对称性对称性与守恒律

合集下载

量子力学对称与守恒定律讲义

量子力学对称与守恒定律讲义
第三章/对称性与守恒定律
“为什么对称是重要的?“ --- 毛主席1974年5月向李政道请教的
第一个问题
对称与不对称(破缺)
在艺术(对联,画),数学(海螺,浪花), 自然(山峰,窗))均有精彩表现 完全对称的东西极少见!
不是静态的概念(适用一切自然现象) 物理学中对称性:现象或系统在某变换下不变 宏观->直观; 微观世界-> 不直观,但极重要
SU(2)是u,d夸克对称,破坏2--3% SU(3)SU(4)SU(5)SU(6) 同位旋破坏主要来自多重态不同分量质 量差印起的运动学效应
奇异数(Strangeness)和重 子数
1947年宇宙线实验(after pion),1954年
加速器实验发现一批奇异粒子(photos)
特性一:协同产生,独立衰变
即 H 0, H H
厄米算符p
i
与H对易,
是守恒量
2
分立变换下:
U 1HU H i.e.,UH HU ,all _ states
U与H对易,U是守恒量 时空对称性:场与粒子时空性质变换 内部对称性:与时空无关
Some symmtries and the associated conservation laws
群论与对称性
对称性变换必须满足群的性质 (Closure,Identity,Inverse,Associativity) 如空间转动群,SO(3),3 axis, 3 生成元 (与守恒荷一一对应) 重要的李群/李代数, O(N),SO(N),U(N),SU(N) 复合对称性 --》 复合守恒量, e.g., CP parity,G parity etc.
Translation in time Energy Translation in space Momentum

量子力学中的对称性与守恒律

量子力学中的对称性与守恒律

量子力学中的对称性与守恒律量子力学是描述微观世界的一种物理理论,它在20世纪初由一系列科学家共同发展而成。

在量子力学中,对称性与守恒律是两个重要的概念,它们在理论和实验研究中起着重要的作用。

对称性在物理学中具有重要的地位。

在量子力学中,对称性可以分为空间对称性、时间对称性和内禀对称性。

空间对称性指的是物理系统在空间变换下保持不变,例如物理系统的哈密顿量在空间变换下保持不变。

时间对称性指的是物理系统在时间变换下保持不变,例如物理系统的演化算符在时间反演下保持不变。

内禀对称性指的是物理系统在内部变换下保持不变,例如粒子的自旋。

对称性在量子力学中的应用非常广泛。

首先,对称性可以帮助我们简化物理系统的描述。

通过对称性分析,我们可以找到系统的守恒量,从而简化哈密顿量的形式。

例如,如果一个物理系统具有空间平移对称性,我们可以得到动量守恒定律。

如果一个物理系统具有时间平移对称性,我们可以得到能量守恒定律。

其次,对称性还可以帮助我们预测新的物理现象。

例如,根据内禀对称性的理论,科学家预测了反应堆中的中微子振荡现象,并通过实验证实了这一理论。

此外,对称性还可以帮助我们理解量子态的性质。

例如,根据电荷守恒的对称性,我们可以推导出电荷守恒定律,并解释为什么电子和正电子总是以对的方式产生和湮灭。

守恒律是量子力学中的另一个重要概念。

守恒律指的是物理系统在演化过程中某个物理量的守恒。

在量子力学中,守恒律可以通过对称性来推导。

例如,如果一个物理系统具有空间平移对称性,那么动量就是守恒量。

如果一个物理系统具有时间平移对称性,那么能量就是守恒量。

守恒律在量子力学中具有广泛的应用。

例如,电荷守恒定律、能量守恒定律和动量守恒定律都是守恒律的具体表现。

这些守恒定律在物理学中起着重要的作用,它们帮助我们理解物理现象的本质,并且可以用于解释实验结果。

除了对称性和守恒律外,量子力学中还有一些其他重要的概念。

例如,量子态、测量和量子纠缠等。

量子态用于描述量子系统的状态,它可以是一个波函数或一个密度矩阵。

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。

对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。

这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。

本文将深入探讨对称性与守恒定律的关系。

首先,让我们来了解对称性的概念。

对称性可以简单地理解为某种变换下系统保持不变的性质。

在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。

平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。

对称性在物理学中起着非常重要的作用。

与对称性相关联的是守恒定律。

守恒定律描述了系统在各种变化中某些物理量守恒的性质。

守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。

根据对称性的不同,我们可以得到不同的守恒定律。

首先,根据时间平移对称性,我们可以得到能量守恒定律。

能量守恒定律指的是系统的能量在时间上保持不变。

这是因为系统的物理规律在时间上的不变性导致的。

无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。

其次,根据空间平移对称性,我们可以得到动量守恒定律。

动量守恒定律指的是系统的动量在空间上保持不变。

这是因为系统的物理规律在空间上的不变性导致的。

无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。

此外,根据空间旋转对称性,我们可以得到角动量守恒定律。

角动量守恒定律指的是系统的角动量在空间上保持不变。

这是因为空间旋转对称性导致的。

无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。

最后,根据粒子对称性,我们可以得到电荷守恒定律。

电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。

对称性与守恒定律

对称性与守恒定律

对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。

后者属于自然界更深层次、最为基本的规律。

而守恒律和对称性有紧密联系。

了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。

一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。

对称性的定义如下。

若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。

简言之,对称性就是某种变换下的不变性。

二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。

例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。

2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。

一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。

指对镜面作物像变换。

紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。

●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。

一类,以位移为例,其镜像为,如图1(a)所示。

它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。

,,等都是极矢量。

另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。

保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。

和沿镜面的平行分量反向,而垂直分量方向相同。

这类矢量叫轴矢量,又称赝矢量。

数学与物理的奇妙融合——对称与守恒

数学与物理的奇妙融合——对称与守恒

数学与物理的奇妙融合——对称与守恒物理学家杨振宁(1922-)先生认为,20世纪物理学有三大主旋律:量子化、对称与相位因子.关于对称性,伟大的德国女数学家,有着“代数学女王”之称的艾米˙诺特(E.Noether,1882-1935)认为:“物理体系的每一个连续的对称变换,都对应于一个守恒定律”,这就是著名的诺特定理.大自然中处处有对称,对称性很早就是物理学研究的指导原则.对称原本是数学的概念,守恒则是物理定律,诺特定理却揭示二者之间存在紧密而奇妙的联系.本讲将介绍物理学中的对称性与守恒律.主要内容分三部分:第一部分介绍对称性与守恒律之间的联系;第二部分通过拉格朗日函数的变分,将力学系统的运动规律表述为“最小作用量原理”;第三部分则通过考察作用量的三种对称性,导出物理学中的三大守恒定律:(1)由“时间平移对称性”推导“能量守恒定律”;(2)由“空间平移对称性”推导“动量守恒定律”;(3)由“空间旋转对称性”推导“角动量守恒定律”.这一讲,通过对称性与守恒律在数学和物理角度的分别诠释,我们可以更加深入体会到数学语言在物理中的运用,并进一步了解数学与物理之间分分合合的关系:二者都源于哲学,曾经一度分家,到了现代,又产生了密不可分的联系.作为科学上最重要的两个分支,数学与物理互相促进、相辅相成.第1节 对称性与守恒律1.1 对称与群人们很早就注意到我们生活的这个世界充满了对称性,并对之加以探究,早在古希腊、古罗马以及古代中国,都有关于对称概念的研究记载.简单来说,对称性就是“变中有不变”,即在某种变换下保持不变的性质. 1872年,德国数学家克莱因(F.C.Klein ,1849-1925)在埃尔朗根大学的就职演说中提出了著名“埃尔朗根纲领”,将19世纪及之前的几何学概括为“研究在某种变换群下保持不变性质和不变量的学科”.例如,欧氏几何研究的是在刚体变换下保持不变性质的几何学,其变换群是正交矩阵群;仿射几何研究的是在仿射变换下保持不变性质的几何学,其变换群是一般线性群.例1(平面上的刚体变换)平面上的一点(,)x y 经过平移和旋转的刚体变换到另一点(,)x y '',则有如下的对应关系00'cos sin 'sin cos x x x y y y θθθθ−⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 例2(平面上的仿射变换)平面上的一点(,)x y 经过仿射变换到另一点(,)x y '',则有如下的对应关系011121112021222122',0'x a a a a x x y a a a a y y ⎛⎫⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.研究对称性最重要的数学工具就是群论——抽象代数的一个重要分支,群的概念在第2讲中已有详细介绍.群的发明来源于法国数学家伽罗瓦(É. Galois ,1811-1832)对一元n (5)n ≥次代数方程是否可以根式求解问题的研究.早在古巴比伦时期,一元一次和二次方程求根问题就已经解决,并有一元二次方程的求根公式.16世纪意大利的数学家给出了一元三次方程和四次方程的求根公式,但是,此后人们在长达300多年内寻求高于四次方程的求根公式均以失败告终.至19世纪上半叶,“求代数方程的根”一直是古典代数学的中心问题,直到伽罗瓦证明了:一元n 次代数方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为可解群.作为这个结果的一个推论是:对应于一般形式的n 次代数方程的伽罗瓦群,只有当 1,2,3,4时才是可解群.因此,五次及五次以上代数方程不存在求根公式.所谓伽罗瓦群是指由方程的根的置换群中保持方程根的以“基本域”中的元素为系数的全部代数关系不变的置换构成的子群.可解群可作如下简单解释:由群中元素的换位子11[,]a b aba b −−=全体生成的子群,即换位子群,而换位子群的换位子全体又可以生成一个新的子群……,若经过有限次成为只含幺元的幺群,则此群称为可解群.图1. 伽罗华1.2 对称性与守恒律 物理系统中常见的对称性有时间平移对称性、空间平移对称性和空间旋转对称性等;物理系统常见的守恒律有能量守恒定律、动量守恒定律和角动量守恒定律等,对称性与守恒律有着千丝万缕的联系.德国著名女数学家艾米·诺特是抽象代数的开创者,她被爱因斯坦赞誉为“最伟大的女数学家”.艾米·诺特是从数学及物理上阐明了对称性与守恒律的联系的第一人,她在1918年发表的题为《变分问题的不变量》的论文中提出了著名的“诺特定理”:物理系统的每一个连续的对称变换,都对应于一个守恒定律.1926年,美国物理学家维格纳(E.P.Wigner,1902-1995)还提出了宇称守恒定律,想把对称性和守恒律的关系进一步推广到微观世界.所谓“宇称”,是指一种粒子之间互为镜像,粒子的运动是相同的.但在1956年,美籍华裔物理学家李政道(1926-)和杨振宁在深入细致地研究了各种因素之后,提出“在弱相互作用下宇称不是守恒的”,美籍华裔实验物理学家吴健雄(1912-1997)则通过一个巧妙的钴60衰变实验验证了“宇称不守恒”.李政道和杨振宁因此获得1957年的诺贝尔物理学奖,成为首次获得该奖项的华裔科学家.图2. 诺特与《代数学》例3(开普勒第二定律与角动量守恒)在第8讲中的开普勒行星第二运动定律(即面积律),本质上反映了太阳-行星系统的角动量守恒. 事实上,由面积律,我们知道212r A θ≡(常数),而行星运动时的线速度0()()lim t r t t r t v t∆→+∆−=∆,则角动量的大小为 2200()[()()]lim lim t t r t r r t t r t r v r t t θθ∆→∆→∆⨯+∆−⨯===∆∆.诺特定理直观的理解就是:每一种对称性都对应一个守恒律.例如,时间平移对称性对应能量守恒定律;空间平移对称性对应动量守恒定律;空间旋转对称性对应角动量守恒定律.这个定理培育出了物理学家的一种思维习惯:只要发现一种新的对称性,就要去寻找相应的守恒律;反之,只要发现了一条守恒律,也总要把相应对称性找出来,下面是一个对称性与守恒定律及使用范围的关系表. 对称性守恒定律 使用范围 时间平移能量守恒 完全 空间平移动量守恒 完全 空间旋转角动量守恒 完全 镜像反射宇称守恒 弱作用中破缺 电荷规范变换电荷守恒 完全 重子规范变换重子数守恒 完全 轻子规范变换 轻子数守恒 完全1.3 自发对称破缺自然规律的确具有某种对称性,对称使得万物和谐、均衡,但对称中也潜藏着不对称,对称中的不对称使得事物变得生机、灵动.五彩缤纷的大自然中,无处不有对称与不对称,物理学也是如此.物理规律的某种对称性表现在真实世界的具体现象时,却不是对称的,这一看起来似乎很简单的现象,却曾经使得科学家困惑多年.“自发对称破缺”的理论给予了解释.“自发对称破缺”作为专业术语,常常被人们用一个简单的例子解读,例如,一支铅笔竖直立在桌子上,按照物理定律,铅笔所受的力在四面八方都是对称的,及满足旋转对称性,因此铅笔向任何一个方向倒下的概率都应该相等.但是,铅笔最终只会倒向一个方向,倒下之后,铅笔原有的对称性就被破坏掉,而这种破坏是铅笔自身发生的,因此被称为“自发对称破缺”.20世纪60年代中期,科学家们通过对数学物理理论的研究,预言了一种名为希格斯粒子的基本粒子,这与上述的“自发对称破缺”这一术语相关.2012年,希格斯粒子被欧洲核子中心发现,与此相关的研究获得了2013年的诺贝尔物理学奖.事实上,物理学家经过多年的研究,提出了关于物质世界的组成的“标准模型”,在这个“标准模型”中,物质的本源来自四种基本力:引力、电磁力、弱力和强力,以及61种基本粒子,其中包括36种夸克,12种轻子,8中胶子,2种W粒子,另外还有Z粒子、光子以及希格斯粒子.希格斯粒子是“标准模型”中最后被发现的粒子,被称为“上帝粒子”.“标准模型”成功地统一了除了引力以外的三种力,并且基本精确地解释了与三种力有关的所有实验事实.物理学家用“自发对称破缺”的概念来研究基本粒子和场,认为它们遵循某种“规范对称性”,希格斯粒子的发现证明了“标准模型”基本正确.在微观世界里,基本粒子有三种基本的对称方式:(1)电荷(C)对称(共轭对称):对于粒子和反粒子,物理定律是相同的.(2)宇称(P)对称(空间反射对称):互为镜像的同一种粒子的运动规律相同.(3)时间(T)对称(时间反演对称):如果颠倒粒子的运动方向,则粒子的运动是相同的.高能物理实验告诉我们,对于粒子世界的物理规律,以上3种对称性全部破缺,世界从本质上被证明了是不完美的、有缺陷的.因此,可以认为我们这个五彩缤纷的物质世界,包括人类自身,都是对称性的细微破缺留下的遗迹.第2节 最小作用量原理2.1 拉格朗日函数我们描述系统中的N 个点的位置信息需要3N 个坐标,当增加约束时,这个系统的自由度便会降低.所谓自由度,指的是能够完全描述某一物理系统状态的相互独立的最少变量个数,当增加某些约束时,会使其中某些变量不再相互独立,导致自由度降低.为了研究问题方便,我们要引进广义坐标系统.s 个自由度的系统可以用s 个独立变量1,,s q q 和变量的变化率1,,s q q 以及时间t 的函数()()11,,,,,,,,s s L q q t L q q q q t =来表示,称之为拉格朗日函数,拉格朗日函数对于时间的积分()21,,t t S L q q t dt =⎰即为作用量. 最小作用原理指的是物理系统的真实运动轨迹是使作用量达到最小的轨迹.据此可以推导出著名的欧拉-拉格朗日方程.例4(费马原理)光学中的费马原理指的是:光的轨迹总是遵循使光程B A nds ⎰(其中n 是介质的折射率)取极值的轨迹.根据费马定理,可以推导出光传播的三大规律——光的直线传播定律、反射定律和折射定律,包含了几何光学的主要内容.这其实很有趣:光是没有脑子的,但它走的总是最省时间的路.斯奈尔折射定律的内容是:设一道光线从一点A 以速度1v 、入射角1α进入较密媒质后以较低速度2v 、折射角2α 到达点B ,则有1212sin sin v v αα=. 例5(最速降线问题)伽利略在1630年提出一个分析学的基本问题——一个质点在重力作用下从一个给定点到不在它垂直下方的另一点,如果不计摩擦力,沿什么曲线滑下所需时间最短?伽利略错误的认为这曲线是个圆.瑞士数学家约翰·伯努利在1696年再次提出这个最速降线问题,次年(1697年)已有多位数学家得到正确答案,其中包括牛顿、莱布尼兹、洛必达以及雅可比·伯努利与约翰·伯努利兄弟.其中,牛顿、莱布尼兹、洛必达利用的是微积分的方法,雅可比·伯努利的方法虽然比较繁琐,但其中孕育了变分法的思想,约翰·伯努利的方法似乎缺乏根据但十分简明.约翰·伯努利采用费马最小时间原理,将质点在重力场中的运动类比于光线在介质中的传播,得到最速降线问题中的路径所需满足的微分方程.假设质点沿从点A 滑行到点B 的路径,所需时间最短.从光学的原理得出,sin vα=常数. 根据能量守恒定律,质点在一定高处的速度,完全由其到达该高处所损失的势能确定,而与所经过的路径无关,从而,有2v gy =.由几何关系,还可以得到 221sin cos sec 1tan 1()y αβββ===='++ 将上述三式结合起来,得到2[1()]().y y c '+=常数这就是最速降线所满足的常微分方程.解此微分方程,可以得到(sin ),(1cos ).x a y a θθθ=−=− 这是旋轮线(也称摆线)的标准方程,而最速降线问题的正确答案就是连接两点上凹的唯一一段旋轮线(即倒置的摆线).1673年,惠更斯(C.Huygens ,荷兰,1629~1695)证明了旋轮线是摆线.因为钟摆做一次完全摆动所用的时间相等,所以摆线又称等时曲线.雅可比·伯努利的方法则接近于现代的变分法思想.以变分法的思想,最速降线问题应该是一个求泛函极值的问题,其数学表达如下:()()()()2121121'min min '22x x y x y x y x v J dx y y x g g αα+⎛⎫==− ⎪−⎝⎭⎰. 这个数学问题的正确的解答也是倒置的摆线图3. 最速降线问题与摆线 作用量在数学上被称为泛函,即“函数的函数”,而最小作用原理从数学角度来说是研究泛函的极值,而要计算泛函的极值,需要运用变分法,变分法可以理解为微分法的推广.微分法研究自变量的改变对于函数值的影响,而泛函中是将函数映射为一个实数,可以把这里的函数类比微分中的自变量,本质思想是相同的.变分法是研究泛函的极值方法.1756年,欧拉在论文中将变分法正式命名为“the calculus of variation ” .1760年,拉格朗日引入变分的概念,在纯分析的基础上建立变分法。

5-4 对称性 对称性与守恒律

5-4 对称性 对称性与守恒律
§5-4
对称性

对称性ห้องสมุดไป่ตู้守恒律
一、关于对称性
在远古不同的文化里都有对称的观念,以后又渗透到各种不 同的人类活动之中,包括绘画、雕塑、音乐、文学、建筑等等。 对称的观念是如何进入到科学里面来的呢?可以讲得很清 楚的希腊,希腊人觉得对称是最高的原则,而什么东西是最对 称的呢?是圆。所以他们就认为,世界上主宰一切的最高的原 则,是以圆和球来做最后决定的。虽然结果并不成功,可是他 们的精神里面有很重要的正确方向。在物理学中对称的观念是 1905-1907年由爱因斯坦引进的,可是最初它对于物理学的重 要性并没有被大家所认识,从1925-1970年,对称的观念渐渐 成为一个主旋律(20世纪有三个主要旋律:量子化、对称、相 位因子)。1925年量子力学发展起来以后,有一些数学修养比 较高的物理学家就把数学里面非常美妙的一个观念叫做群论引 入到物理学里,这对20年代、30年代、40年代分子物理学、原 子物理学乃至以后的原子核物理学都起了决定性的作用。
(a)
(b)
个与之等价的状态,或者说,状态在此操作下不变,我们就说 这系统对于这一操作是“对称的”,而这个操作叫做这系统的 一个“对称操作”。例如图(a)中那个圆(不考虑上面的记号) 对于围绕中心旋转任意角度的操作来说都是对称的;或者说, 旋转任意角度的操作都是这圆的对称操作。如果我们在圆内加 一对相互垂的直径(如图b),这个系统的对称操作就少多了。 转角必须是90°的整数倍,操作才是对称的。由此可见,图 (b)中的图形要比单纯一个圆的对称性少多了。
以上关于“对称性”的普遍定义,是德国大数学家魏尔 (H.Weyl)首先提出来的。最常见的对称操作是时空操作。
在物理学中讨论对称性问题时,要注意区分两类不同性质 的对称性,一类是某个系统或某件具体事物的对称性,另一类 是物理规律的对称性。由两质点组成的系统具有轴对称性,属 于前者;牛顿定律具有伽利略变换不变性,则属于后者。

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律量子力学是描述微观世界的物理学理论,它主要研究微观粒子的行为和性质。

在量子力学中,对称性和守恒定律是十分重要的概念,它们不仅帮助我们理解微观世界的规律,还对于解释和预测自然现象都起到了关键作用。

本文将对量子力学中的对称性与守恒定律进行论述。

1. 对称性在量子力学中的作用对称性在物理学中具有重要的地位,它可以帮助我们理解自然界中的各种现象。

在量子力学中,对称性可以通过算符的变换来描述。

对称性的存在意味着系统在某些变换下保持不变,这些变换可以是平移、旋转、粒子交换等。

不同的对称性对应着不同的物理规律和守恒量。

2. 空间对称性与动量守恒定律空间平移对称性是量子力学中的重要对称性之一。

根据诺特定理,一个系统的平移不变性对应着动量的守恒,即动量守恒定律。

在量子力学中,动量被表示为动量算符,根据平移算符的性质,能量本征态同时也是动量本征态,从而推导出动量守恒的数学表达式。

3. 时间对称性与能量守恒定律时间平移对称性是量子力学中另一个重要的对称性。

根据诺特定理,一个系统的时间平移不变性对应着能量的守恒,即能量守恒定律。

在量子力学中,能量被表示为能量算符,根据时间平移算符的性质,能量本征态同时也是时间本征态,从而推导出能量守恒的数学表达式。

4. 粒子交换对称性与电荷守恒定律粒子交换对称性是量子力学中独特的对称性。

根据粒子交换的性质,不同种类的粒子在交换后会得到正负符号不同的波函数。

通过对称性的研究,我们可以得出守恒定律,例如电荷守恒定律。

在量子力学中,电荷被表示为电荷算符,根据粒子交换算符的性质,电荷守恒可以被推导出来。

5. 空间反演对称性与正负宇称守恒空间反演对称性是又一种重要的对称性。

根据空间反演的性质,物理过程在空间反演后会得到相反的结果。

通过对称性的研究,我们可以得出守恒定律,例如正负宇称守恒。

正负宇称守恒与粒子的手性和反粒子的存在有关,通过对称性的分析可以得到这一守恒定律的数学表达式。

对称性和守恒律

对称性和守恒律

对称性和守恒律概念及其重要性对称性(Symmetry)与守恒律(Conservation Law)是物理学中最重要的概念之一,它们有助与我们理解和描述这个宇宙的运行机制。

对称性是物理学上的一种基本假设,指的是存在着外界因素(如时间、空间、组织、排列、颜色)的变化,使得一个模式具有重叠性,称为对称性。

而守恒律指的是一个物理量的大小是不变的,只有根据特定的定律允许存在一定的变化,而不存在消失或诞生的情况。

质量守恒律质量守恒律是物理变换过程中最重要的守恒律之一,它表明量子物理中物质的平衡性,即物质总量保持不变,任何形式的物质是可以通过相互转换得到的。

质量守恒的定义是:质量的总量在物理变换的过程中不会变化,因此在化学反应中反应前后物质的总量是一致的。

电量守恒律电量守恒律是物理变化过程中另一个重要的守恒律,其定义是:在带电粒子运动的物理变化过程中,电子、正电子等电荷总量保持不变,不发生增减。

换言之,任何形式的电荷,只要经过合理计算,都是可以表示为电荷量的,从而可以被计算出来。

动量守恒律动量守恒律是物理变换过程中的另一个守恒律,其定义是:在物理变化的过程中,物质所携带的动量是守恒的,即动量总量保持不变。

动量守恒律是物理变换中最重要的守恒律之一,它表明,在无外力作用的情况下,物体的运动状态是恒定的,物质的动量不会发生变化。

这个定律是有“动量守恒定律”这一名称的,它通常也被称为“牛顿拉普拉斯定律”。

结论由上文可以得出,对称性与守恒律是物理学中不可或缺的重要概念,其中,质量守恒律、电量守恒律和动量守恒律是最为重要的。

这些守恒律在影响物理变换过程中产生了重要的作用,对我们对物质和能量的理解和认识极为重要,它们是理解宇宙现象的基础科学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回 结束
第五章 角动量 关于对称性
1.机械能对空间坐标系平移对称性与动量守恒 设体系由两个相互作用的粒子组成.且只限于在x
轴上运动(如图),不受其它外力.
当两粒子间的距离 x = x2 - x1时,x体系的势能x Nhomakorabeax
EpEp(x1,x2) x 1 x1 δx
x 2 x2 δx
当体系发生一平移 x 时,两粒子的坐标为

Ep Ep 0
x1 x2
粒子受力
Ep x1
F21x
Ep x2
F12x
又得
F21 xF12 x0

d(p1x p2x) 0 dt
即动量守恒.
上页 下页 返回 结束
第五章 角动量 关于对称性
δ E k m δ v ( δ v ) m v ( δ v ) 0 δEp 0 Ep Ep(r)
x1δx, x2δx
但两者的距离仍为 x = x2 - x1.
上页 下页 返回 结束
第五章 角动量 关于对称性
空间的平移对称必性意味着势能 Ep 应与x无关. 势 能对空间坐标系平移保持不变性要求
E p E x 1 pδ x E x 2 pδ x ( E x 1 p E x 2 p)δ x 0
EE(x,vx)
dEdEk(vx)dvxdEp(x)dx dt dvx dt dx dt
上页 下页 返回 结束
上页 下页 返回 结束
第五章 角动量 关于对称性
§5.4.2守恒律与对称性
在物理学中具有更深刻意义的是物理定律的对称性. 物理定律的对称性是指经过一定的操作后,物理定律的 形式保持不变,因此物理定律的对称性又叫不变性.
关于物理定律的对称性有一条很重要的定律:对应 于每一种对称性都有一条守恒定律. 如:对应于空间均 匀性的是动量守恒定律;对应于空间的各向同性的是角 动量守恒定律;对应于空间反演对称的是宇称守恒定律; 对应于量子力学相移对称的是电荷守恒定律等等. 物理 定律的时间平移对称性决定了能量守恒.
对称性对称性与守恒律
第五章 角动量 关于对称性
§5.4对称性·对称性与守恒定律
§5.4.1关于对称性 §5.4.2守恒律与对称性
1.机械能对空间坐标系平移对称性与动量守恒 2.机械能对空间坐标系转动对称性与角动量守恒 3.机械能对时间平移对称性与机械能守恒
上页 下页 返回 结束
第五章 角动量 关于对称性
表明质点受有心力作用,有心力对力心的力矩等 于零,角动量守恒.
上页 下页 返回 结束
第五章 角动量 关于对称性
3.机械能对时间平移对称性与机械能守恒
设体系由两个相互作用的质点组成,其中一个
质点位于坐标原点且保持静止,另一质量为m速度
为 vx 的质点位于x处.
系统总机械能
EE(x,vx,t)
机械能对时间平移具有对称性,则 E 0 t
§5.4对称性·对称性与守恒定律
§5.4.1关于对称性
1.对称性 关于对称性的普遍的严格的定义是德国数学家
魏尔(H.Weyl)1951年给出的:对一个事物进行一 次变动或操作,如果经过操作后,该事物完全复原, 则称该事物对所经历的操作是对称的. 而该操作就叫 对称操作. 由于操作方式不同而有若干种不同的对称 性.
相关文档
最新文档