兹变换下,物理定律保持不变。

其次是时间对称性,即物理系统的性质在时间演化的过程中保持不变。

例如,量子力学中的薛定谔方程描述的系统具有时间反演对称性,即系统在时间反演下的演化与正常的时间演化完全一致。

还有内禀对称性,即系统在某种内部变换下保持不变。

例如,电荷守恒定律是电荷在整个物理过程中都保持不变的内禀对称性。

二、粒子物理中的守恒定律在粒子物理学中,守恒定律描述了一系列重要的物理量在物理过程中的守恒。

这些守恒定律为粒子物理学的研究和实验提供了重要的基础。

首先是能量守恒定律。

能量是物理过程中最基本的物理量之一,根据能量守恒定律,能量在物理过程中总是守恒的。

例如,在粒子碰撞实验中,总能量守恒可以用来解释反应产物的能量分布。

其次是动量守恒定律。

动量是描述物体运动状态的物理量,根据动量守恒定律,系统中所有粒子的总动量在物理过程中保持不变。

例如,在高能碰撞实验中,通过测量反应产物的动量可以对碰撞发生前的粒子进行研究。

还有角动量守恒定律和电荷守恒定律。

角动量守恒定律描述了系统中所有粒子的总角动量在物理过程中保持不变,而电荷守恒定律描述了系统中电荷的总量保持不变。

这些守恒定律在研究物质的性质和相互作用时起着至关重要的作用。

三、对称性与守恒定律的关系对称性与守恒定律之间存在密切的关系。

根据诺特定理,守恒定律可以由系统的对称性得出。

物理对称性的原理是什么

物理对称性的原理是什么

物理对称性的原理是什么物理对称性原理是指在物理学中,存在一些基本定律和原则,使得物理系统在特定的操作下保持不变或者具有某种不变性。

这些操作可以是旋转、平移、时间推移等,对应的对称性有旋转对称性、平移对称性、时间对称性等。

物理对称性原理是研究物理学规律的基础,深刻影响了物理学发展的方向和结果。

物理对称性原理的重要性在于它与守恒定律的密切关系。

根据物理对称性原理,如果系统满足某种对称性,那么它将存在一个守恒量,即该系统在这种变换下保持不变的量。

根据诺特定理,每一个物理对称性都对应一个守恒量。

例如,根据平移对称性,质点的动量守恒;根据时间对称性,系统的能量守恒。

因此,理解物理对称性原理是理解物理规律和守恒定律的基础。

旋转对称性是物理对称性原理中的重要概念。

它指的是物理系统在旋转操作下保持不变的性质。

旋转对称性是我们日常生活中常见的现象,例如地球的自转和公转使得我们在不同的时间和空间位置观察到的天空是相同的。

在量子力学中,旋转对称性对应着角动量守恒定律。

在电磁学中,旋转对称性对应着电荷和电流分布不随坐标系的选择而改变。

平移对称性是另一个重要的物理对称性原理。

它指的是物理系统在平移操作下保持不变的性质。

平移对称性是我们熟悉的例子是空气中的声音波传播,无论我们在空间中的哪个位置,都能听到相同的声音。

根据平移对称性原理,动量守恒定律成立,即系统总动量在平移操作下保持不变。

时间对称性是物理对称性原理中的另一个重要概念。

它指的是物理系统在时间推移操作下保持不变的性质。

时间对称性意味着物理定律在正向和反向的时间演化下是相同的。

例如,根据时间对称性,系统的能量守恒定律成立。

在物理学中,粒子与反粒子的存在和粒子-反粒子湮灭过程都与时间对称性密切相关。

物理对称性原理不仅限于上述的对称性,还包括其他形式的对称性。

例如,电荷守恒定律和奇偶守恒定律都与某种对称性(电荷对称性和空间反演对称性)相关。

物理对称性原理在理论物理学的研究中起着重要的作用,尤其是在粒子物理学和宇宙学中。

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律物理学中对称性与守恒定律是一对密不可分的概念。

对称性是自然界的一种基本现象,而守恒定律则是对称性的体现。

本文将介绍对称性与物理学中的守恒定律的基本概念及其在物理学中的应用。

对称与对称性对称是指一个物体在某个操作下仍能保持不变。

常见的对称有平移对称、旋转对称和镜像对称等。

以矩形为例,它有平移、旋转和镜像三种对称。

当你将矩形向一个方向平移一定距离时,它仍看起来一模一样;当你绕矩形中心旋转90度时,它也仍然不变;当你将矩形沿着某一直线对折时,它还是一样的。

在数学中,对称主要是通过变换来定义的。

例如,将平面上的点(x,y)绕原点旋转一个角度θ得到(x',y'),则(x,y)和(x',y')就是关于原点对称的。

物理学中的对称性是指物理现象在某种变换下仍然保持不变。

例如,物体在不同位置、不同时间、不同方向和不同状态下具有平移、时间、旋转和内禀对称性。

具体而言,平移对称意味着物理定律在位置的变换下不变;时间对称性要求物理现象在时间上前后对称;旋转对称性要求物理定律在空间旋转下不变;内禀对称性指的是物理现象在基本粒子的内部对称变换下保持不变。

对称性原理对称性原理是物理学中一个重要的基本原理。

其基本思想是,自然界的基本定律应该具有某些对称性,而这些对称性可以用来推导自然界的规律。

换言之,对称性原理是自然界中某些规律的先决条件。

在物理学中,对称性原理有多个方面。

首先,对称性原理要求物理定律在各种对称变换下不变。

例如,物体的质量在不同位置、不同方向和不同速度下应该保持不变。

这是牛顿运动定律中的一个例子。

更具体地说,在牛顿定律中,物体的运动状态不随时间、空间和速度的变化而改变。

其次,对称性原理还要求物理定律在内部对称变换下不变。

例如,在电动力学中,电场和磁场在某些线性旋转下保持不变。

最后,对称性原理还要求物理定律在粒子转换下不变。

例如,在核物理学中,电荷守恒原理要求在粒子转换时总电荷量不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试论大学物理中的“对称性”与力学三大守恒定律的关系
作者:赵波
来源:《神州·下旬刊》2018年第04期
摘要:“对称性”,是物理力学分析中的主要内容,它与物理学中的众多理论都有着密切的联系。

基于此,本文着重对大学物理中“对称性”与力学三大守恒定律的关系进行论述,以达到重新梳理物理学相关知识,实现学科研究知识在归纳中拓展的目的。

关键词:大学物理;“对称性”;力学三大守恒定律
引言:
随着社会理论分析的视角逐步拓展,人类文明的研究领域也在逐步拓宽。

大学物理,是人类应用现有理性思维知识,实现世界资源、空间分析的直接体现。

大学物理教师在教学过程中,为了对“对称性”进一步解读,将其与力学三大守恒定律结合在一起,全面实现理论知识综合解析。

一、对称与“对称性”之间的关系
对称,是在二维平面轴对称的定义上延伸出来的理论,是指处于同一平面中两个平行物体,它们在样式、颜色、空间分布等方面都相同,但其方向却相反的物质。

而对称性,是在对称概念的基础上,延伸出来的形态特征。

如某一物体经过某一个周期旋转后,依旧与原来的图像相互吻合,那么,我们就称物体的这种特征为“对称性”[1]。

“对称性”原理,是牛顿力学原理基础之一。

力学在这一理论之上,引申出物质发展的对称性与不对称的关系,进而对物质守恒的相关原理进行证明论述。

此外,“对称性”的分析,也能够进一步拓展质量、数量层面的延伸,小到一粒微尘的变化,大到世界物质的生存与死亡,均遵循着“对称性”和“非对称性”之间的关系[2]。

二、“对称性”与力学三大守恒定律之间的关系
(一)时间平移与能量守恒定律
依据力学的能量守恒定律可知:物质中的能量不会凭空产生,也并不会凭空消失,它的运作始终遵循着能力均衡的状态。

而大学物理中提到的“对称性”,也是从这一层面,对时间的运动规律进行总结。

如,我们每天经历的时间均是24小时,每一小时又分为60分钟,每一分钟又被分为60秒。

今天如此,昨天亦如此,未来也如此。

如果将其看作是力学中的能量,则每一天的时间运转,均处于平衡的状态中。

以更具体的例子来解析,假定一粒子的势能一维运动过程中,其受力为F,做功为A。

则按照热能、动能的转换原理来看,A与F之间,在势能区间内,平行进行一维运动,始终保持热能转换与动能损耗相互平衡的状态,即F=A的能量转换。

由此可见,时间在发生平移变换的过程中,也将与不同形式的能量,发生相互转换,但能量自身的总数却没有发生变化。

此外,我们对能量守恒的分析过程中,对永恒工作的永动机的分析,就是对力学守恒与时间平移对称理论相互冲突的代表。

由此来看,只要物理做功过程中有损耗,在时间平移的“对称性”特征就存在。

(二)空间对称性与动量守恒定律
大学物理中空间对称性理论认为:只要实验环境相同,实验的结果就相同。

而物理力学中动能守恒定律中,也对物质产生的能量变化的定义为:物质动能转换是周期循环的,两者在空间形态的变化上,都以“恒定”作为论证的最后关键词。

运用更具体的例子对其分析,即一粒子在一维运动场中的运用,始终处于势能规定区域(X,M)之间运动,设定粒子的运动函数为P,则函数P粒子能量运动轨迹的变化,始终位于势能空间变化之中。

如果函数P只是空间发生变化,则我们是不会看到粒子能量变化的轨迹。

而当质点处于一个绝对位置时,质点的运用变化,需要通过空间平移的变化,来分析粒子势能状态中运行状态。

因此,势能空间的平移变化,可作为粒子质点发生变化、运用过程的主要分析渠道,也是保障物理运动过程中,相互作用力之和为零,即两个之间之间的作用力和反作用力之间始终保持平衡,而这一理论,正是物理力学中动量守恒定律的主要内容。

(三)空间转换与角量守恒定律
空间转换理论,是指在实验条件相同的情况下,物理实验与空间的取向无关,设定其实验方向后,其实验产生的结果、实验操作的过程,并不会因此而发生变化。

即空间之间发生平移时,其实践的空间同向性也相同。

而角量守恒定律,则是认为:质点对固定点的的角动量,与时间的变化轨迹产生的力、与质点到该点的外部延伸点之间有着密切性关联。

以更为具体的例子来分析,一粒子在一维运动空间区域(V,A)之间运动,且运动过程中,绕其核心轴X旋转后,坐标旋转中产生的轨迹运动力,与质点到轨迹运动的趋向变化的力平衡,则(V,A)之间的力变化,均不能脱离X轴运动空间变化,即X轴上质点产生的力,与(V,A)之间的力的变化合力为零。

即大学物理中的“对称性”与力学角量守恒之间的关系,可以运用函数空间对应性的理论对其进行解释。

当物质所在的空间角度发生变化时,空间结构的信息,物质运动过程中所产生的动力,也会随着物质的变化而变化。

但力的产生与变化过程,始终遵循中合力为零的标准,实现物质空间内力的划分,因此,空间转换后,只是将物体内容,以平移、复制的方式,放置到另一个空间中,其实质并没有发生较大的变化,因此,物质运动后,空间转换依旧与其原有状
态保持一致,正是对物理守恒定律中,角量守恒变化的相关内容进行分析,在现代物质分析的主要表现。

结论:
综上所述,试论大学物理中的“对称性”与力学三大守恒定律的关系,是物理力学知识整合关于分析的理论基础,对于理论知识额整合具有一定的指导作用。

在此基础上,结合对称和“对称性”的关系,分别从间平移与能量守恒定律、空间对称性与动量守恒定律、以及空间转换与角量守恒定律层面,分析大学物理中“对称性”的特征。

因此,浅析大学物理中的“对称性”与力学三大守恒定律的关系,是当代物理学知识深入研究的体现。

参考文献:
[1]蒋逢春,卢雪艳,吴杰,李俊玉.混合式教学在大学物理实验中的应用分析[J].物理通报,2018(01):2-6+9.
[2]冯炎尧,汪小刚,陈均朗.新高考模式下的大学物理与中学物理有效衔接的研究[J].课程教育研究,2018(01):158.
作者简介:赵波,男,籍贯:贵州织金,1995年2月出生,学历:本科。

通讯作者:彭双艳。

相关文档
最新文档